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Abstract 9 

This paper considers the calibration of a distributed rainfall-runoff model in a 10 

catchment where heterogeneous geology leads to a difficult and high-dimensional 11 

calibration problem, where the response surface has multiple optima and strong 12 

parameter interactions. These characteristics render the problem unsuitable for 13 

solution by uniform Monte Carlo sampling and require a more targeted sampling 14 

strategy. MCMC methods, using the SCEM-UA algorithm, are trialled using both 15 

formal and informal likelihood measures. Each method is assessed in its success at 16 

predicting the catchment flow response and capturing the total uncertainty associated 17 

with this prediction. The comparison is made at both the catchment outlet and at 18 

internal catchment locations with distinct geological characteristics. Lastly, we 19 

demonstrate how information gained from the exploration of the response space, in 20 

conjunction with qualitative knowledge of system behaviour, can be used to constrain 21 

the Markov Chain trajectory. 22 

 23 

 24 
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1 Introduction 25 

Improving availability and coverage of spatial data has driven developments in 26 

distributed, process-based catchment modelling; however, despite the correspondence 27 

between modeled and observed processes, it is not usually possible to determine 28 

model parameters values directly from field measurements. Instead, the values 29 

required are those of the ‘effective parameters’ which represent integrated behaviour 30 

at the model element scale. These values must therefore be determined through a 31 

calibration methodology, via some search of the parameter space. As has been 32 

extensively discussed by Beven (1993; 2005; Beven and Binley, 1992) and others 33 

(Wagener and Gupta, 2005), the many sources of uncertainty in a hydrological model 34 

application lead to equifinality of parameter sets in providing acceptable model 35 

performance with reference to some observed data. These uncertainty sources may 36 

include, but are not limited to, input data uncertainty, initial condition uncertainty, 37 

model structural error, observed data uncertainty (Liu and Gupta, 2007). Indeed, since 38 

it is certain that our hydrological model does not fully represent the complexity of the 39 

natural catchment and is therefore ‘wrong’, we must expect that any calibration 40 

technique is a process of identifying some subset of model parameterisations which 41 

produce reasonable approximations to some aspects of true catchment behaviour 42 

under some circumstances.  43 

The aim of a calibration technique should therefore be to enable an efficient search of 44 

the parameter space, identifying those regions where model performance is considered 45 

satisfactory. The task is made more difficult by the typically complex nature of the 46 

model response surface (Duan et al., 1992; Sorooshian et al., 1993) which may be 47 

exacerbated by artefacts of model timestep and solution techniques (Kavetski et al., 48 
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2006a,b). Difficulties encountered may include multiple local optima in multiple 49 

regions of attraction, discontinuous derivatives, parameter interaction and flat areas 50 

(Duan et al., 1992). The nature of these surfaces prohibits standard search 51 

mechanisms such as simplex- and Newton- type schemes. Alternative methods such 52 

as uniform random sampling suffer from a lack of sampling efficiency and can be 53 

extremely costly in terms of model evaluations. They also typically specify the sample 54 

space using minimum and maximum values for each parameter, based usually on 55 

expert judgement, physical interpretation of the parameter and previous model use. 56 

However with good model performance often occurring up to the boundary of the 57 

sample region, this technique may unjustifiably restrict the search. 58 

In recent years, Markov Chain Monte Carlo (MCMC) methods have gained increasing 59 

popularity, in particular the Metropolis-Hastings (MH) Algorithm (e.g., Chib and 60 

Greenberg, 1995). These methods enable simulation of complex multivariate 61 

distributions by casting them as the invariant distribution of a Markov Chain. By 62 

finding an appropriate transition kernel which converges to this distribution, samples 63 

with the desired posterior distribution can be drawn from the Markov Chain. A 64 

popular version of the MH algorithm is the adaptive SCEM-UA algorithm (Vrugt et 65 

al., 2003) which combines the MH sampler with the SCE-UA optimisation method 66 

(Duan et al., 1992), using information exchange between multiple sampler chains to 67 

improve convergence rates.  68 

All search techniques require a definition of the model response surface to be 69 

searched: this is usually couched in terms of ‘probability of model correctness given 70 

observed data’ and is assessed via a likelihood measure. The debate continues on the 71 

relative advantages of the informal likelihood measures used in the GLUE framework 72 

compared with parameter estimation via formal statistical likelihood estimation (e.g. 73 
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Mantovan and Todini, 2006; Beven et al., 2007; Mantovan et al., 2007; Thiemann et 74 

al, 2001; Beven, 2003; Gupta et al., 2003; Clarke 1994). If statistical likelihood 75 

theory is to be used, the error model between model predictand and observed variable 76 

must be specified exactly; this may include information on heteroscedasticity and 77 

autocorrelation (e.g. Sorooshian, 1981; Sorooshian and Dracup, 1980) and may rely 78 

on hierarchical error models (Kuczera et al., 2006). Under GLUE, the concept of a 79 

true model (and error model) against which to compare observations is rejected and it 80 

is accepted that many interacting sources of error, without well-defined formulations, 81 

combine to give total model error. Models are instead judged against informal 82 

likelihood measures, chosen by the hydrologist, which represent their expert 83 

perception of model performance in prediction of observed data (Beven, 2006).  84 

Although MCMC methods have traditionally used formal likelihood measures to 85 

define the response surface (e.g. Arhonditsis et al., 2008; Marshall et al., 2004; Vrugt 86 

et al., 2006; Vrugt et al., 2003; Thiemann et al., 2001), it is also possible to use 87 

informal likelihoods (e.g., Engeland and Gottschalk, 2002; Blasone et al., 2008; Vrugt 88 

et al., 2008).  When informal likelihoods are used in MCMC methods, the main 89 

difference between MCMC methods and GLUE is that MCMC methods provide 90 

targeted sampling of the parameter space.  Blasone et al. (2008) compared 91 

performance of the informal likelihoods in the SCEM-UA method with the traditional 92 

GLUE method and demonstrated that the targeted sampling resulted in better 93 

predictions of the model output (and that the uncertainty limits were less sensitive to 94 

the number of retained solutions).  Vrugt et al. (2008) compared a formal Bayesian 95 

approach that attempts to explicitly quantify the individual sources of uncertainty in 96 

the hydrological modelling process with the traditional GLUE method that maps all 97 

sources of uncertainty onto the parameter space.  They showed that while the 98 
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estimates of total uncertainty were similar in both methods, the GLUE method 99 

produced large estimates of parameter uncertainty which can lead to erroneous 100 

conclusions on the identifiably of model parameters. 101 

The formal Bayesian approaches for explicitly quantifying the individual sources of 102 

uncertainty suffer from two important limitations.  First, as formulated by Vrugt et al. 103 

(2008) and Kavetski et al. (2006a; 2006b), the formal Bayesian methods require 104 

solving a high-dimensional optimization problem (i.e., separate multipliers for each 105 

storm); a problem that is intractable for distributed hydrological models where it is 106 

necessary to quantify uncertainty in the spatial pattern of precipitation events.  107 

Second, current methods for quantifying error in model structure are poorly 108 

developed—indeed, Vrugt et al. (2008) and Kavetski et al. (2006a; 2006b) essentially 109 

combine error in model inputs and model structure into a single error term.  Informal 110 

likelihood measures therefore remain an attractive option. 111 

This paper considers the calibration of a distributed rainfall-runoff model (described 112 

in Section 2.2) in an interesting case study catchment, the Rangitaiki in New Zealand 113 

(described in Section 2.1), where heterogeneous geology leads to a difficult and high-114 

dimensional calibration problem, where the response surface has multiple optima and 115 

strong parameter interactions. These characteristics render the problem unsuitable for 116 

solution by uniform Monte Carlo sampling (as per standard GLUE) and require a 117 

more targeted sampling strategy. MCMC methods, using the SCEM-UA algorithm, 118 

are trialled using both formal (Section 3.1) and informal (Section 3.2) likelihood 119 

measures, and assessed in their success at full coverage of the response surface. 120 
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2 Model and Data 121 

2.1 Catchment 122 

The Rangitaiki River is located in the central North Island of New Zealand. It has a 123 

length of 155 km and mean flow in the lower reaches of around 25 m3s-1. The river 124 

flows along a series of fault-angle valleys which define a structural geological 125 

boundary. To the west are Quaternary volcanic rocks, comprising a series of partially 126 

overlapping, rhyolitic, welded ignimbrite sheets, overlain by thick tephra and pumice 127 

sequences; to the east are uplifted Jurassic basement greywackes and meta-128 

greywackes (Beanland and Haines, 1998; Manville et al., 2004). These two parts of 129 

the catchment have strikingly different hydrological regimes: the porous tephras have 130 

a characteristic high stable baseflow regime and subdued flood peaks; the steep and 131 

relatively impermeable qreywacke responds quickly to rainfall with a peaked runoff 132 

pattern. 133 

Subcatchment Geology 134 

Each subcatchment is classified according to its substrate geology as recorded in the 135 

New Zealand Land Resource Inventory (NZLRI). For the purposed of this study, a 136 

simple binary division was made between impermeable (greywacke, argillite, lava) 137 

and permeable (pumice, lapilli, tephra) geology. Although the two categories are 138 

broadly divided East and West of the Rangitaiki river in the upper catchment, there is 139 

some local variation (Figure 1). 140 

2.2 Data 141 

Gauging data for the Rangitaiki is available at Te Teko, at the entrance to the coastal 142 

Rangitaiki Plains. The gauging station has a catchment area of 2890 km2 and 143 

represents the combined flow of the pumice and greywacke areas: a relatively 144 
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sustained baseflow is overlain by significant flood peaks. The contrasting 145 

subcatchment flow regimes can be compared through the discharge records of two 146 

internal gauging stations at Murupara and Galatea. Murupara is situated on the main 147 

branch of the Rangitaiki, with a catchment of 1140 km2 of the Kaingaroa Plateau. The 148 

average annual mean flow is 21 m3s-1 and the mean annual flood is 40 m3s-1. Galatea 149 

is sited on the Whirinaki, and drains a 509 km2 area of the greywacke ranges. Here the 150 

average annual mean flow is 14.5 m3s-1, and the mean annual flood is 109 m3s-1 151 

(McKerchar and Pearson, 1989). 152 

The model uses input precipitation and climate data from Tait et al. (2006) who 153 

interpolated data from over 500 climate stations in New Zealand across a regular 154 

0.05° latitude-longitude grid (approximately 5 km * 5 km). These data are provided at 155 

daily time steps, and are disaggregated to hourly data before use in the model. In this 156 

study we use data from the year 1998 when a large flood event occurred in the 157 

Rangitaiki catchment, allowing a test of the model response over a full range of 158 

discharge magnitudes.  159 

To apply TopNet in the Rangitaiki, TopNet requires information on catchment 160 

topography, physical and hydrological properties. This information is available from a 161 

variety of sources. The New Zealand River Environment Classification (REC; Snelder 162 

and Biggs, 2002) includes a digital network of approximately 600,000 river reaches 163 

and related sub-basins for New Zealand. A 30 m Digital Elevation Model (DEM) 164 

provided topographic properties. Land cover and soil data is available from the New 165 

Zealand Land Cover Database (LCDB) and the New Zealand Land Resource 166 

Inventory (LRI; Newsome et al., 2000). The river basin was first disaggregated into 167 

individual subcatchments, each one of which becomes a model element. We use the 168 

Strahler 3 subcatchments from the REC, which have a typical size of 10 km2, and split 169 
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the Rangitaiki Basin into 308 elements. The REC also provides the geometrical 170 

parameters of the river network. Frequency distributions of the topographic wetness 171 

index and distance to streams are calculated from the DEM. Average soil and 172 

landcover parameters are derived from the LRI and LCDB respectively. In total, 12 173 

parameters are required for each subcatchment, of which 6 may be specified using the 174 

information described above; the remaining 6 must be calibrated (Refer to Table 1 for 175 

descriptions of all the parameters). In addition, the Manning’s n value for the 176 

subcatchment channel section must also be calibrated. 177 

 178 

2.3 TOPNET 179 

TOPNET was developed by combining TOPMODEL (Beven et al., 1979; Beven et 180 

al., 1995), which is most suited to small watersheds, with a kinematic wave channel 181 

routing algorithm (Goring, 1994) so as to have a modeling system that can be applied 182 

over large watersheds using smaller sub-basins within the large watershed as model 183 

elements (Ibbitt and Woods, 2002; Bandaragoda et al., 2004; Clark et al., 2008). 184 

TOPNET uses TOPMODEL concepts for the representation of sub-surface storage 185 

controlling the dynamics of the saturated contributing area and baseflow recession. To 186 

form a complete model, potential evapotranspiration, interception (based on the work 187 

of Ibbitt, 1971), infiltration (using a Green-Ampt mechanism; Mein and Larsen, 1973) 188 

and soil zone components were added. Kinematic wave routing moves the sub-basin 189 

inputs through the stream channel network.  Complete model equations are provided 190 

by Clark et al. (2008) and are not repeated here. 191 
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2.4 Calibration via Parameter Multipliers 192 

In distributed rainfall-runoff models, the calibration problem is greatly complicated by 193 

the large number of model parameters: multiple model parameters for each model 194 

spatial element. Experience suggests that the integrated variables typically available to 195 

evaluate model performance, such as streamflow series, may hold insufficient 196 

information to determine all model parameter values (Beven, 2001). Various 197 

approaches have been applied to ease this discrepancy. Many studies assume that 198 

several parameters are spatially constant over the model domain, using a value 199 

determined either by expert opinion or by directly using values measured at point 200 

locations. Another popular approach is to apply a set of “parameter multipliers” to a-201 

priori  model element parameter values, significantly reducing the dimensionality of 202 

the calibration problem (Clark et al., 2008). However, due to the reliance on a 203 

previously determined spatial distribution of model parameters, there is a danger that 204 

distributed hydrological models calibrated using integrated data such as catchment 205 

outlet discharge may fail to properly represent the range of hydrological behaviours. 206 

Poor forecasts would then be produced at internal catchment locations (Clark et al., 207 

2008).  208 

This paper presents a model calibration strategy that provides correct representation of 209 

internal catchment processes.  The calibration method is applied in the Rangitaiki, 210 

where two sub-regions of the catchment have significantly different hydrological 211 

characteristics. Our knowledge of catchment geology cannot be translated directly 212 

into values for model parameters; instead we seek to use the qualitative information to 213 

inform our calibration strategy.  214 

Figure 1: Geology of the Rangitaiki River basin, classified according to permeability. 215 

Gauging Locations are marked. 216 
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The method used is to classify each Strahler 3 sub-catchment as either ‘permeable’ or 217 

‘impermeable’ (refer to Section 2.1; note that in other catchments, three or more 218 

qualitative categories may be appropriate). A-priori model parameters are specified in 219 

each individual subcatchment using topography, soils and land-cover data (Table 1). 220 

Two sets of parameter multipliers are then allowed, one for each category. The 221 

optimisation process allows all multipliers to be calibrated simultaneously, such that 222 

the optimum combination of process descriptions in the two categories is found.  223 

The Rangitaiki provides an ideal test location, as the model calibration can be 224 

implemented using only the outlet discharge gauged at Te Teko (Figure 1), but tested 225 

for diverse internal process representation using the two gauges at Murupara (pumice 226 

subcatchment) and Galatea (greywacke catchment). This internal check allows a test 227 

of model conditioning and parameter identification success; an important 228 

consideration due to the increased number of parameters used with this method. 229 

3 MCMC technique (Bayesian Uncertainty Framework) 230 

3.1 Metropolis and Adaptive Metropolis Algorithms 231 

Markov Chain Monte Carlo provides a general approach to sampling from the 232 

posterior distribution. Classical Markov Chain theory specifies the transition kernel 233 

P(x,A) which gives the probability from moving from the point x to any point in the 234 

set A. A common question is then to determine whether the chain has an invariant 235 

distribution π which is unchanged by applying the transition kernel. The MCMC 236 

technique reverses the problem: the required posterior distribution is taken as the 237 

invariant π; instead we seek the appropriate transition kernel P(x,A) such that a chain 238 

using this kernel provides samples from the posterior. The Metropolis-Hastings 239 

algorithm, one of the most popular MCMC methods, provides a method for finding 240 
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the required transition kernel. At each step of the Markov Chain, a new sample is 241 

drawn from a ‘proposal distribution’ q(x,y). However the chain only moves to this 242 

sample point according to a ‘probability of move’ α = π(y)/ π(x), otherwise it remains 243 

at the previous sample point.  244 

The choice of proposal distribution q(x,y) has important consequences for the 245 

algorithm behaviour. Where q(x,y) is too diffuse or does not properly represent 246 

interactions between parameters, α is often small and many candidate points are 247 

rejected, slowing the chain evolution. Where q(x,y) is too compact, the chain will 248 

move inefficiently around the search space, causing particular problems with spatially 249 

distal optima. The SCEM-UA algorithm (Vrugt et al., 2003) seeks to avoid these 250 

problems by continually updating the proposal distribution using information gained 251 

about the nature of the posterior distribution. The proposal distribution becomes a 252 

multivariate normal with mean and covariance structure taken as the sample mean and 253 

sample covariance of different ‘complexes’ of points in the high-density region of the 254 

sample space. Although it is not proven that the SCEM-UA algorithm with adaptive 255 

proposal distribution provides an ergodic Markov Chain with the correct invariant 256 

distribution (Haario et al., 1999; 2001), experimental investigations have shown that 257 

the algorithm performs well (Vrugt et al., 2003).  258 

3.2 Formal Bayesian Likelihood 259 

The MCMC method is first carried out using a formal Bayesian Likelihood derivation 260 

for the posterior density. Following Thiemann et al. (2001), Vrugt et al. (2003), Bates 261 

and Campbell (2001), Marshall et al., (2004) and others, we assume that measurement 262 

errors can be transformed via a one-to-one transformation to have the exponential 263 

power density E(σ,β), and hence the conditional posterior density can be derived to be 264 

of the form (Box and Tiao, 1973) 265 
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β is a scale parameter, σ is the standard deviation of the measurement errors, T is the 269 

number of timesteps, and υ(t) are the transformed errors.  270 

3.3 Informal Likelihood Measures 271 

Secondly, the MCMC sampling is repeated using an informal likelihood measure as 272 

used under the philosophy of the GLUE system (Beven and Binley, 1992). This 273 

technique also requires the selection of a ‘behaviourability threshold’ such that when 274 

the likelihood measure falls below this value, the model is rejected. Although 275 

typically the choice of threshold has been based on the expert judgement of the 276 

modeller as to the error magnitude that is acceptable for the particular application, it 277 

may also be chosen objectively such that a set proportion of the observed values lie 278 

within the uncertainty bounds (Blasone et al., 2008; Montanari, 2005).  279 

3.3.1 Nash-Sutcliffe Likelihood  280 

The Nash-Sutcliffe index of model efficiency (NSE; Equation 1) is one of the most 281 

commonly used descriptors of rainfall-runoff model performance Hall (2001). 282 

NSE = 
2

2

1
oσ

σ ε−     (Equation 2) 283 

Where σε
2 is the error variance and σo

2 is the variance of the observed flow series.  284 
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Hence the NSE takes a value of 1 for a perfect model fit, a value of 0 for a model no 285 

better than the constant mean of the observed data. The Nash-Sutcliffe index is often 286 

used in the GLUE framework as an informal likelihood measure. In order for it to be 287 

used in SCEM-UA, it must be non-negative and monotonically increasing with 288 

improved performance. To meet the former condition, the NSE is set to zero when 289 

negative values are returned. The NSE is only used via the posterior density ratio R of 290 

two samples, which can be expressed in the following form: 291 
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 (Equation 3) 292 

Where SSE1 and SSE2 are the sums of squared errors for the two samples and K is a 293 

constant. 294 

After initial trials of a MCMC method using this index, it was found that the chain 295 

was initially slow to migrate to high performance regions of the sample space. This 296 

was hypothesised to be due to two factors: 297 

  the lack of ability to order poor model fits (as the NSE was set to zero whenever σo
2 298 

> σε
2 ) which prevented the chain from gradual movement towards high performance 299 

regions.(1) Poor representation of relative model performance, e.g. a NSE of 0.9 300 

would typically be considered a significant improvement relative to a NSE of 0.8, 301 

however in this method there would be a high probability of move from 0.9 down to 302 

0.8 as the posterior density ratio is 0.8/0.9 = 0.89.  303 

 (2) Lack of ability to order poor model fits (as the NSE was set to zero whenever σo
2 304 

> σε
2 ) which prevented the chain from gradual movement towards high performance 305 

regions. 306 
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In order to address this issue (1), the constant K may be adjusted to mimic the effect 307 

of the behavioural threshold and alter the ratio R; i.e. reducing K causes higher weight 308 

to be placed on small improvements in NSE. To address issue (2), the exact sum of 309 

squared error scores were retained such that all model fits could be correctly ordered, 310 

even though this information was not used to calculate the ratio R. A combination of 311 

these two measures This was found to significantly improve the Markov Chain 312 

efficiency. 313 

3.3.2 Extended Nash-Sutcliffe 314 

Despite the perennial popularity of error variance measures such as the Nash-Sutcliffe 315 

score, there are occasions when an approach base on the sum-of-squared-errors is 316 

likely to produce counterintuitive results when assessing the fit of modelled and 317 

observed hydrographs. Of particular concern is the relative importance assigned to 318 

discharge magnitude errors versus timing errors. It is a common occurrence for 319 

rainfall-runoff models to incorrectly predict the timing of a flood peak; however due 320 

to the timestep-by-timestep comparison in an SSE analysis, timing errors can cause 321 

extremely poor performance measure values (Figure 2). 322 

Figure 2: A synthetic example of hydrographs in which a model with minor (2 hour) 323 

timing error is graded as having poorer performance than a model with 40% discharge 324 

error 325 

A generalised version of the Nash-Sutcliffe likelihood is suggested in order to address 326 

these concerns, by allowing discrepancies between observed and modelled data points 327 

to be considered as a combination of discharge and timing errors. This is achieved by 328 

using the modeller’s judgment on relative importance of discharge and timing errors 329 

to determine the shape of an oval search window (Figure 3). The error at each 330 
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timestep is defined as the minimum distance from the oval centre to the point on the 331 

oval boundary which intersects the opposing discharge curve. The squared error 332 

values are then summed and substituted directly into the standard Nash-Sutcliffe 333 

equation. Standard NS appears as a special case within the Extended NS when timing 334 

errors are considered infinitely worse than discharge errors and the search oval 335 

becomes a vertical line. A procedural description of calculation of the new error 336 

measure can be found in Appendix A. 337 

Figure 3: Error magnitudes for the Extended Nash-Sutcliffe are found using an oval 338 

search window. 339 

 340 

4 Results 341 

4.1 Flow prediction 342 

Formal Bayesian Likelihood 343 

Model calibration was carried out using data from the year 1998, using the MCMC 344 

method described in Section 3.1 and a formal likelihood measure based on an 345 

exponential error distribution (Section 3.2). Ten parallel Markov Chains are run for a 346 

total of 5000 iterations; the first 1000 iterations are discarded as a ‘burn-in’ period for 347 

the chain. Gelman-Rubin convergence statistics are calculated to check the Markov 348 

Chain has converged to the stationary distribution representing the model posterior 349 

distribution.   350 

Figure 4: 90% Uncertainty bounds on flow at Te Teko using formal likelihood 351 

measure to control MCMC search algorithm. 352 
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The resulting uncertainty bounds on the flow hindcast are shown in Figure 4; note that 353 

the bounds are sufficiently narrow to be hardly visible as distinct from the median 354 

calibrated prediction.  355 

 356 

Informal Likelihood 357 

The model calibration was repeated using the same Markov Chain set-up, but using in 358 

turn the Nash-Sutcliffe and Extended Nash-Sutcliffe likelihood measures. The 359 

resulting flow hindcasts are shown in Figures 5 and 6 respectively. It is clear that 360 

using an informal likelihood measure suggests a much greater uncertainty in the flow 361 

forecast, with uncertainties greatest during peak flow periods. 362 

Figure 5: 90% Uncertainty bounds on flow at Te Teko using Nash-Sutcliffe informal 363 

likelihood measure to control MCMC search algorithm. 364 

Figure 6: 90% Uncertainty bounds on flow at Te Teko using Extended Nash-Sutcliffe 365 

informal likelihood measure to control MCMC search algorithm. 366 

A study of the Markov Chain behaviour can be used to provide additional information 367 

about the model response surface, and the success of the MCMC algorithm in fully 368 

exploring the surface (Vrugt et al., 2003). Figures 7 and 8 allow a comparison of the 369 

sequential values of the Topmodel f parameter when using formal vs. informal 370 

likelihood measures. Figure 7 shows that in the case of the formal likelihood measure, 371 

the distribution quickly collapses to a single optimum, and the remainder of the 372 

parameter space is not explored. In contrast, Figure 8 shows that the informal 373 

likelihood measure produces a continuing wide dispersal of behavioural parameter 374 

values, and therefore a flatter response surface. Other model parameters showed 375 

similar trends. It is also interesting to note in Figure 8 that there is a distinct higher-376 
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density band for f in the range [0, 0.1], coupled with a more disperse band in the range 377 

[0.2, 0.6]. This suggests the possibility of a bi-modal distribution for f, with only the 378 

more peaked lower optimum found by the formal likelihood measure: this issue is 379 

discussed more fully in the following section. 380 

Figure 7: Topmodel ‘f’ parameter value over successive iterations of the MCMC 381 

search algorithm using formal Bayesian (exponential error model) likelihood measure. 382 

Figure 8: Topmodel ‘f’ parameter value over successive iterations of the MCMC 383 

search algorithm using informal ‘Extended Nash-Sutcliffe’ likelihood measure. 384 

 385 

 386 

4.2 Calibration Constraints using Qualitative Geological Information 387 

Internal Catchment Flow Gauging 388 

By using the informal likelihood measure (Section 4.1) the Markov Chain revealed a 389 

dispersed posterior response surface, with the possibility of dual optima suggested by 390 

distinct bands in the parameter mixing diagrams when using the informal Extended 391 

Nash-Sutcliffe likelihood measure (Figure 8). Given the division of the catchment into 392 

dual ‘permeable’ and ‘impermeable’ areas, it seemed logical that these two 393 

phenomena might be related. The issue was investigated further using flow data from 394 

the two internal catchment gauges which had not previously been used in model 395 

calibration (Figure 9).  396 

Figure 9: Comparison of Internal Flow predictions at Murupara (pumice 397 

subcatchment) and Galatea (greywacke subcatchment) using formal and informal 398 

likelihood measures. 399 
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Striking differences were seen here between the formal and informal likelihood 400 

results. The informal likelihood results show a very large spread in possible internal 401 

flow distribution in the catchment, where the majority of the quickflow may be 402 

attributed to either pumice or greywacke areas (Figures 9C/9D). In reality, the pumice 403 

subcatchment provides a steady baseflow, with the greywacke catchment providing a 404 

peaked response to storm events (refer to Section 2.1) – however the unconstrained 405 

model calibration may assign ‘pumice’ vs. ‘greywacke’ characteristics to the sub-406 

catchments in either order. In contrast, the calibration using a formal likelihood 407 

measure has collapsed to a single parameter allocation (Figures 9A/9B) which has 408 

incorrectly classified the subcatchments and in effect assigned ‘greywacke-type’ 409 

characteristics to the pumice sub-catchment, and vice-versa. 410 

 411 

Constrained Calibration 412 

It is natural to ask whether the calibration procedure may be constrained such that 413 

Markov Chains converge to the correct optimum such the flow characteristics are 414 

correctly assigned to the two geologically distinct sub-catchments. Although in the 415 

case of the Rangitaiki this could be achieved using multi-criteria calibration with 416 

additional data from the internal flow gauges, here we are interested in a strategy 417 

using only the catchment outlet flow gauge, such that the methodology would be 418 

transferable to other catchments with a single flow gauge.  419 

The constraint process aimed to subdivide the parameter space in the simplest 420 

possible way into volumes representing ‘pumice’ or ‘greywacke’ behaviour. In order 421 

to be considered as constraints, parameters had to satisfy the dual criteria of having a 422 

physical interpretation, such that characteristics could be accurately assigned, and 423 
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showing good discrimination between model realisations representing the two 424 

response types. The parameters that achieved this were (1) Topmodel f parameter - 425 

related to depth of soil profile and aquifer response time (2) ∆θ1 – effective drained 426 

porosity (3) ∆θ2 – root zone storage. 427 

Multiplier ranges were defined for each of these based on separation of the observed 428 

marginal distribution by behavioural group. This was achieved by physical 429 

interpretation of the bi-modal parameter distributions, and resulting predicted flows, 430 

in the unconstrained calibration (Figure 8). Previous research in New Zealand 431 

demonstrates significant behavioural differences between pumice vs. non-volcanic 432 

regions, with pumice regions characterized by lower flood peaks (McKerchar and 433 

Pearson, 1989) and higher yields (Hutchinson, 1990). The bi-modal form is therefore 434 

compatible with an expectation that parameter multipliers for Topmodel “f”, ∆θ1 and 435 

∆θ2 may need to be different for the two geology types to make targeted corrections to 436 

the default values. The two modes of the parameter distribution are classified as 437 

providing ‘Pumice-type’ and ‘Greywacke-type’ behaviour respectively. The resulting 438 

marginal distributions are shown in Figure 10: the Topmodel f parameter is seen to 439 

show non-intersecting ranges for the two parameters sets, the ∆θ1 and ∆θ2 parameters 440 

show defined ranges for the ‘greywacke-type’ parameters only. Other parameters (not 441 

shown) did not show good discrimination between behavioural types.  442 

Figure 10: Multiplier ranges categorised by behavioural type for parameters: (a) 443 

Topmodel f  (b) ∆θ1 effective drained porosity  (c) ∆θ2 root zone storage. These plots 444 

were used to define constrained parameter ranges 445 

The calibration was re-run using appropriate parameter ranges for each sub-catchment 446 

according to its geological classification. An informal likelihood measure was used as 447 

this is consistent with the analysis suggesting the presence of behavioural simulations 448 
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within the constrained range: the formal likelihood measure in contrast rejected at the 449 

90% level all simulations within the new constraints. The Extended Nash-Sutcliffe 450 

measure was used in order to allow proper consideration of both magnitude and 451 

timing errors.  452 

Figure 11: Internal Flow predictions at Murupara (pumice subcatchment) and Galatea 453 

(greywacke subcatchment) using informal likelihood measures under a constrained 454 

calibration procedure. 455 

The results for flow predictions at the two internal catchment flow gauges are shown 456 

in Figure 11. These results show accurate flow prediction in each subcatchment with 457 

substantially reduced uncertainty compared to the unconstrained calibration. We 458 

therefore conclude that imposing constraints on the 3 parameters f, ∆θ1, ∆θ2 was 459 

sufficient to guide the MCMC algorithm to the correct optimum.  460 

 461 

5 Discussion and Conclusions 462 

Where a catchment has sub-regions of contrasting hydrological behaviour, such as 463 

those caused by different geologies, there is a danger that distributed hydrological 464 

models calibrated using integrated data such as catchment outlet discharge may fail to 465 

properly represent the range of hydrological behaviours. Due to a wide range of 466 

possible distributions of flow within different branches of the catchment, the response 467 

surface representing the posterior distribution may have multiple optima and flat areas 468 

characteristic of complex equifinal behaviour. It is therefore important to use a 469 

calibration procedure which is capable of fully capturing and describing the 470 

behavioural regions of the parameter space. 471 
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MCMC algorithms such as the Metropolis-Hastings and its variants are popular 472 

choices for efficient exploration of complex response surfaces, however this paper has 473 

shown that the formal likelihood measures which are typically used within such 474 

algorithms may prevent the Markov Chain from fully exploring regions of the 475 

parameter space which might be considered behavioural when assessed using a 476 

standard performance measure such as the Nash-Sutcliffe statistic. Such formal 477 

Bayesian approaches assume that the model structure is correct, and therefore do not 478 

account for cases where the parameters compensate for weaknesses in model 479 

structure. This may lead to cases where, although parameter uncertainty is small, the 480 

optimised parameter values are in fact ‘wrong,’ as shown in Section 4.1 in the form of 481 

extremely poor flow predictions at internal locations. 482 

By using instead an informal likelihood measure, we attempt to capture the total 483 

uncertainty in flow predictions due a range of known and unknown error sources. This 484 

methodology results in a greater volume of the parameter space being sampled, thus 485 

revealing more complete information about possible multiple optima or flat areas of 486 

the response surface. Of course, the posterior probability distribution to be sampled 487 

must reflect the hydrologist’s best understanding of the errors present in the modeling 488 

process; where these can be described very exactly a formal likelihood measure would 489 

be a more appropriate choice and would better represent the information on posterior 490 

parameter distribution which could be derived from the observed data. Unfortunately, 491 

however, it may often be the case that a formal likelihood measure which makes 492 

strong assumptions about model error distribution is used under conditions of 493 

incomplete information on error form.  494 

Finally, this paper has shown how the additional information gained using an 495 

exploration of the response surface using an informal likelihood measure can be used 496 
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to improve the calibration process in order to focus the Markov Chain trajectory on 497 

regions of the parameter space reflecting our qualitative knowledge of system 498 

behaviour. The ability to incorporate qualitative or ‘soft’ data into calibration 499 

algorithms is very valuable but may be more effectively deployed in conjunction with 500 

a description of the response surface which identifies threshold or boundaries between 501 

different response types. 502 

 503 

 504 
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Appendix A 505 

Algorithm for Calculation of Extended Nash-Sutcliffe Performance Measure 506 

 507 

1. Define εT as the timing error (e.g. in hours) which is considered ‘equally bad’ as a 508 

discharge error of 1 unit (typically 1 m3s-1), and τ the maximum allowable timing 509 

error. 510 

For each timestep (t) in turn: 511 

2. Identify the greater of the two discharge series (observed, modelled) at time t: 512 

 ( ) ( ) ( ){ }tQtQtQ obs mod1 ,max=  513 

3. Create a vector of timesteps within the allowable time window: 514 

[ ]ττ +∆+∆−−= tttttttT  , ... ,  ,  ,  , ... ,  515 

4. Create a vector of discharges corresponding to these time steps: 516 

( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( )[ ] ( ) ( )




>+−
≥+−

=
tQtQtQtQtQ

tQtQtQtQtQ
Q

obs

obsobsobsobs

modmodmodmod

mod
2   where,...,,...,

  where,...,,...,

ττ
ττ

 517 

5. Calculate the squared error vector relating to this set of time steps: 518 

( )( )2

21

2

T

QtQ
Tt

SE −+








 −=
ε

 519 

6. Minimise the squared error over the time window: 520 

( ) { }SEtErrorSquared min  =  521 

Having calculated the squared error for each timestep, return to the standard Nash-522 

Sutcliffe method: 523 
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7. Calculate the error variance  524 

( )∑⋅−
=

t
tErrorSquared

n
  

1

12
εσ  525 

8. Calculated the Extended Nash-Sutcliffe Score: 526 

2

2

1 NSE Extended
oσ

σ ε−=  527 

where σo
2 is the variance of the observed flow series. 528 

 529 

Note that at each timestep the oval search window is centred on the greater of the 530 

modelled and observed discharges: this avoids the situation where narrow, high 531 

discharge peaks which are not predicted correctly are not accounted for in the error 532 

calculation as the search window picks up low flows before or after these events. The 533 

reverse situation with a sudden trough in discharge levels would be extremely unusual 534 

in either a modelled or observed flow series.  535 
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 669 

Figure 1: Geology of the Rangitaiki River basin, classified according to permeability. 670 
Gauging Locations are marked. 671 

 672 

673 
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Figure 2: A synthetic example of hydrographs in which a model with minor (2 hour) 674 
timing error is graded as having poorer performance than a model with 40% discharge 675 
error 676 
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Figure 3: Search window to determine ‘distance’ between observed and predicted 679 
flow values under the Extended Nash Sutcliffe likelihood measure. 680 
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Figure 4: 90% Uncertainty bounds on flow at Te Teko using formal likelihood 683 
measure to control MCMC search algorithm. Note that the bounds are sufficiently 684 
narrow to be hardly visible as distinct from the median calibrated prediction.  685 
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Figure 5: 90% Uncertainty bounds on flow at Te Teko using Nash-Sutcliffe informal 688 
likelihood measure to control MCMC search algorithm.  689 
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Figure 6: 90% Uncertainty bounds on flow at Te Teko using Extended Nash-Sutcliffe 692 
informal likelihood measure to control MCMC search algorithm.  693 
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Figure 7: Topmodel ‘f’ parameter value over successive iterations of the MCMC 696 
search algorithm using formal Bayesian (exponential error model) likelihood measure  697 
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Figure 8: Topmodel ‘f’ parameter value over successive iterations of the MCMC 700 
search algorithm using informal ‘Extended Nash-Sutcliffe’ likelihood measure 701 
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Figure 9: Comparison of Internal Flow predictions at Murupara (pumice 704 
subcatchment) and Galatea (greywacke subcatchment) using formal and informal 705 
likelihood measures 706 
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Figure 10: Multiplier ranges categorised by behavioural type for parameters: 710 

(a) Topmodel f  (b) ∆θ1 effective drained porosity  (c) ∆θ2 root zone storage. These 711 
plots were used to define constrained parameter ranges.  712 
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Figure 11: Internal Flow predictions at Murupara (pumice subcatchment) and Galatea 715 
(greywacke subcatchment) using informal likelihood measures under a constrained 716 
calibration procedure 717 
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Table 1 
TOPNET model parameters 
 
 Name Estimation 
Sub-basin Parameters   
f (m-1) Saturated store 

Sensitivity 
Constant = 12.4  
(multiplier calibrated) 

K0 (m/h) Surface saturated 
hydraulic conductivity 

Constant = 0.01  
(multiplier calibrated) 

∆θ1  Drainable porosity  From soils  
(multiplier calibrated) 

∆θ2  Plant available porosity  From soils  
(multiplier calibrated) 

D (m)  Depth of soil zone  Depth ¼ 1=f from soils 
(multiplier calibrated) 

C  
 

Soil zone drainage 
sensitivity 

1 

φ (m)  Wetting front suction  From soils 
V (m/s) Overland flow velocity  Constant = 0.1  

(multiplier calibrated) 
CC (m)  Canopy capacity  From vegetation 
Cr  Intercepted evaporation 

enhancement 
From vegetation 

A  Albedo  From vegetation 
Lapse (°C/m)  Lapse rate  0.0065 
Channel parameters   
N  Mannings n  Constant = 0.024  

(multiplier calibrated) 
A  
 

Hydraulic geometry 
constant 

0.00011 

B 
 

Hydraulic geometry 
exponent 

0.518 

State variables  Initialization 
z' (m)  
 

Average depth to 
water table 

Saturated zone drainage 
matches initial 
observed flow 

SR (m) Soil zone storage 0.02 
CV (m) Canopy storage 0.0005 
 

 


