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A catchment of two halves…

Rangitaiki River in NZ North Island

• Length 155 km, Mean Flow 25 m3s-1

• 378 sub-catchments (3rd order streams) of size 
approx. 10 km2

• Geology of West half: Quaternary volcanic, 
thick pumice and tephra sequences

� High stable baseflow regime with 
subdued flood peaks

• Geology of East half:  Greywacke
� Fast, peaked runoff response

Can we model the contrasting behaviour
of the two halves with only qualitative 
knowledge of heterogeneous geology?

� Calibrate model using outlet flow gauge 
only

� Check performance using internal gauges 
at Murupara (pumice subcatchment) and 
Galatea (greywacke subcatchment)

Calibration using qualitative Geological information

Geological map of Rangitaiki catchment 
showing flow gauge locations

1 National Institute of Water and Atmospheric
Research Ltd. (NIWA), New Zealand.
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7 parameters per sub-basin
• Soil and vegetation 

parameters from 
catchment maps

• Other parameters set at 
default constant value

Calibration Method
Too many parameters to adjust individually so…
Assume thespatial distribution of model parameters is reasonable,

and identify a set of parameter multipliers that adjust the 
magnitude of model parameters for the basin as a whole.

Weather data from 1998 
including large flood event
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Parameters for ‘Average’ Geology give poor results for Pumice or Greywacke 
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Observed Data

Model with Discharge Error
Model with Timing Error

Performance Measure:  Improving on Nash-Sutcliffe Efficiency
The popular Nash-Sutcliffe 
measure is based on the sum 

of squared errors
NSE = 1 –σ

ε
2 / σo

2 
Where:
σ
ε
2 = sum of squared errors

σo
2 = observed series variance

This measure favours discharge (magnitude) errors 
over timing errors, illustrated by these synthetic 
hydrographs where the red simulation is graded 
more highly than the blue simulation.
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Our suggested Extended Nash-Sutclifferecognises
a combination of discharge and timing errors

The modeller’s judgment on relative importance of 
discharge and timing errors determines shape of 
oval search window

Standard NS appears as a special case when timing 
errors are considered infinitely worse than 
discharge errors (oval becomes vertical line)

Uncertainty Estimation: Markov Chain Monte Carlo

• The model is a simplification of nature and does not include all processes occurring 
in the catchment. Hence different model parameter sets may give equally good (or 
bad) predictions.

• MCMC is used to sample the parameter space, sampling more frequently where 
model performs well (see details of performance measure right   )

• Sample sets produced are interpreted as a median prediction + confidence intervals 

• Where formal Bayesian likelihood (performance) measures are used, response 
surface is very peaked and predicts very narrow uncertainty bounds 

Informal Likelihoods
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• Using the Extended Nash-Sutcliffe as an informal performance measure, the 
confidence bounds more accurately reflect the uncertainty from many sources 
including model structural errors  

Each catchment is classified as
• ‘Permeable’ i.e. pumice, or

• ‘Impermeable’ i.e. greywacke/hard volcanics

2 sets of parameter multipliers used, 
one for each geology type

J F M A M J J A S O N D
0

20

40

60

80

Time - 

F
lo

w
 -

 m
**

3/
s

Flow Prediction - Murupara

 

 

Parameter uncertainty 90%
Median modelled data

Measured data

J F M A M J J A S O N D
0

50

100

150

200

Time - 

F
lo

w
 -

 m
**

3/
s

Flow Prediction - Galatea

 

 

Parameter uncertainty 90%
Median modelled data

Measured data
Parameters with good discrimination 

between quickflow and slowflow

Parameters with qualitative 
physical interpretation

1. Topmodel f (soil profile depth)

2. ∆θ1 (effective drained porosity)

3. ∆θ2 (root zone storage)

Unconstrained Parameters
• Damped / flashy flow characteristics can be wrongly 
assigned to sub-catchments as long as total is correct
• Uncertainty bounds extremely wide, provides little 
information

Constraint Process
• Multiplier ranges modified 
for 3 out of 14 parameters

Constrained Parameters
• Accurate flow prediction in both 
subcatchments
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