Calibration strategies for distributed hydrological models

using qualitative knowledge of spatially variable pocess characteristics
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A catchment of two halves... Uncertainty Estimation: Markov Chain Monte Carlo
Rangitaiki River in NZ North Island  The model is a simplification of nature and doesinclude all processes occurring
In the catc_:hr_nent. Hence different model parameter may give equally good (or Performance Measure: Improving on Nash-Sutcliffe Eiciency
* Length 155 km, Mean Flow 253t bad) predictions. |
e 378 sub-catchments'®rder streams) of size « MCMC is used to sample the parameter space, sagwplore frequently where The popular Nash-Sutcliffe Where:
AppIox-L0 model performs well (see details of performancesuearight = ) measufre s baned on the sumNSE =1 -,/ 6,° ng = Sllljm of s((jquar_ed errors
. i idict i i of squared errors = observed series variance
» Geology of West half: Quaternary volcanic, Sample sets produced are interpreted as a megdiciion + confidence intervals 9 Go
thick pumice and tephra sequences ' ' 120 —— _ | |
* High stable baseflow regime with e AN Informal lee|lh0(.)dS. | ol it Dchage o This measure favours discharge (magnitude) errors
subdued flood peaks 50, Sl L « Where formal Bayesian likelihood (performance) sweas are used, response over timing errors, illustrated by these synthetic
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 Geology of East half: Greywacke
» Fast, peaked runoff response
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o Our suggestextended Nash-Sutclifferecognises
% F M A M 3 3 A s o N o 100, f a combination of discharge and timing errors

‘{ ® pumice Time - : : :
‘W 4 = Greywacke The modeller’'s judgment on relative importance of
discharge and timing errors determines shape of
oval search window

Standard NS appears as a special case when timing
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Can we model the contrasting behaviour
of the two halves with only qualitative
knowledge of heterogeneous geology?

= Calibrate model using outlet flow gauge

only & : : -
. « Using the Extended Nash-Sutcliffe as an inforrmafgrmance measure, the
= Check performance using internal gauges Geological map of Rangitaiki catchment J

at Murupara (pumice subcatchment) and Snawfng flew geune lesaiens confidence bounds more accurately reflect the wacgy from many sources
Galatea (greywacke subcatchment) including model structural errors
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Hydrological Model _ o errors are considered infinitely worse than
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p P 300 discharge errors (oval becomes vertical line)
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[/ parameters per sub-basin
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catchment maps R l routing.
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Calibration using gualitative Geological information

Each catchment is classified as 2 sets of parameter multipliers used,

* ‘Permeable’ I.e. pumice, or | one for each geology type
 Impermeable’ i.e. greywacke/hard volcanics

Calibration Method

Too many parameters to adjust individually so... 3

Assume thespatial distribution of model parameters is reabtma \} Unconstrained Parameters > Constraint Process » Constrained Parameters

and identify a set of parameter multipliers thguagtthe « Damped / flashy flow characteristics can be wrgng| ; Multlpllerfranges modified » Accurate flow prediction in both
magnitude of mode| parameters for the basin asaewn assigned to sub-catchments as long as total isatorr or 3 outof 14 parameters subcatchments
Flow Prediction - Te Teko « Uncertainty bounds extremely wide, provides little
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Parameters for ‘Average’ Geology give poor resultsdr Pumice or Greywacke Time - 2. A0l (effective drained porosity) e -
Flow Prediction - Murupara ﬁ Flow Prediction - Galatea Flow Prediction - Galatea 3. A2 (rOOt Zone Storage) Flow Prediction - Galatea
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Parameters with good discriminatio
between quickflow and slowfloy
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