
Constraining Dynamic TOPMODEL responses using fuzzy ……, Freer et al. 

Draft Manuscript 1.0 – Page 1 

 

Constraining Dynamic TOPMODEL responses for imprecise water table 

information using fuzzy rule based performance measures. 

Freer, J.E. 1, McMillan, H.2, McDonnell, J.J. 3, and Beven, K.J. 1 3 

1  Lancaster University, Department of Environmental Sciences, IENS, Lancaster, Lancaster, LA1 

4YQ, United Kingdom 

2  Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK  6 

3  Department of Forest Engineering, 015 Peavy Hall, Oregon State University, Corvallis, Oregon 

97331-5706, USA 

Manuscript for ‘Catchment modelling: towards an improved representation of the 9 

hydrological processes in real-world model applications’, Uhlenbrook, S and Montanari, A. 

(eds) – Journal of Hydrology Special Issue (2002 EGS session) – Post Review Draft 

Keywords: Dynamic TOPMODEL, GLUE, Water Table Uncertainty, Parameter Constraining, Fuzzy 12 

Rules, multicriteria calibration 

 

 

*Corresponding Author: 
Jim Freer 

Department of Environmental Sciences 
Lancaster University 

Bailrigg 
Lancaster 
LA1 4YQ 

UK 

e-mail: j.freer@lancaster.ac.uk 
Tel: +44 (0)1524 593563 

Fax: +44 (0)1524 593985 
 

 



Constraining Dynamic TOPMODEL responses using fuzzy ……, Freer et al. 

Draft Manuscript 1.0 – Page 2 

 

 15 

Abstract 

Dynamic TOPMODEL is applied to the Maimai M8 catchment (3.8 ha), New Zealand using rainfall-runoff 

and water table information in model calibration.  Different parametric representations of hillslope and valley 18 
bottom landscape units were used to improve the spatial representation of the model structure.  The 

continuous time series water table information is obtained from tensiometric observations from both near 

stream (NS) and hillslope (P5) locations having different responses to rainfall events.  For each location, and 21 
within an area equivalent to an effective model gridscale (25m2), a number of tensiometer readings at different 

depths were available (11 for the NS site and 9 for the P5 site).  Using this information a distribution of water 

table elevations for each time step at each location was calculated.  The distribution of water table elevations 24 
was used to derive fuzzy estimates of the water table depth for the whole time series that includes the temporal 

variability of the uncertainty in the observations. These data were used to constrain the spatial representation 

of the model having previously conditioned the model using the rainfall-runoff data.  Model conditioning was 27 
assessed using the Generalised Likelihood Uncertainty Estimation procedure. 

Results show that many combinations of parameter values for the two landscape units were able to simulate 

the rainfall-runoff data.  Further constraining of the model responses using the fuzzy water table elevations at 30 
both locations considerably reduced the number of behavioural parameter sets.  An evaluation of the 

distributions of behavioural parameter sets showed that improvements to the model structure for the two 

landscape units were required, especially for simulations of the response at the hillslope location. 33 

 

1 INTRODUCTION 

A pragmatic and realistic approach to environmental modelling should recognise that all model 36 

structures, regardless of their complexity, are to some extent in error (Beven, 1989; Grayson et al., 

1992; Beven, 2002). This can be attributed to two main factors: (1) that our perceptual model is 

based on imperfect knowledge, and (2) that the formulation of a model necessitates the use of 39 

highly simplified mathematical constructs that cannot represent all the details of the many 

interacting processes within a natural system. Furthermore increasing model complexity, or 

explanatory depth, increases the possibility that the amount and type of observational data at hand 42 

will be inadequate to fully assess model performance. Such data limitations would be especially 

apparent for semi-distributed or distributed model constructs where the individual spatial 

components are rarely tested locally.  45 

Model evaluation is made at the catchment scale using stream discharge data. The use of 

discharge data alone has been shown to have weaknesses in the identification of model structures 

and parameters (e.g. Freer et al., 1996). This understanding has led to discussions of model 48 

identifiability (Sorooshian and Gupta, 1985; Beck and Halfon, 1991) and of the equifinality of model 

structures and parameters (Beven, 1996; Beven and Freer, 2001b). Increasingly recent papers have 

shown that being more thoughtful about the specification of objective functions or performance 51 



Constraining Dynamic TOPMODEL responses using fuzzy ……, Freer et al. 

Draft Manuscript 1.0 – Page 3 

 

measures (PM’s) and/or the use of multiple objectives ensures that best use is made of limited data 

in model calibration/evaluation (Gupta et al., 1998; Thiemann et al., 2001; Wagener et al., 2001; 

Seibert and McDonnell, 2002; Freer et al., 2003). One way of potentially improving the assessment 54 

of models has been to introduce multi-response data that describe different characteristics of the 

system. These measures may improve the identification of model structures and associated 

parameters without increasing the complexity of the model (Troch et al., 1993). There have now 57 

been a number of studies where this has been explored (Kuczera, 1983; de Grosbois et al., 1988; 

Bloschl et al., 1992; Grayson et al., 1992; Koide and Wheater, 1992; Lamb et al., 1997; 

Mroczkowski et al., 1997; Franks et al., 1998; Kuczera and Mroczkowski, 1998; Guntner et al., 60 

1999; Motovilov et al., 1999; Vertessy and Elsenbeer, 1999; Anderton et al., 2002a; Aronica et al., 

2002; Blazkova et al., 2002; Uhlenbrook and Leibundgut, 2002). 

The introduction of data other than discharge into the calibration process has not always produced 63 

satisfactory results. Stephenson and Freeze (1974) and Koide and Wheater (1992), in similar 

studies using detailed 2D distributed hillslope models calibrated from comprehensively sampled 

tensiometer and piezometer data, both noted difficulties in the calibration of their models due to 66 

numerous data and model simplification/initialisation factors. Grayson et al. (1992) found that the 

“measurement of catchment response in sufficient detail” (i.e. limitations imposed by data 

sparseness) was a limiting factor in the spatial validation of the THALES model. Hooper et al. (1988) 69 

found that using a combination of rainfall-runoff and geochemical data to identify a model with only 

six parameters called into question “the structural validity of more highly parameterised rainfall-

runoff models used in water quality prediction”. More recently Anderton et al. (2002b) found 72 

difficulties in using limited soil moisture and phreatic surface information in the validation of the 

SHETRAN model due to both the sparseness of the data and the ‘mismatch’ of the measurement 

scale to the model gridscale (see detailed discussions on using/interpreting spatial patterns for 75 

hydrological modelling in Grayson and Bloschl, 2000). 

While the introduction of new data sources (beyond that of discharge) into the assessment of 

models can increase model identifiability, a number of issues may bias the conclusions: 78 

• The data are uncertain (Sherlock et al., 2000). That is, for many data types there may be an 

inevitable degradation of quality and/or of the ability of the data to be representative of the 

system of interest. 81 

• The data may not be appropriate. That is, the phenomenon being represented by the data 

may not be commensurate with the model formulation, therefore direct comparisons through 

the specification of simple objective functions may not be realistic 84 

• The observations may be at the wrong scale. That is, observations may be at a different 

scale to the model scale. For scale discrepancies there might be a range of observed 

behaviour that is both large and inconsistent over time periods for the effective model gridscale. 87 
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As a result of these points, different performance measures may be required to match model 

assessment with the appropriate level of data quality, representativeness and scale. The error 

associated with models and data and the limitations of current data technologies directs the 90 

practitioner towards an assessment of models that is inherently probabilistic (see for example the 

use of uncertain saturated area observations in Franks et al., 1998). A probabilistic assessment 

allows for multiple parameterisations and/or model structures. Nevertheless, rejection is often 93 

difficult because of the limitations in the available data or because of our ‘imperfect knowledge’ of 

the system under study.  

A number of calibration methodologies for this type of approach have been developed, each 96 

having to a greater or lesser extent assumptions regarding the nature of the error structure, the 

sources of error and the complexities of the multidimensional parameter space response surface. 

This paper introduces multi-response data (discharge and tensiometric information) into the 99 

assessment of a hydrological model (Dynamic TOPMODEL) within the uncertainty analysis 

framework GLUE (Generalised Likelihood Uncertainty Estimation). Both stream discharge and 

multiple tensiometric readings are used for two topographically distinct sites at the Maimai 102 

catchment, New Zealand. The variability in the multiple readings at each site are characterised as 

a time-variable fuzzy objective function in a way that is more appropriate to the effective model 

gridscale and the uncertainty within multiple observations. To reflect the differences in these two 105 

topographically different sites Dynamic TOPMODEL is configured for two Landscape Units (LU’s) 

one being a Hillslope (HSLU) and the other a Valley Bottom (VBLU), each having independently 

sampled parameter values. The parameter interactions between the two LU’s are assessed and 108 

conclusions are drawn as to the usefulness of uncertain (fuzzy) gridscale information in 

constraining model parameters. Specifically, we address the following questions within the 

context of this general aim of simulating the discharge and water table (∇wt) responses: 111 

• Can we meet discharge and/or tensiometer criteria for more than one source of 

information? 

• How can fuzzy rules be applied to imperfect and imprecise knowledge when the error 114 

structures are time variant? 

• How can we constrain model responses and the efficiency of sampling? 

• How can we improve the Dynamic TOPMODEL structure and parameter representation? 117 

A recent paper by Seibert and McDonnell (2002)  

 

2 THE STUDY SITE 120 

The Maimai M8 catchment is located in the Tawhai State Forest, North Westland, South Island, 

New Zealand. It is one of eight small adjoining catchments that have been studied since 1974 as 

part of a land use change study. The layout of the catchment is shown in Figure 1a-d. 123 
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Mean annual gross rainfall in this area is approx. 2600 mm, producing some 1550 mm of runoff 

from 1950 mm of net rainfall (Rowe, 1979), with little seasonal variation. The Maimai catchments 

are highly responsive to rainfall, Pearce and McKercher (1979) reported that quickflow represents 126 

65% of annual runoff (39% of total rainfall), as defined by Hewlett and Hibbert’s (1967) separation 

method. Sklash (1990) commented that “The Maimai catchments are among the most hydrologically 

responsive forested headwater catchments documented” 129 

The surficial geology of Maimai catchment is firmly compacted, moderately weathered, early 

Pleistocene conglomerate, which is known as the Old Man Gravels and has been described as 

“effectively impermeable” by Mosley (1979). The relief of the catchment is in the order of 100-150m, 132 

with steep (average 34°), short (less than 30m) slopes (see Figure 1a). Soil development has 

weathered the conglomerate to form (as a broad classification), Blackball Hill soils (Mew et al., 

1975). These soils are spatially quite variable in both depth (0.2 - 1.8m) and character, having a 135 

thick well developed upper humic horizon (mean 170 mm, Webster (1977)). The upper mineral soil 

has been found to have an average saturated hydraulic conductivity of 250mm hr-1 (Webster, 1977). 

However, using a Guelph permeameter, McDonnell (1989) found this value to be highly variable, 138 

ranging from <5mm hr-1 in poorly drained hollows to the value reported by Webster in well drained 

nose slopes. The average infiltration capacity of the soil surface has been reported by Webster 

(1977) as 6100 mm hr-1. 141 

The vegetation of the catchment is classified as a mixed evergreen forest, the main cover being 

dominated by southern beech, podocarps and broadleaf hardwoods. The forest is multi-storied, the 

understorey consists of dense tree fern and shrubs and has a ground cover of ferns and herbs 144 

Pearce et al. (1986). A more detailed physical description of the Maimai M8 catchment can be found 

in Rowe et al. (1994) and McGlynn et al. (2002). 

2.1 The tensiometric study sites 147 

The layout of the Maimai M8 catchment is shown in Figure 1, and has been extensively 

documented by Pearce et al. (1986). The intensive monitoring of the 0.3 ha subcatchment and the 

Near Stream (NS) site was undertaken over a number of storm events during September to 150 

December 1987 (McDonnell, 1990). The data collected included tensiometer, trough flow, and 

chemical tracer samples, as well as hydrometric data based on a 10min. time step. Two tensiometer 

sites were used from this intensive study, these being the NS (Figure 1c) and P5 (P5 - Figure 1d) 153 

sites, both of which have been reported in McDonnell (1990) with regard to 3D matric potential (φ) 

responses. Tensiometers were situated away from cracks and voids to ensure they characterised 

only the changes in the soil matrix (McDonnell, 1990). The topographic position of the two sites 156 

differs considerably (see Figure 1a), with the NS site having a close proximity to the stream channel 

(< 4m) and the P5 site on a steeper upslope section (some 40m from the stream channel). 
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Consequently the data provide a good test of the possible variation in water table responses in two 159 

topographically distinct areas of the catchment. The variations in soil properties between these two 

sites are given in Table 1 and will be referred to in later sections.  

The P5 site consisted of an electronically multiplexed and logged array of 32 tensiometers 162 

(arranged within a grid 6m by 1m), whereas the NS site had 24 tensiometers (4m by 0.5m) that 

were linked via a fluid scanning switch to a single pressure transducer. The P5 site had continuous 

logged data, which were recorded at the same time for all tensiometers. Due to the fluid scanning 165 

switch at the NS site, a single reading was taken in rotation at a maximum resolution of one minute 

increments, although this increment sometimes increased to 5 min. for short (recession) periods. 

Details of the tensiometer design and performance are given in McDonnell (1993). The tensiometers 168 

ranged in their depth below the soil surface from 15-124 cms for the P5 site and 10-78 cms for the 

NS site. 

Readings from the two sites were not available for the complete discharge period (see Figure 2). 171 

The data collected for the P5 site were available from 2/10 at 19:40 to 17/12 at 14:30, and for the 

NS site from 7/10 09:20 to 18/11 at 00:00. Within these limits the data had a considerable number of 

short and long ‘breaks’ (equipment failure etc.). Most of the longer breaks occurred during recession 174 

periods, however some of the smaller disruptions occurred during events, or meant that some of the 

smaller storm events were not available. 

McDonnell (1990) detailed results from the NS site for tensiometers T1-9 and from the P5 site for 177 

tensiometers T1-16 and T23-25 for the October 29th storm event. There were considerable 

difficulties in creating a coherent data set for an extended period, these mainly included periods of 

failed tensiometers. The intention was to incorporate as many tensiometer readings as possible into 180 

the ∇wt series, so that a proper account was taken of the variability of the tensiometer response at a 

scale that was consistent with the model gridscale (see discussion by Bathurst and O'Connell, 

1992). Due to problems of equipment failure and extreme electrical noise not all the tensiometers at 183 

the two sites were used. Furthermore, shallow tensiometers at the P5 site, were sensitive to the 

wetting front propagation down through the soil profile during precipitation events, these sensitivities 

would not be directly related to the ∇wt formation from the soil-bedrock interface and were also 186 

excluded. This resulted in 9 tensiometers at the P5 site and 11 at the NS site that could be used in 

the following methods. These tensiometers covered areas of 4.5m*lm and 4m*0.5m respectively 

and are shown as filled circles in Figure 1c and 1d along with their cup depth below the soil surface. 189 
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3 METHODS 

3.1 Calculation of water table responses at both tensiometer sites 

Tensiometer readings have positive matric potential when the porous cup is below the water table 192 

surface, negative matric potential when the tensiometer cup is above the water table surface.  

Variations of matric potential at the NS site for all tensiometer readings used in this study are shown 

in Figure 2 for the whole of the study period. Figure 2 shows that positive (+ve) matric potentials are 195 

observed for much of the study period. For the P5 site +ve potentials were more transient, having 

steeper recessions (which are reflected in the ∇wt variations shown for both sites in Figure 6). 

The relationships between -ve matric potentials and soil water content can be complex and have 198 

been well documented (Kosugi and Inoue, 2002; Torres and Alexander, 2002). Soil water retention 

curves have been determined for many different soil types and generally show hysteresis behaviour 

between the wetting and drying curves. Burt & Butcher (1985; 1986) developed a simple 201 

methodology that used average gradient of soil water potentials (from a number of tensiometers at 

different depths) to predict the depth of the ∇wt at the soil-bedrock interface. Using field calibrations 

obtained from Butcher (1985)] they suggested that the average gradient (at their experimental site 204 

at  Slapton Wood, UK) under -ve tensions was 1.2 cm soil water potential per cm soil depth (a linear 

relationship). We used the Butcher [1985] method to develop a relationship between -ve soil water 

tensions and apparent depth to the ∇wt at Maimai. ∇wt is directly inferred during periods where the 207 

deepest tensiometer is below the ∇wt surface (in +ve tension). Matric potentials were linearly 

adjusted to a ∇wt surface, for both +ve and -ve readings, by correcting readings to the ground 

surface datum by; 210 

( ) ( ) ( )wt t z t tT Tφ∇ = −  [1] 

where Tz is the depth of the tensiometer (m) and Tφ is the matric potential reading of the 

tensiometer [m H20] at time t. It should be noted that equation [1] is only valid if it is assumed that 213 

vertical soil water fluxes are negligible, suggesting that the soil is in equilibrium and total potentials1 

are constant throughout the soil profile. Figure 3a,b show for the recession period of the October 

29th storm event the relationship between –ve matric potentials and height above the water table for 216 

all tensiometers at the NS (Nest 4) and P5 (Nest 1) sites (see Figure 1) during periods where the 

deepest tensiometer is in +ve tension (i.e. T10 and T4 respectively). A recession period is chosen to 

avoid wetting fronts affecting tensiometer readings during precipitation events. Significantly fewer 219 

                                            

1 Total potential, the potential energy of the soil water, is the sum of gravity potential (the product of height above some datum times 
the density of water times gravitational acceleration) and capillary potential (the amount of capillary rise) 
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points were available for the P5 site because the peak response was much more transient so that 

+ve tensions where not maintained at T4. For the NS site a linear relationship provides a good 

correlation between –ve tension and height above ∇wt (R
2 = 0.94), having a similar slope gradient to 222 

that found by Butcher (1985), namely 1.16 cm soil water potential per cm soil depth. For the P5 site 

the linear relationship does not seem to hold as well (R2=0.91), the slope gradient is much higher 

(2.4 cms per cm) and the relationship for the site appears to be only quasi-linear having a lower 225 

gradient for smaller –ve tensions. For these hillslope soils a more appropriate relationship is found 

using a second order polynomial (a = 1.192, b = 0.048, R2 = 0.97). Such non-linearity may be the 

result of the -ve matric potential gradients being non-uniform in the unsaturated zone for these soil 228 

types (note that the initial slope gradient is again similar to the results of Butcher (1985)). 

Confidence in this relationship increased further after calculating the predicted ∇wt depth for all 

tensiometers at P5 (Nest 1) over a much longer recession period (i.e. for a higher –ve potential 231 

range) the results of which are shown in Figure 3c. The variability in the ∇wt predictions over the 

recession period is low but tends to increase with increasing ∇wt depth (to a maximum in this case of 

20 cm). However such variability within local tensiometer nests is much less than the ∇wt predictions 234 

between the local tensiometers nests (i.e. the variability at the effective model gridscale) for both the 

NS and P5 sites (see below and section 3.2), including periods where +ve tensions were observed 

at multiple sites. 237 

The methods described above allowed +ve tension (using eqn. [1]) and –ve tension readings 

using the linear and polynomial relationships for the NS and P5 sites respectively to be used to 

predict the ∇wt variations for the whole study period. To summarise the variability of ∇wt predictions 240 

throughout the study period Figure 4 shows the variability in the range of ∇wt observations for 

different depths (classified by the observed mean depth for each timestep), for the minimum to 

maximum and 25th to 75th inter-quartile range for both the NS and P5 sites. Figure 4 also gives the 243 

percentage of time that each depth occurred during the series, this clearly showing the more 

transient nature of shallow ∇wt observations at the P5 site with higher frequencies of occurrence 

being skewed towards deeper ∇wt levels. These plots show that the mean and inter-quartile ranges 246 

of ∇wt observations vary with depth, increasing with increasing depth for the NS responses and with 

depths associated with more rapidly changing ∇wt fluctuations during events for the P5 site (see 

Figure 6).  249 

3.2 A fuzzy measure of water table responses at the model gridscale 

We have identified that the tensiometer responses used in this study are not themselves wholly 

accurate predictions of the ∇wt as seen in the regression relationships presented in Figure 3. 252 

Furthermore significant local variations of the ∇wt are observed at scale that is commensurate with 
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the model gridscale and that the magnitude and distribution of these variations change with time. 

What we require therefore is a performance measure that for each timestep and at the model 255 

gridscale reflects the noise in the data, the variability in the timings of the ∇wt, and the uncertainty in 

the information expressed within the regression relationships between –ve tensions and height 

above the ∇wt.surface. Therefore so as not to unduly bias the assessment of model performance a 258 

fuzzy additive definition of the performance measure was used, having the following form of 

membership function (see Ross, 1995): 

( )
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where ( ),T TM Y WΘ  indicates the ith model simulation run, conditioned on input data TY  and 

observations TW . For each timestep t the simulated local ∇wt depth tz  is compared to the 

distribution of ∇wt observations defined by the core (the 25th ( )25 tw and 75th ( )75 tw  quartiles) and 264 

the support (the min ( )min tw  and max ( )max tw  values) of the fuzzy membership function. 

Essentially equation [2] defines a trapezoidal fuzzy membership set (see Figure 5) for the observed 

∇wt responses, the characteristics of which depend on the distribution of the local ∇wt depth at each 267 

timestep. The core of the set being the range of depths where we believe that the simulated tz  

would be a complete and full member of the observations and the support being the range of depths 

either side of the core where we have a nonzero membership (i.e. that we become less sure that the 270 

simulation is a member the closer this value approaches the support limits). 

The assignment process that defines the form of the membership function can involve many 

methods, ranging from intuition (i.e. what is the range of saturated area in this catchment that we 273 

believe is possible?) to the use of more formal methods such as inductive reasoning and the use of 

fuzzy statistics (see Ross, 1995). Membership functions may or may not have a core range and or 

have much more complex forms (e.g. multi modal, subnormal and nonconvex) depending on the 276 

observations that are available. The assignment procedure used here would formally be known as 

an inference procedure (i.e deductive reasoning from some knowledge of the system). In this case 

using the 5th and 95th percentiles as the support limits rather than the minimum and maximum 279 

values was rejected as there was felt to be no justification for totally rejecting the possibility that the 

outer ∇wt readings were correct. The trapezoidal measure was chosen as this represented a 
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compromise between the difficulties of defining what was the ‘best’ ∇wt observation at each timestep 282 

(a membership function without a core range) and the advantage of favouring mid-range ∇wt values 

that would not be the case using a crisp set (i.e one without boundaries – see Figure 5). Figure 6 

shows the resultant support limits for the ∇wt membership function (the core is not shown for clarity) 285 

and the individual ∇wt observations at both tensiometer sites for all timesteps where data are 

available. These results clearly show that the amount of uncertainty in the ∇wt surface varies 

considerably during the study period, that this variation is significant for similar ∇wt levels at different 288 

time periods (especially for P5) and that each tensiometer study site has different characteristics of 

variability.  

3.3 The Hydrological Model – Dynamic TOPMODEL 291 

The new Dynamic TOPMODEL version is briefly described below to allow the reader to 

understand the spatial context of the model structure and associated parameters applied to Maimai 

catchment. For a more detailed treatment of the model application and model theory the reader is 294 

referred to the paper by Peters et al. (2003) and to the original paper on Dynamic TOPMODEL by 

Beven and Freer (2001a) . 

Dynamic TOPMODEL (Beven and Freer, 2001a) is a new version of TOPMODEL that relaxes 297 

some of the assumptions of the original form (Beven and Kirkby, 1979) following critiques of 

TOPMODEL by Barling et al. (1994), Beven (1997), and Wigmosta and Lettenmaier (1999). This 

new formulation allows for local accounting of hydrological fluxes and storages, relaxing the quasi 300 

steady state assumption of a water table parallel to the local surface slope expressed through the 

derivation of the ln(a/tanβ) index of Kirkby (1975).  Therefore the dynamics of the subsurface 

saturated zone during wetting and drying event periods (expanding and contracting) can be 303 

simulated. Previous field evidence had suggested that the original assumption of an effective 

upslope contributing area extending to the catchment divide during wetting-up periods was thought 

to be unrealistic (Barling et al., 1994; Guntner et al., 1999). Beven (1997) suggested that the 306 

overestimation of the accumulated upslope area ‘a’ was being compensated in the results by 

generally high transmissivity values, this being seen in original TOPMODEL applications. 

Dynamically varying upslope contributing areas ‘a’ are conceptualized in a simple form with the 309 

addition of the parameter Smax (the maximum effective deficit of subsurface saturated zone), which 

in a simple form, as in this example, restricts down slope flow only to areas where the local deficit 

maxSsi ≥  Areas with shallow regolith depths (small Smax) and areas near the catchment divide, 312 

would be more likely to ‘disconnect’ upslope areas during recession periods. Beven and Freer 

(2001a) found the best behavioural simulations of discharge at Slapton Wood catchment in the UK 

occurred with a dynamically varying upslope contributing area (i.e. when Smax became active). 315 
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However, good / acceptable (behavioural) simulations were also obtained for simulations where no 

change in the upslope contributing areas was predicted. 

Without any further information on the spatial variability of hydrological processes a 2D classifier 318 

matrix [a, T0 tanβ] is used as measure of hydrological similarity, where T0 is the transmissivity 

measured in the direction of downslope flow, tanβ the local slope angle, and a as before. Using a 

2D classification matrix that includes ‘a’ ensures the resulting Hydrologically Similar Units (HSU’s – 321 

now used as the local hydrological accounting units), maintain a general continuity of flow in a 

downslope direction but whose fluxes are dynamically variable. Topographic analysis allows the 

calculation of a transition probability matrix for a water drop to move from one class to another (an 324 

extension of the multi-flow algorithms of Quinn et al. (1991)). In this way, the water balance for each 

HSU can be solved. Transfers between HSUs are calculated using a kinematic wave approximation, 

where both the upslope (for inputs) and local (for outputs) storages are required.  Flux volumes are 327 

a function of the storages and the Totanβ values in each case (Beven and Freer, 2001a). As with the 

original TOPMODEL, an exponential transmissivity profile and a constant effective storage 

coefficient are assumed. Experience in a number of catchments in different countries suggests that 330 

the transition from hillslope to valley bottom landscape units is often quite marked. These units 

would be expected to have distinct soil characteristics but the simplifying assumption of 

homogeneous effective soil parameter values within each of the units is a necessary approximation 333 

and will limit the accuracy with which the detailed spatial patterns of response can be predicted. 

Data from Maimai, Panola and many other sites shows that this transfer from hillslope to riparian 

boxes can be very threshold-like and non-linear. 336 

The model also allows for the spatial organisation and connectivity of different HSU’s, each having 

potentially different functional forms of hydrological (and/or other) responses. Including different 

functional forms requires some knowledge of the spatial variability of hydrological response, which 339 

may often be limited (especially within the subsurface) at a scale pertinent to catchment scale 

responses. Peters et al. (2001) conceptualised Dynamic TOPMODEL to include the spatial 

variability of distinct LU’s, primarily though the distribution of regolith depths. These LU’s were 342 

assumed to have different hydrological / physical characteristics that were controlling hydrological 

response and therefore required the definition of different parameter ranges and/or model structure. 

In this study the catchment has been separated into 2 LU’s, a HSLU and a VBLU component (see 345 

Figure 1), the general break in slope between the VBLU and HSLU areas defined the spatial extent of 

these units. Two LU’s were identified primarily to study the interactions between parameter sets 

when simulating the discharge and the NS and P5 ∇wt responses. The spatial variability of 348 

hydrological response due to additional topographic features at Maimai (i.e. ridges and hollows), is 

characterised explicitly in the model using the classifer matrix of hydrological similarity (described 

above). 351 
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A previous application using the original form of TOPMODEL by Freer (1998) showed that no 

parameter sets (using homogeneous parameter values) could be identified that satisfactorily 

simulated the ∇wt responses at both sites, although when treated individually behavioural parameter 354 

sets could be identified for each site. The functional differences in the LU’s are here expressed by 

the differences in the parameter ranges for each unit (see Table 2), i.e., the same functional form is 

retained for each LU, including the assumption of an exponential decline in transmissivity with 357 

depth.  The 2-LU model has 14 parameters (CHV and SRinit are sampled once for each simulation, 

then assumed constant for all LU’s). The catchment was divided using digital terrain analyses (5 m2 

DEM) into 41 Hydrologically Similar Units (HSUs) for the model simulations. 360 

3.4 GLUE Simulations of Discharge and Water Table Information 

Freer (1998) used the original form of TOPMODEL applied to Maimai for both discharge and ∇wt 

simulations (at the NS and P5 sites) as reported here but using a weighted Nash efficiency measure 363 

(weights calculated from the uncertainty in the ∇wt depth) within the GLUE procedure. As noted 

above no homogeneous catchment parameter sets could be found that simulated the ∇wt responses 

at both tensiometer sites. Recently Beven and Freer (2001b), also using the original form of 366 

TOPMODEL, analysed multiple years of discharge data at Maimai and found that once uniform prior 

distributions had been constrained using 1 year of data, subsequent years did little to constrain 

parameter estimates further. This paper extends these analyses by assessing multi-objective 369 

variations in model performance for dynamic TOPMODEL within the GLUE methodology using 

fuzzy performance measures. The multi-objective data in this case are the discharge and the ∇wt 

information at both tensiometer sites. For the initial simulation runs all parameters listed in Table 2 372 

were randomly assigned a value appropriate to the ranges specified for each LU (where 

appropriate). For initial simulations a uniform sampling strategy of the parameter ranges was 

deployed to express the lack of knowledge of the expected distribution and covariance of the 375 

parameter values. The model streamflow and ∇wt predictions for the study period were compared to 

the observed data using one of the 3 Performance Measures and rejection criteria defined in Table 

3.  For each tensiometer site the midpoint position of the tensiometer nests was used to 378 

georeference this data with the DTM coverage. The time series of the simulated ∇wt predictions for 

both corresponding HSU increments and the catchment outfall discharge predictions were retained 

for post analysis along with the parameter values for the model run. Differences among behavioural 381 

parameter sets were evaluated for each performance measure. 

The GLUE simulations were conducted on a parallel LINUX PC system at Lancaster University. 

The system consists of 47 nodes having a combination of AMD 800MHz, 1500MHz and 2600MHz  384 

processors. The topology used was a simple master slave combination via 100Mbps Ethernet using 



Constraining Dynamic TOPMODEL responses using fuzzy ……, Freer et al. 

Draft Manuscript 1.0 – Page 13 

 

basic batch processing scripts for job submissions (one job per slave unit).  The initial 5,600,000 

simulations took 2 days to complete (on 6 fast nodes) for the 1987 study period. 387 

4 RESULTS AND DISCUSSION 

In total 6.8million runs of the model were generated. The initial 5.6million runs described above 

are known as run1. To see how much the efficiency of sampling could be improved from run1 a 390 

further 1.2million more runs of the model (run2) with reduced parameter ranges (where these could 

be determined from behavioural simulations that resulted in constrained parameter ranges from 

run1, see Table 4) were generated. This run also employed a uniform sampling strategy. The results 393 

presented in the following result sections are initially from run1, but the final dotty plots and 

confidence limits presented in Figures 8, 9 and 10 are calculated from run2, having a total number of 

behavioural parameters sets shown in the second part of Table 5. 396 

4.1 Simulating the discharge and∇∇∇∇wt responses separately 

Figure 7 shows the distribution of behavioural parameter values (from run1) for both LU’s over the 

sampled ranges listed in Table 2. Each column is associated with parameter ranges that meet one 399 

or more behavioural criteria using the multiple objectives identified in Table 3. Table 5 lists the 

number of behavioural simulations associated with each criteria. 

Simulations meeting the behavioural criteria for discharge (Figure 7 - column 1) show limited 402 

parameter sensitivity for the ranges sampled, primarily SZM and ln(T0) from the HSLU show any 

sensitivity, with only the ln(T0) parameter constrained to its lower range from the initial sampling 

limits listed in Table 2. Table 5 also lists the large number (41% of the initial sample of 5.6million 405 

runs) of simulations that meet the behavioural threshold for the discharge criteria. Surprisingly 

almost no sensitivity is seen in the VBLU parameters for simulations of discharge. Freer et al. (2003) 

reported a similar effect for Dynamic TOPMODEL simulations at PMRW where 3 LU’s were 408 

identified. In that study, parameters for the VBLU showed little sensitivity to discharge simulations. At 

PMRW this was attributed to a greater sensitivity of the HSLU dynamics to wetting and drying cycles 

needed to capture the high seasonality in observed discharge. In both cases the insensitivity of the 411 

VBLU could well be attributed to the relatively small areal extent of the LU (9% for PMRW and 12% 

for Maimai) as well as the product of landscape position and model conceptualisation. This suggests 

that for discharge simulations a simpler conceptual form for the VBLU could be identified, potentially 414 

resulting in fewer, more easily identifiable parameters. Finally Smax, proven to be an important 

parameter for other applications of Dynamic TOPMODEL (i.e. Beven and Freer, 2001a) appears 

redundant here, perhaps reflecting the climatic and physical conditions found at Maimai (i.e. steep 417 

slopes, rapid transmissivities, wet conditions). The need for a dynamic subsurface saturated zone 

that primarily controls wetting and drying cycles is not required for behavioural simulations. For 
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simulations meeting the fuzzy criteria for both tensiometer sites independently (see Table 3) there 420 

are different but somewhat consistent results with the discharge simulations (Figure 7 columns 2 

and 3 for the P5 and NS sites respectfully).  

For the P5 site the HSLU parameters SZM and ln(T0) show similar distributions to the discharge 423 

simulations however  ∆θ1  is now highly sensitive to its lower range and SRmax also shows some 

sensitivity. The high sensitivity of  ∆θ1  should be expected, this parameter is one of the primary 

controls of the mean depth of the predicted ∇wt within the model (the difference in the water content 426 

between saturation and field capacity), effectively a simple scaling of the local moisture deficit. For 

this criteria the number of behavioural simulations is much reduced (see Table 5), and can be 

attributed to the high sensitivity of  ∆θ1  reported reducing the efficiency of the uniform sampling 429 

employed. 

Comparing the number of behavioural simulations for the NS site with those for the P5 site the 

latter produces a considerably greater number. This is directly reflected in the broader range of 432 

 ∆θ1 for the VBLU that partly results from wider fuzzy limits in the observed ∇wt series (especially at 

depth) shown in Figure 4. What is surprising about the simulations meeting the NS behavioural 

criteria is how little sensitivity is observed within the HSLU, especially given the proximity of this LU to 435 

the NS site (see Figure 1.b). 

4.2 Meeting discharge and/or tensiometer criteria for more than one source of information 

Parameter distributions from simulations that are behavioural for a combination of two PM criteria 438 

from Table 3 are shown in Figure 7 columns 4-6 and for a combination of all PM in Figure 8. To 

highlight the combined effect of the PM’s to the parameter sensitivity the dotty plots shown in Figure 

7 are a multiplicative combination of discharge and ∇wt PM’s and an additive combination of the 441 

combined NS and P5 ∇wt PM’s. These resultant sensitivities would be similar to those that would be 

shown though the more general application of Bayes equation in the standard GLUE procedure. 

Due to the insensitivity of the VBLU for discharge, coupled with the similarity of the behavioural 444 

distributions for discharge and P5 PM for the HSLU, the combined behavioural PM distributions 

almost always reflect the PM sensitivity for the individual ∇wt distributions previously shown in Figure 

7 (columns 2 and 3). Combining discharge with the NS and P5 PM’s further reduces the number of 447 

behavioural parameter sets (Table 5). However only 3.8% of parameter sets are retained for a 

combined NS and P5 PM from the maximum possible number of behavioural parameter sets for 

either of these two sites. This incompatibility of parameter distributions is the result of the general 450 

insensitivity of each LU’s parameters to simulating the other LU’s ∇wt information. In combination the 

void space throughout the parametric hyperspace (i.e. the area of the parameter space where no 

behavioural simulations are found) increases rapidly due to the constraining of parameter ranges in 453 
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both LU’s, thus reducing sampling efficiencies (i.e. a reduction in the percentage of the total number 

of simulations that are behavioural). 

Figure 8 shows the marginal posterior likelihood weighted distributions of individual parameters as 456 

histograms, and the interaction of parameters both within and between LU’s for the final behavioural 

parameter sets constrained using all 3 PM’s from run2. Parameter sensitivities are similar to those 

shown in Figure 7 column 6 for the combined NS and P5 PM’s (note parameter ranges in Figure 8 459 

are consistent with the ranges listed in Table 4 for run2). Although a number of parameters are 

sensitive across their individual ranges, the bi-variate plots of parameter interactions show that few 

correlation structures are clearly identified, especially for parameter interactions between LU’s. This 462 

point is confirmed by the strength of the correlation co-efficients, where only ∆θ1  and its relationship 

to SZM and ln(T0) for both LU’s have co-efficients above +/-0.25. However more complex, non-

linear and multi-dimensional structures may well exist, but this still results in parameter distributions 465 

that are equifinal. In part the poor sampling efficiencies suggest a complexity of structure within the 

parametric hyperspace.  

The behavioural simulations for all PM’s identified in Table 5 and Figure 8 were then used to 468 

determine the upper and lower possibility limits for the discharge, NS ∇wt levels and P5 ∇wt levels, 

these results are presented in Figure 9 (note that discharge is also plotted in log units in Figure 9 

B.). The results show that although the range of simulations generally envelope (or are within the 471 

range of) the different observations, this is not the case for all time steps, and for some periods 

there are significant departures. For discharge the results are encouraging, even when shown as 

log transformed flows (Figure 9 B.). Periods of rapid fluctuations from a general recession form are 474 

likely to reflect observed data uncertainties not yet accounted for.  

The P5 simulations are within the range of the ∇wt uncertainty limits for most of the study period. 

The exception to this is the period before the 29th October storm event where the distribution of 477 

simulated ∇wt levels are deeper than those of the observed. This period is preceded by a 

considerable recession period (for Maimai), that may suggest even moderate wetting up sequences 

are not well represented in the model dynamics. Non-linearity in catchment response can be 480 

highlighted by the relationship between peak discharges and the maximum ∇wt rise at the P5 site. A 

consistent pattern is not apparent, where considerable differences in discharge peaks produce 

similar rises in observed ∇wt levels, in some cases smaller discharge peaks result in the highest ∇wt 483 

rises. 

The NS simulations show the most extensive departures from the range of ∇wt observations., 

primarily during the recession period previously mentioned above. This rapid decline in the 486 

observed ∇wt levels (that seems to begin to be replicated at the end of the NS observations) may be 

systematic of local phenomenon such as non-linearity in the storage-discharge relationship with the 
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different soil horizons. However this could also be the result of a breakdown in the relationship 489 

between the –ve matric potentials and height above ∇wt at the NS site. Certainly McDonnell (1990) 

reported a bedrock depth of 0.5m at the NS pit face, however this local depth is highly variable (as 

noted by McDonnell, 1990) as identified by the 0.78m tensiometer placement in Nest 1 (see Figure 492 

1(c)). Departures occur in the NS simulations during periods where +ve matric potential readings 

are observed, which suggest the rapidly declining ∇wt levels have some validity. 

Finally the characteristics in the NS and P5 simulations relate well to the variability in the 495 

parameter distributions for these LU’s. For the HSLU lower SZM and higher ∆θ1  parameter 

distributions reflect the steeper and deeper P5 ∇wt recession characteristics. Previously Freer (1998) 

using the original form of TOPMODEL identified these controlling parameters as the reason why the 498 

model was unable to simulate the ∇wt responses at both sites using homogeneously applied 

catchment scale parameters. 

4.3 Constraining model responses and the efficiency of sampling 501 

For the different behavioural parameter sets identified in Table 5, Figure 10 shows the distribution 

of a number of summary model responses calculated from each simulation run. Figure 10 shows 

that the range of model behaviour can vary considerably between the different behavioural 504 

parameter sets (i.e. peak discharge). In nearly all cases (apart from Sum Discharge Figure 10a 

where limits for this measure are generally consistent for all PM’s) simulations conditioned using all 

the PM’s show the smallest range of model behaviours. Treated individually, the P5 PM constrains 507 

the model responses most; that this also occurs for the range of Peak Discharge responses is 

somewhat surprising. Perhaps this is indicative of the discriminatory power of the R2 measure, the 

strength of which has been questioned in a number of recent studies (i.e. Gupta et al., 1998; 510 

Legates and McCabe Jr., 1999; Freer et al., 2003). The average ∇wt depth ranges for the P5 and NS 

sites (Figure 10e and f) identify why only a small proportion of simulations that are behavioural for 

one site are also behavioural for the other.  The distributions of these average ∇wt depths have very 513 

little overlap and must reflect a general inability to simulate the ∇wt observations to an acceptable 

level. 

Distributions of model responses for the NS PM, coupled with the lack of sensitivity in parameter 516 

distributions for the same PM shown in Figure 8, suggest this PM has the least explanatory power. 

This leads to output model responses that seem uncharacteristic of catchment behaviour (i.e. the 

high peak discharges and maximum saturated areas shown in Figure 10b and c). Partly this is a 519 

product of the information content in the fuzzy NS ∇wt observations, i.e. generally wider limits and 

lower amplitudes of responses compared to the P5 data, but also this reflects the general 

insensitivity of this LU described in section 4.1. 522 
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4.4 Can we improve the model structure and parameter representation? 

The simulation results thus far presented have resulted in good simulations of the Maimai 

catchment discharge and ∇wt responses. Where this has not been the case (i.e. the deeper ∇wt 525 

recessions at the NS site) further data collection would be required to confirm the potential for 

increased observational errors. What is not clear from these results is whether additional data sets 

(i.e. more ∇wt sites or the use of tracer data) would still maintain a compatible set of parameter 528 

estimates or lead to the rejection of all model simulations. Would each new information require a 

new set of parameter distributions and/or changes to the basic model structure, similar to that 

reported by Lamb et al. (1998)? An important question for modellers in this regard is how 531 

approximate can a model be and still retain an element of realism in predicting quantities and fluxes 

of interest. Even if the general structure of dynamic TOPMODEL is a reasonable approximation for 

the hydrological response at Maimai, model parameters are more heterogeneous in space than our 534 

definition of 2 LU’s have characterised. The use of internal state data is desirable, but should we 

expect such information to have overlapping joint probability distributions of behaviour with the 

model dynamics without biasing the results unduly? Certainly the information pertaining to the 537 

characterisation of hydrological responses at Maimai used in this study are still limited. This is 

important as the effective gridscale uncertainties in the ∇wt responses for both the NS and P5 sites 

may well be greater than those currently identified. We may still be biasing our range of simulated 540 

behaviour due to poorly defined observational uncertainties. Perhaps what is more likely if additional 

observations were available is that each new site that is added to the constraining information (in 

this case ∇wt information) will have characteristics that are in some way unique (Beven, 2000). Small 543 

to potentially large variations in local parameter distributions may be required to simulate such 

information. Observations from the NS and P5 sites clearly show that the subsurface dynamics are 

different, the sites are clearly drawn from topographically distinct regions of the catchment, and that 546 

these differences have been reflected in the behavioural parameter distributions for the two LU’s.  

The general hydrological regime at Maimai lends itself to the primary assumptions embedded in 

the dynamic TOPMODEL framework. However the perceptual model of the subsurface flow 549 

processes at Maimai includes mechanisms that are not explicitly accounted for in the model 

structure, i.e. horizontal preferential macropore flowpaths, vertical bypassing to depth, variable 

porosity values in the organic and mineral soil horizons (see Mosley, 1979; McDonnell, 1990; 552 

McGlynn et al., 2002). With this in mind our modelling results are surprisingly good for the ∇wt 

dynamics. That parameter estimates and model responses seem to make physical sense with 

observational data from Maimai is also encouraging. For example Pearce et al. (1986) suggest 555 

maximum saturated areas at Maimai are in the region of 4-7%, comparing well with the results 

presented in Figure 10c for the simulations constrained by all the PM’s. 
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However insensitivity in many parameters and a lack of interaction between parameters suggests 558 

the conceptual framework of the model for Maimai catchment could be improved, if only to reduce 

the redundancy of certain parameters. Would it be possible with increased information to identify for 

the local place (i.e. a LU) a subset of parameters that characterises the uniqueness of place? In this 561 

case a combination of SZM, ln(T0) and ∆θ1  would seem appropriate for characterising the ∇wt 

dynamics. Or would new subsets of parameters and model function be required for the inclusion of 

each new place? What data are certain enough for local places to ensure that inverse reasoning, 564 

namely that local observations can be effectively used to estimate an appropriate distribution of 

parameters (e.g. Jordan, 1994; Seibert et al., 1997; Lamb et al., 1998) and model function, can be 

applied effectively? 567 

4.5 The use of fuzzy rules applied to imperfect and imprecise knowledge 

The results discussed so far have assumed the rejection of all models that did not meet the 

behaviourability criteria. However these criteria are not absolute; they were identified using 570 

knowledge of both standard hydrological practice in uncertainty acceptance and specific 

understanding of the study sites and measurement techniques employed. It has been highlighted in 

the preceding section that the inclusion of further observations which the model is required to 573 

replicate may necessitate increasing complexity in the model: therefore if no such additional 

complexity is allowed, uncertainty limits may have to be relaxed to take into account the local 

deviations inherent in the catchment. 576 

 The use of the fuzzy measures demonstrated in particular the difficulties of using imprecise 

knowledge of the catchment behaviour in a meaningful way. Originally a multiplicative form of the 

fuzzy measure was considered, where multiplication rather than summation was used to combine 579 

the fuzzy scores for each timestep: however this lead to all models being rejected as each had at 

least one point outside the observed tensiometer limits, thus setting the score to zero. This may 

reflect inadequacies in the model, but equally may reflect the incomplete knowledge of ∇wt at gridcell 582 

scale. Given that ∇wt was sampled at 9 and 11 locations in the P5 and NS sites respectively, 

demonstrating significant variation across the gridcell, it would be reasonable to suppose that this 

sample reflects only part of the range actually present across the gridcell. A case therefore could be 585 

made for widening the fuzzy limits beyond the observed extreme points. The extent of this widening 

would have to be determined based on observed range and gradient of tensiometer readings, 

together with coverage of gridcell. At the Maimai study site, tensiometers only covered areas of 588 

4.5m*1m and 4m*0.5m at the P5 and NS sites, therefore capturing variability in only 0.18 and 0.08 

of the 25m2 gridcell area, we should not forget the limitations of our observations in relation to the 

scale at which our model simulations are being applied. 591 
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A further source of uncertainty occurs in the determination of the ∇wt position. The tensiometer 

reading itself is constrained by the scale at which the measurement is taken: variable values may 

therefore be unsuitable for use at different scales and cannot be held to represent the full small-594 

scale complexity of the system. Further to this, Section 3.1 noted that the transformation from 

tensiometer reading to ∇wt was subject to uncertainty which increases with the magnitude of the 

negative potential recorded. It would therefore be preferable to formulate fuzzy limits to take into 597 

account this changing uncertainty in our transformation equations. 

The variability of the tensiometer readings in time and space are clearly not the only source of 

observed data uncertainty driving our model simulations. Hydrologist have tended to treat our main 600 

input forcing errors (in rainfall and evapotranspiration) and our observed outputs (discharge) as 

either unimportant, implicitly in the relaxation of the acceptability criteria (i.e. this paper and Beven 

and Binley, 1992) or through the derivation of likelihood measures with assumed error structures 603 

(i.e. Sorooshian, 1981). However, there is clearly a need to more explicitly account for the potential 

for errors (having known and unknown error structures) in all the observed data series we use to 

drive our model simulations, especially for rainfall inputs and for stage-discharge relationships for 606 

rated channel sections. Recently papers have begun to confront these issues, an analysis of the 

effect of rainfall forcing errors (using multipliers on the rainfall totals) has been undertaken by 

Kavatski et al. ????. Perhaps we need to consider that all of our observations are neither 609 

deterministic or have a known and stationary error structure, that they are in fact ‘grey’ in quantity, 

and that the level of greyness is likely to be variable in both space and time. The challenge will be to 

develop methods that are both realistic and flexible about the nature of such errors but still maintain 612 

a sound scientific justification and/or evaluation of the error terms. We agree with the recent 

comments of Seibert and McDonnell (2002) that the use of fuzzy membership functions is one 

method that lends itself to this type of error analysis approach but for all observed data series. 615 

To sum up, the use of fuzzy performance measures is a powerful and flexible tool in situations 

where there is no or incomplete knowledge of the error structure and local variability of the 

phenomenon. The exact form of the measure can be designed to reflect uncertainties particular to 618 

the modelling situation. Equally, this very adaptability means that consistent, global rules for function 

definition cannot be specified; instead the user must be clear as to the motivation that underlies the 

chosen measure, as was the aim in this paper. 621 

 

5 CONCLUSIONS 

This paper presents an approach to assessing the internal accuracy of dynamic TOPMODEL, 624 

recognising that internal state data available to the modeller are inherently uncertain. The model 

was applied to the Maimai M8 catchment in New Zealand, and was refined by using two 
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topographically-distinct landscape units (‘Hillslope’ and ‘Valley Bottom’) with separate 627 

parameterisations. For each location, a nest of tensiometers located within an area commensurate 

with the model gridscale provided a distribution of matric potentials which were then converted to 

water table depth. These depths were used together with rainfall-runoff data to constrain the model 630 

using the Generalised Likelihood Uncertainty Estimation methodology.  

The use of localised data to assess model performance presents particular problems to the 

modeller. Unlike aggregated components such as river discharge, water table levels more strongly 633 

reflect localised and smaller-scale characteristics of catchment processes, and this is clearly 

demonstrated in the variability shown in the tensiometer readings within the area of one gridcell. 

Although tensiometers were placed such as to avoid cracks and voids in the soils, the effects of 636 

heterogenity of soil characteristics and flow pathways, such as macropores and soil structure, 

cannot be avoided. When these locally conditioned data are used to constrain the model, the model 

structure and parameterisation may then be biased towards these local structures which may not be 639 

representative of the catchment as a whole, or indeed at a scale comparable to the model gridscale, 

the smallest spatial scale of hydrological process representation in the model. As increasing 

numbers of these local criteria are enforced, the model is unable to incorporate the complexity of 642 

local observations and the danger is that all simulations are rejected as non-behavioural. 

In an attempt to respond to these problems, fuzzy performance measures rather than a more 

formal deterministic evaluation were used. These allow the modeller to include knowledge of errors 645 

in the internal state data presented and are not constrained by the need for a particular error 

structure. In this study a trapezoidal form of fuzzy measure was used to incorporate knowledge of 

the distribution of water table levels at the two test sites. However, despite the use of fuzzy 648 

measures to relax the strictness of the criteria, the retention rate for parameter sets picked using the 

more efficient constrained sampling ranges in run2 dropped from 84.69% (discharge only) to 0.26% 

when using all three performance measures. This sparseness of behavioural parameter sets 651 

suggests both a complex structure within the parameter space, and individuality of water table levels 

internally to the catchment. Intuition suggests that the NS water table data should be less location 

dependent and more representative of the overall ∇wt dynamics of the catchment than the P5 data. 654 

The NS site integrates a greater catchment drainage area and therefore proportionally this site is 

more likely to be representative of the overall catchment dynamics that characterise streamflow 

response. This was borne out by the higher sampling efficiency when using internal data only from 657 

the NS site as oppose to only the P5 site. 

This study has demonstrated that when using dynamic TOPMODEL to make predictions about 

internal catchment dynamics, it is not sufficient to condition the model using aggregate performance 660 

data such as discharge. The uniqueness of place demonstrated at and within each gridcell area is 

not reflected in such integrated measures; and therefore internal state data are required to enable 
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model calibration if the model is to provide an accurate representation of the catchment processes. 663 

Important questions have been raised as to the feasibility of introducing multi-criteria performance 

measures, these will become ever more pertinent as internal state data become more readily 

available through improved measurement and remote-sensing techniques. Fuzzy measures are 666 

becoming more widely accepted as an appropriate method for dealing with uncertain calibration 

data (e.g. Seibert and McDonnell, 2002), and have been shown here to present a flexible structure 

within which the modeller can combine observational data and site-specific knowledge on within-669 

gridcell variability. 
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 DTA Results Observed Field Data 

Site ln(a/tanββββ) Acc. Area Soil  

Depth (m) 

Slope 

(o) 

Total Porosity 

(%) 

Saturated 
Conductivity 

(m/hr) 

Near Stream* 4.03 183.0 0.5 15 52 - 

Pit 5* 3.04 101.9 1.5 34 68 - 

Catchment# - - 0.6 - 45** 0.01 – 0.3*** 

*Observed field data from McDonnell, J.J. (pers comm.) 
**Top 0.17m organic horizon 86% total porosity (39% macroporosity) 
***Soil Infiltration rate 6.1m/hr 
#Data taken from McGlynn et al., 2002 

Table 1:  Local DTA values, soil and topographic characteristics for both the Near Stream 
and Pit 5 sites as well as average data for the Maimai Catchment 
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Parameter Units Lower 

Limits* 

Upper 

Limits* 

Description 

SZM [m] 0.001  {0.005} 0.012  {0.017} Form of the exponential decline in conductivity 

ln(T0) [m2 hr-1]  7.0  {-7.0} 3.0  {3.0} Effective lateral saturated transmissivity 

SRmax [m] 0.005  {0.005} 0.08  {0.08} Maximum soil root zone deficit 

SRini [m] 0.00  {0.00} 0.01  {0.01} Initial root zone deficit 

CHV [m hr-1] 250  {250} 1500  {1500} Channel routing velocity 

Td [hr] 0.10  {0.10} 40.0  {40.0} Unsaturated zone time delay 

∆θ  0.05  {0.01} 0.60  {0.30} Effective porosity 

Smax [m] 0.60  {0.60} 2.00  {2.00} Maximum effective deficit of the subsurface storage zone 

*Parameter upper and lower ranges for both the valley bottom and hillslope   

Table 2: Parameter ranges for the VBLU  and (in {}’s) the HSLU  for the Monte-Carlo 
simulations 828 
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Performance Measure Equation Acceptability Criteria 

R2 Discharge 
* ( ) ( )2 2, 1

N

T T oL M Y W εσ σ Θ = −
 

 0.6 

Near Stream Fuzzy Additive Equation 2 (in text) 

1000 

(maximum possible 
2464) 

P5 Fuzzy Additive Equation 2 (in text) 

2000 

(maximum possible 
4149) 

* Where 2
εσ  is the error variance; 2

oσ  is the variance of the observations and N = 1 

Table 3: Discharge and ∇wt Performance Measures and their acceptability criteria evaluated 831 
for the Dynamic TOPMODEL GLUE simulations 
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 834 

 run1 behavioural 
simulations* 

run2 behavioural 
simulations** 

run1 and 
run2 

Acceptability Criteria Total 
Number 

Sampling 
Efficiency 

(%) 

Total 
Number 

Sampling 
Efficiency 

(%) 

Sampling 
Efficiency 
Increase 

Discharge only 2,327,664 41.56 1,016,325 84.69 2.0 

NS ∇wt only 196,591 3.51 118,519 9.87 2.8 

P5 ∇wt only 16,195 0.28 39,128 3.26 11.5 

Discharge and NS ∇wt  84,636 1.51 98,218 8.18 5.4 

Discharge and P5 ∇wt  11,987 0.21 34,205 2.80 13.3 

NS ∇wt and P5 ∇wt  614 0.011 3,692 0.31 28.2 

Discharge, NS and P5 ∇wt  419 0.007 3,184 0.26 37.1 

* Total number of all simulations was 5,600,000 

** Total number of all simulations was 1,200,000 

Table 4: Behavioural simulations for individual and combined acceptance criteria for the 
performance measures identified in Table 3 from both run1 and run2.  
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Figure 1: Maimai M8 catchment: (A) The spatial variability of the ln(a/tanβ) index and (B) the spatial 
distribution of the VBLU and HSLU LU’s. Details of the study area showing the position of the tensiometer 
instrumentation at (C) the Near Stream and (D) the Pit 5 sites. 840 
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Figure 2: Near Stream site shallow and deep tensiometer readings adjusted to matric potentials. All available 843 
tensiometer responses are plotted against catchment discharge for the whole of the observation record used 

in this study. 
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Figure 3: The relationships between observed –ve matric potentials and heights above a know ∇wt (at least 
one tensiometer in +ve tension) for (A) the Near Stream site, Nest 4 and (B) the Pit 5 site, Nest 1. The plots 849 
show the regression curves used to describe these relationships for both cases. For the Pit 5 site, Nest 1 (C) 
shows for each tensiometer the depth to the water table for an extended recession period calculated using the 
regression relationship shown in (B). 852 
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Figure 4: The variability in the range of ∇wt levels for the two distribution limits used to define the fuzzy 855 
numbers for each timestep (i.e. the min-max for the support and the 25th and 75th for the core values of the 
fuzzy number) summarised for the whole of the observed data series by categorising the readings at each 

time step by the mean ∇wt level. The range and mean ∇wt levels are determined separately for each 858 
tensiometer site from the variability in all tensiometer observations adjusted to depth using the regression 
relationships shown in Figure 3. Results for the Near Stream site are shown for the support limits in (A) and 
the core limits in (B), with the same limits shown for the Pit 5 site in (C) and (D) respectfully. For all plots the 861 
frequency that each mean ∇wt category is sampled for the whole data series is also shown. 
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Figure 5: An example of the construction and terminology of a fuzzy number used in this study. The limits 
(minwt, 25wt, 75wt and maxwt) are determined using equation 2 
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Figure 6: Observed water table responses calculated from the tensiometer data for both (A) Near Stream and 
(B) Pit 5 tensiometer sites. The plot shows the resultant upper and lower min and max limits for the water 870 
table responses defining the model gridscale variability of the observations. 
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Figure 7: Dotty plots of behavioural parameter distributions for both the VBLU (rows1-7) and the HSLU (rows 8-
14) for the different performance measures (or combinations of measures) listed in Table 3. Each column 
distinguishes between the different performance measures or combinations of measures (plots show a 876 
random sample of up to 1,000 points from the total number of behavioural parameter sets listed in Table 4) 
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Figure 8: Dotty plots and histograms of behavioural parameter distributions from run2 for both the VBLU and 
the HSLU for parameter sets that were classed as behavioural for all three performance measures listed in 
Table 3. The main matrix of dotty plots shows the correlation between pairs of parameters within the same LU 882 
and between the HSLU and VBLU LU’s (the greyed area). Each histogram shows the distribution of behavioural 
parameters within each parameter range (note the range limits are shown for the run1 limits). 
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Figure 9: GLUE Discharge, NS ∇wt and P5 ∇wt updated behavioural possibility bounds for a) Discharge, b) 

ln(Discharge), C) P5 ∇wt and D) NS ∇wt simulations.  888 
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Figure 10: Distributions of summary model responses for behavioural simulations using different PM’s or 891 
combinations of PM’s listed in Table 4 

 


