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Abstract

This paper considers the calibration of a distedutainfall-runoff model in a
catchment where heterogeneous geology leads tdfieuldiand high-dimensional
calibration problem, where the response surface rhakiiple optima and strong
parameter interactions. These characteristics remigie problem unsuitable for
solution by uniform Monte Carlo sampling and requa more targeted sampling
strategy. MCMC methods, using the SCEM-UA algoritheme trialled using both
formal and informal likelihood measures. Each mdti®assessed in its success at
predicting the catchment flow response and capjutie total uncertainty associated
with this prediction. The comparison is made athbtite catchment outlet and at
internal catchment locations with distinct geol@dicharacteristics. Lastly, we
demonstrate how information gained from the expionaof the response space, in
conjunction with qualitative knowledge of systenhaeiour, can be used to constrain

the Markov Chain trajectory.



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

1 Introduction

Improving availability and coverage of spatial ddtas driven developments in
distributed, process-based catchment modelling;elvew despite the correspondence
between modeled and observed processes, it is su@lly possible to determine
model parameters values directly from field measems. Instead, the values
required are those of the ‘effective parametersictvinepresent integrated behaviour
at the model element scale. These values mustftiherbe determined through a
calibration methodology, via some search of theampater space. As has been
extensively discussed by Beven (1993; 2005; Beveh Binley, 1992) and others
(Wagener and Gupta, 2005), the many sources ofrtanty in a hydrological model
application lead to equifinality of parameter setsproviding acceptable model
performance with reference to some observed ddtasd uncertainty sources may
include, but are not limited to, input data undettg initial condition uncertainty,
model structural error, observed data uncertainty énd Gupta, 2007). Indeed, since
it is certain that our hydrological model does fudly represent the complexity of the
natural catchment and is therefore ‘wrong’, we mespect that any calibration
technique is a process of identifying some subseharel parameterisations which
produce reasonable approximations to some aspéctie catchment behaviour

under some circumstances.

The aim of a calibration technique should therefurdo enable an efficient search of
the parameter space, identifying those regions evihmerdel performance is considered
satisfactory. The task is made more difficult bg tigpically complex nature of the
model response surface (Duanal, 1992; Sorooshiaet al., 1993) which may be

exacerbated by artefacts of model timestep andisoltechniques (Kavetslat al,
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2006a,b). Difficulties encountered may include npldt local optima in multiple
regions of attraction, discontinuous derivativeatgmeter interaction and flat areas
(Duan et al, 1992). The nature of these surfaces prohibitndstrd search
mechanisms such as simplex- and Newton- type schefiernative methods such
as uniform random sampling suffer from a lack aihphng efficiency and can be
extremely costly in terms of model evaluations. yrakso typically specify the sample
space using minimum and maximum values for eachnpater, based usually on
expert judgement, physical interpretation of theapeeter and previous model use.
However with good model performance often occurnipgto the boundary of the

sample region, this technique may unjustifiablymetsthe search.

In recent years, Markov Chain Monte Carlo (MCMC)thogls have gained increasing
popularity, in particular the Metropolis-HastingslH{) Algorithm (e.g., Chib and
Greenberg, 1995). These methods enable simulatiorcomplex multivariate
distributions by casting them as the invariant ribgstion of a Markov Chain. By
finding an appropriate transition kernel which cerges to this distribution, samples
with the desired posterior distribution can be draftfom the Markov Chain. A
popular version of the MH algorithm is the adapt&&EM-UA algorithm (Vrugtet
al., 2003) which combines the MH sampler with the S@A& optimisation method
(Duanet al., 1992), using information exchange between multgampler chains to

improve convergence rates.

All search techniques require a definition of th@d®l response surface to be
searched: this is usually couched in terms of ‘pholity of model correctness given
observed data’ and is assessed via a likelihooduneaThe debate continues on the
relative advantages of the informal likelihood meas used in the GLUE framework

compared with parameter estimation via formal stial likelihood estimation (e.qg.
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Mantovan and Todini, 2006; Beven al, 2007; Mantovaret al, 2007; Thiemanret

al, 2001; Beven2003; Guptaet al, 2003; Clarke 1994). If statistical likelihood
theory is to be used, the error model between moaelictand and observed variable
must be specified exactly; this may include infotiora on heteroscedasticity and
autocorrelation (e.g. Sorooshian, 1981; Soroosarah Dracup, 1980) and may rely
on hierarchical error models (Kuczeztal, 2006). Under GLUE, the concept of a
true model (and error model) against which to caommdoservations is rejected and it
is accepted that many interacting sources of ewithout well-defined formulations,
combine to give total model error. Models are iadtgudged against informal
likelihood measures, chosen by the hydrologist, civhrepresent their expert

perception of model performance in prediction aetved data (Beven, 2006).

Although MCMC methods have traditionally used fornikelihood measures to
define the response surface (e.g. Arhondésial, 2008; Marshalkt al, 2004; Vrugt
et al, 2006; Vrugtet al, 2003; Thiemanret al, 2001), it is also possible to use
informal likelihoods (e.g., Engeland and Gottschal02; Blasone et al., 2008; Vrugt
et al., 2008). When informal likelihoods are usadMCMC methods, the main
difference between MCMC methods and GLUE is thatMWC methods provide
targeted sampling of the parameter space. Blasstnal. (2008) compared
performance of the informal likelihoods in the SCEM method with the traditional
GLUE method and demonstrated that the targeted Isegnpesulted in better
predictions of the model output (and that the utacety limits were less sensitive to
the number of retained solutions). Vrugt et aD0@ compared a formal Bayesian
approach that attempts to explicitly quantify thdividual sources of uncertainty in
the hydrological modelling process with the tramhal GLUE method that maps all

sources of uncertainty onto the parameter spacéey Bhowed that while the
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estimates of total uncertainty were similar in batiethods, the GLUE method
produced large estimates of parameter uncertairftichwcan lead to erroneous

conclusions on the identifiably of model parameters

The formal Bayesian approaches for explicitly quigimgy the individual sources of
uncertainty suffer from two important limitation&irst, as formulated by Vrugt et al.
(2008) and Kavetski et al. (2006a; 2006b), the fdriBayesian methods require
solving a high-dimensional optimization problene (j.separate multipliers for each
storm); a problem that is intractable for distrémlithydrological models where it is
necessary to quantify uncertainty in the spatiaitepa of precipitation events.
Second, current methods for quantifying error indelostructure are poorly
developed—indeed, Vrugt et al. (2008) and Kavetskil. (2006a; 2006b) essentially
combine error in model inputs and model structate a single error term. Informal

likelihood measures therefore remain an attracipen.

This paper considers the calibration of a disteldutainfall-runoff model (described
in Section 2.2) in an interesting case study catttnthe Rangitaiki in New Zealand
(described in Section 2.1), where heterogeneoumggeteads to a difficult and high-
dimensional calibration problem, where the respawstace has multiple optima and
strong parameter interactions. These characteyistizder the problem unsuitable for
solution by uniform Monte Carlo sampling (as penstard GLUE) and require a
more targeted sampling strategy. MCMC methods,qune SCEM-UA algorithm,
are trialled using both formal (Section 3.1) anébimal (Section 3.2) likelihood

measures, and assessed in their success at fellagw/of the response surface.
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2 Model and Data

2.1 Catchment

The Rangitaiki River is located in the central NMolsland of New Zealand. It has a
length of 155 km and mean flow in the lower reacbearound 25 s, The river
flows along a series of fault-angle valleys whickfige a structural geological
boundary. To the west are Quaternary volcanic roobsprising a series of partially
overlapping, rhyolitic, welded ignimbrite sheetsedain by thick tephra and pumice
sequences; to the east are uplifted Jurassic basegreywackes and meta-
greywackes (Beanland and Haines, 1998; Manwillal.,2004). These two parts of
the catchment have strikingly different hydrologdjicegimes: the porous tephras have
a characteristic high stable baseflow regime artised flood peaks; the steep and
relatively impermeable greywacke responds quicilyainfall with a peaked runoff

pattern.
Subcatchment Geology

Each subcatchment is classified according to ibstsate geology as recorded in the
New Zealand Land Resource Inventory (NZLRI). Fae thurposed of this study, a
simple binary division was made between impermeétteywacke, argillite, lava)

and permeable (pumice, lapilli, tephra) geologyth8ligh the two categories are
broadly divided East and West of the Rangitaikeriin the upper catchment, there is

some local variation (Figure 1).

2.2 Data

Gauging data for the Rangitaiki is available atTB&o, at the entrance to the coastal
Rangitaiki Plains. The gauging station has a caestimarea of 2890 kimand

represents the combined flow of the pumice and wgaeke areas: a relatively



145 sustained baseflow is overlain by significant floqgeaks. The contrasting
146  subcatchment flow regimes can be compared throbghdischarge records of two
147 internal gauging stations at Murupara and Gald#eaupara is situated on the main
148 branch of the Rangitaiki, with a catchment of 1k of the Kaingaroa Plateau. The
149 average annual mean flow is 2fshand the mean annual flood is 46sth Galatea
150 is sited on the Whirinaki, and drains a 50%°larea of the greywacke ranges. Here the
151 average annual mean flow is 14.5sth and the mean annual flood is 109st

152 (McKerchar and Pearson, 1989).

153 The model uses input precipitation and climate deden Tait et al. (2006) who
154 interpolated data from over 500 climate stationdNew Zealand across a regular
155 0.05° latitude-longitude grid (approximately 5 kndkm). These data are provided at
156 daily time steps, and are disaggregated to howais defore use in the model. In this
157 study we use data from the year 1998 when a ldaml fevent occurred in the
158 Rangitaiki catchment, allowing a test of the modedponse over a full range of

159 discharge magnitudes.

160 To apply TopNet in the Rangitaiki, TopNet requiredormation on catchment
161 topography, physical and hydrological propertidsisinformation is available from a
162 variety of sources. The New Zealand River Environni@&assification (REC; Snelder
163 and Biggs, 2002) includes a digital network of axmnately 600,000 river reaches
164 and related sub-basins for New Zealand. A 30 mt8ligtlevation Model (DEM)
165 provided topographic properties. Land cover andl datia is available from the New
166 Zealand Land Cover Database (LCDB) and the New afeblLand Resource
167 Inventory (LRI; Newsomeet al, 2000). The river basin was first disaggregated i
168 individual subcatchments, each one of which become®del element. We use the

169  Strahler 3 subcatchments from the REC, which hayeiaal size of 10 ki) and split
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the Rangitaiki Basin into 308 elements. The RE® gisovides the geometrical
parameters of the river network. Frequency distitims of the topographic wetness
index and distance to streams are calculated frioen REM. Average soil and
landcover parameters are derived from the LRI a@®RB respectively. In total, 12
parameters are required for each subcatchmenthichvé may be specified using the
information described above; the remaining 6 mestdlibrated (Refer to Table 1 for
descriptions of all the parameters). In additione tManning’s n value for the

subcatchment channel section must also be caltbrate

2.3 TOPNET

TOPNET was developed by combining TOPMODEL (Bevemle 1979; Beven et
al., 1995), which is most suited to small watershedth a kinematic wave channel
routing algorithm (Goring, 1994) so as to have aleliog system that can be applied
over large watersheds using smaller sub-basingnnitte large watershed as model
elements (lbbitt and Woods, 2002; Bandaragetial, 2004; Clark et al., 2008).
TOPNET uses TOPMODEL concepts for the represemtatiosub-surface storage
controlling the dynamics of the saturated contiigiarea and baseflow recession. To
form a complete model, potential evapotranspiratioterception (based on the work
of Ibbitt, 1971), infiltration (using a Green-Amptechanism; Mein and Larsen, 1973)
and soil zone components were added. Kinematic wawigng moves the sub-basin
inputs through the stream channel network. Corapiebdel equations are provided

by Clark et al. (2008) and are not repeated here.
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2.4 Calibration via Parameter Multipliers

In distributed rainfall-runoff models, the calibicat problem is greatly complicated by
the large number of model parameters: multiple rhpaeameters for each model
spatial element. Experience suggests that theratisgyvariables typically available to
evaluate model performance, such as streamflonesemay hold insufficient
information to determine all model parameter valy&even, 2001). Various
approaches have been applied to ease this discyepltany studies assume that
several parameters are spatially constant overntbdel domain, using a value
determined either by expert opinion or by direaising values measured at point
locations. Another popular approach is to applgtaos “parameter multipliers” ta-
priori model element parameter values, significantly cetdy the dimensionality of
the calibration problem (Clark et al., 2008). Hoeevdue to the reliance on a
previously determined spatial distribution of mogatameters, there is a danger that
distributed hydrological models calibrated usingegrated data such as catchment
outlet discharge may fail to properly representrdniege of hydrological behaviours.
Poor forecasts would then be produced at interamhment locations (Clark et al.,

2008).

This paper presents a model calibration strategtydfovides correct representation of
internal catchment processes. The calibration ateth applied in the Rangitaiki,
where two sub-regions of the catchment have swamfly different hydrological
characteristics. Our knowledge of catchment geologynot be translated directly
into values for model parameters; instead we seels¢ the qualitative information to

inform our calibration strategy.

Figure 1: Geology of the Rangitaiki River basigsdified according to permeability.

Gauging Locations are marked.

10
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The method used is to classify each Strahler 3catithment as either ‘permeable’ or
‘impermeable’ (refer to Section 2.1; note that ithey catchments, three or more
gualitative categories may be appropriatepriori model parameters are specified in
each individual subcatchment using topographyssaid land-cover data (Table 1).
Two sets of parameter multipliers are then allowede for each category. The
optimisation process allows all multipliers to kailorated simultaneously, such that

the optimum combination of process descriptionhentwo categories is found.

The Rangitaiki provides an ideal test location, the model calibration can be
implemented using only the outlet discharge gawee Teko (Figure 1), but tested
for diverse internal process representation ugdiegwo gauges at Murupara (pumice
subcatchment) and Galatea (greywacke catchmeng.ifternal check allows a test
of model conditioning and parameter identificaticguccess; an important

consideration due to the increased number of pasmesed with this method.

3 MCMC technique (Bayesian Uncertainty Framework)

3.1 Metropolis and Adaptive Metropolis Algorithms

Markov Chain Monte Carlo provides a general appgrosm sampling from the

posterior distribution. Classical Markov Chain thegpecifies the transition kernel
P(x,A) which gives the probability from moving frothe point x to any point in the
set A. A common question is then to determine wérethe chain has an invariant
distribution = which is unchanged by applying the transition kérmhe MCMC

technique reverses the problem: the required postdrstribution is taken as the
invariantz; instead we seek the appropriate transition keP@elA) such that a chain
using this kernel provides samples from the pasterihe Metropolis-Hastings

algorithm, one of the most popular MCMC methodsyvjites a method for finding

11



241 the required transition kernel. At each step of Merkov Chain, a new sample is
242 drawn from a ‘proposal distribution’ q(x,y). Howevthe chain only moves to this
243 sample point according to a ‘probability of mowe= n(y)/ n(x), otherwise it remains

244  at the previous sample point.

245 The choice of proposal distribution q(x,y) has impot consequences for the
246 algorithm behaviour. Where q(x,y) is too diffuse @oes not properly represent
247 interactions between parametess,)s often small and many candidate points are
248 rejected, slowing the chain evolution. Where g(Xg/Xoo compact, the chain will
249 move inefficiently around the search space, causargcular problems with spatially
250 distal optima. The SCEM-UA algorithm (Vrugt al, 2003) seeks to avoid these
251 problems by continually updating the proposal stion using information gained
252 about the nature of the posterior distribution. fmeposal distribution becomes a
253 multivariate normal with mean and covariance stectaken as the sample mean and
254 sample covariance of different ‘complexes’ of psint the high-density region of the
255 sample space. Although it is not proven that th&BaJA algorithm with adaptive
256 proposal distribution provides an ergodic Markova@hwith the correct invariant
257 distribution (Haaricet al, 1999; 2001), experimental investigations haveanshthat

258 the algorithm performs well (Vrugit al, 2003).

259 3.2 Formal Bayesian Likelihood

260 The MCMC method is first carried out using a forrBalyesian Likelihood derivation
261 for the posterior density. Following Thiemaenal. (2001), Vrugtet al. (2003), Bates

262 and Campbell (2001), Marshait al, (2004) and others, we assume that measurement
263 errors can be transformed via a one-to-one tramsfbon to have the exponential
264 power density E£,), and hence the conditional posterior densitylmaderived to be

265 of the form (Box and Tiao, 1973)

12
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2
@ o (Equation 1)

p(z16.0.)= [@} ex -c(B)D,,

Where

e g2 (s )
o= ) O

B is a scale parameter,s the standard deviation of the measurementsriois the

number of timesteps, andt) are the transformed errors.

3.3 Informal Likelihood Measures

Secondly, the MCMC sampling is repeated using &ornmal likelihood measure as
used under the philosophy of the GLUE system (Beaed Binley, 1992). This
technigue also requires the selection of a ‘behaataility threshold’ such that when
the likelihood measure falls below this value, th®del is rejected. Although
typically the choice of threshold has been basedhenexpert judgement of the
modeller as to the error magnitude that is accéptimo the particular application, it
may also be chosen objectively such that a setoptiop of the observed values lie

within the uncertainty bounds (Blasoeeal.,2008; Montanari, 2005).

3.3.1 Nash-Sutcliffe Likelihood

The Nash-Sutcliffe index of model efficiency (NSEquation 1) is one of the most

commonly used descriptors of rainfall-runoff mogdetformance Hall (2001).

NSE =1-Z¢ (Equation 2)

Wheres,? is the error variance ang? is the variance of the observed flow series.

13
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Hence the NSE takes a value of 1 for a perfect inffdgde value of O for a model no
better than the constant mean of the observed @iatgaNash-Sutcliffe index is often
used in the GLUE framework as an informal likelidameasure. In order for it to be
used in SCEM-UA, it must be non-negative and momotdly increasing with

improved performance. To meet the former conditibve, NSE is set to zero when
negative values are returned. The NSE is only usethe posterior density ratio R of

two samples, which can be expressed in the follganm:

1_ O-El
2 2 2
g g -0 K -SS )
R= =2 ;1 = & (Equation 3)
l— 052 Uo - 062 K - SSE
0.2

Where SSEand SSE are the sums of squared errors for the two sangrdK is a

constant.

After initial trials of a MCMC method using thisdex, it was found that the chain
was initially slow to migrate to high performanagions of the sample space. This

was hypothesised to be due to two factors:

the lack of ability to order poor model fits (@& NSE was set to zero wheneuwgt
> 6,2 ) which prevented the chain from gradual moventewards high performance
regions.(1) Poor representation of relative modaifggmance, e.g. a NSE of 0.9
would typically be considered a significant improwent relative to a NSE of 0.8,
however in this method there would be a high prdivalmf move from 0.9 down to

0.8 as the posterior density ratio is 0.8/0.9 90.8

(2) Lack of ability to order poor model fits (d®tNSE was set to zero whenewgt
> 6,2 ) which prevented the chain from gradual moventewards high performance

regions.

14
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In order to address this issue (1), the constantay be adjusted to mimic the effect
of the behavioural threshold and alter the ratia.€r;reducing K causes higher weight
to be placed on small improvements in NSE. To afdresue (2), the exact sum of
squared error scores were retained such that akhfits could be correctly ordered,
even though this information was not used to caleuthe ratio R. A combination of
these two measures This was found to significamtiprove the Markov Chain

efficiency.

3.3.2 Extended Nash-Sutcliffe

Despite the perennial popularity of error variangeasures such as the Nash-Sutcliffe
score, there are occasions when an approach basiee csum-of-squared-errors is
likely to produce counterintuitive results when esssng the fit of modelled and
observed hydrographs. Of particular concern isriiative importance assigned to
discharge magnitude errors versus timing errords la common occurrence for
rainfall-runoff models to incorrectly predict thientng of a flood peak; however due
to the timestep-by-timestep comparison in an SSHyais, timing errors can cause

extremely poor performance measure values (Figure 2

Figure 2: A synthetic example of hydrographs incakha model with minor (2 hour)
timing error is graded as having poorer performahea a model with 40% discharge

error

A generalised version of the Nash-Sutcliffe likelid is suggested in order to address
these concerns, by allowing discrepancies betwbsareed and modelled data points
to be considered as a combination of dischargetiamdg errors. This is achieved by
using the modeller’s judgment on relative importuwot discharge and timing errors

to determine the shape of an oval search windowu(Ei 3). The error at each

15
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timestep is defined as the minimum distance froendbal centre to the point on the
oval boundary which intersects the opposing digghacurve. The squared error
values are then summed and substituted directly ihé standard Nash-Sutcliffe
equation. Standard NS appears as a special cdse e Extended NS when timing
errors are considered infinitely worse than disghaerrors and the search oval
becomes a vertical line. A procedural descriptidncalculation of the new error

measure can be found in Appendix A.

Figure 3: Error magnitudes for the Extended Nasttiie are found using an oval

search window.

4 Results

4.1 Flow prediction
Formal Bayesian Likelihood

Model calibration was carried out using data frdra year 1998, using the MCMC
method described in Section 3.1 and a formal liegld measure based on an
exponential error distribution (Section 3.2). Texrgllel Markov Chains are run for a
total of 5000 iterations; the first 1000 iteraticare discarded as a ‘burn-in’ period for
the chain. Gelman-Rubin convergence statisticscaleulated to check the Markov
Chain has converged to the stationary distributigresenting the model posterior

distribution.

Figure 4: 90% Uncertainty bounds on flow at Te Takong formal likelihood

measure to control MCMC search algorithm.
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The resulting uncertainty bounds on the flow hirsicae shown in Figure 4; note that
the bounds are sufficiently narrow to be hardlyibles as distinct from the median

calibrated prediction.

Informal Likelihood

The model calibration was repeated using the samud&d¥ Chain set-up, but using in
turn the Nash-Sutcliffe and Extended Nash-Sutclifileelihood measures. The
resulting flow hindcasts are shown in Figures 5 &naespectively. It is clear that
using an informal likelihood measure suggests amgreater uncertainty in the flow

forecast, with uncertainties greatest during péak periods.

Figure 5: 90% Uncertainty bounds on flow at Te Teking Nash-Sutcliffe informal

likelihood measure to control MCMC search algorithm

Figure 6: 90% Uncertainty bounds on flow at Te Tekmng Extended Nash-Sutcliffe

informal likelihood measure to control MCMC seagdgorithm.

A study of the Markov Chain behaviour can be usegrovide additional information
about the model response surface, and the suctelse MCMC algorithm in fully
exploring the surface (Vrugtt al, 2003). Figures 7 and 8 allow a comparison of the
sequential values of the Topmodel f parameter wheimg formal vs. informal
likelihood measures. Figure 7 shows that in the cdthe formal likelihood measure,
the distribution quickly collapses to a single opim, and the remainder of the
parameter space is not explored. In contrast, Eigtirshows that the informal
likelihood measure produces a continuing wide disgleof behavioural parameter
values, and therefore a flatter response surfatkerOmodel parameters showed

similar trends. It is also interesting to note igufe 8 that there is a distinct higher-

17
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density band for f in the range [0, 0.1], couplathva more disperse band in the range
[0.2, 0.6]. This suggests the possibility of a adal distribution for f, with only the
more peaked lower optimum found by the formal likebd measure: this issue is

discussed more fully in the following section.

Figure 7: Topmodel ‘f' parameter value over sucsessterations of the MCMC

search algorithm using formal Bayesian (exponeetiadr model) likelihood measure.

Figure 8: Topmodel ‘f' parameter value over sucsessterations of the MCMC

search algorithm using informal ‘Extended Nash-#téctlikelihood measure.

4.2 Calibration Constraints using Qualitative Geological Information
Internal Catchment Flow Gauging

By using the informal likelihood measure (Sectioh)4he Markov Chain revealed a
dispersed posterior response surface, with thelphigsof dual optima suggested by
distinct bands in the parameter mixing diagramsmnwhging the informal Extended
Nash-Sutcliffe likelihood measure (Figure 8). Gitba division of the catchment into
dual ‘permeable’ and ‘impermeable’ areas, it seenhegical that these two

phenomena might be related. The issue was invéstigarther using flow data from

the two internal catchment gauges which had novipusly been used in model

calibration (Figure 9).

Figure 9: Comparison of Internal Flow predictions ®&lurupara (pumice
subcatchment) and Galatea (greywacke subcatchrnoentyy formal and informal

likelihood measures.
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Striking differences were seen here between thendbrand informal likelihood

results. The informal likelihood results show awkarge spread in possible internal
flow distribution in the catchment, where the mayjorof the quickflow may be

attributed to either pumice or greywacke areasufeig 9C/9D). In reality, the pumice
subcatchment provides a steady baseflow, with thgwpacke catchment providing a
peaked response to storm events (refer to Sectihn—2however the unconstrained
model calibration may assign ‘pumice’ vs. ‘greyweackharacteristics to the sub-
catchments in either order. In contrast, the catibn using a formal likelihood

measure has collapsed to a single parameter atlacéfigures 9A/9B) which has
incorrectly classified the subcatchments and ireatffassigned ‘greywacke-type’

characteristics to the pumice sub-catchment, acelwersa.

Constrained Calibration

It is natural to ask whether the calibration pragedmay be constrained such that
Markov Chains converge to the correct optimum stheh flow characteristics are
correctly assigned to the two geologically distisab-catchments. Although in the
case of the Rangitaiki this could be achieved usmgti-criteria calibration with
additional data from the internal flow gauges, hexe are interested in a strategy
using only the catchment outlet flow gauge, sudt the methodology would be

transferable to other catchments with a single fiauge.

The constraint process aimed to subdivide the patermspace in the simplest
possible way into volumes representing ‘pumice'greywacke’ behaviour. In order
to be considered as constraints, parameters hsatitdy the dual criteria of having a

physical interpretation, such that characteristoslld be accurately assigned, and
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showing good discrimination between model realseti representing the two
response types. The parameters that achieved this () Topmodel f parameter -
related to depth of soil profile and aquifer respotime (2)A8; — effective drained

porosity (3)A6, — root zone storage.

Multiplier ranges were defined for each of thessdolaon separation of the observed
marginal distribution by behavioural group. This swachieved by physical
interpretation of the bi-modal parameter distribog, and resulting predicted flows,
in the unconstrained calibration (Figure 8). Prasioresearch in New Zealand
demonstrates significant behavioural differencesvéen pumice vs. non-volcanic
regions, with pumice regions characterized by lofleod peaks (McKerchar and
Pearson, 1989) and higher yields (Hutchinson, 19Bl0¢ bi-modal form is therefore
compatible with an expectation that parameter mlidtis for Topmodel “f",A6; and
A6, may need to be different for the two geology tyfeesake targeted corrections to
the default values. The two modes of the paramégribution are classified as
providing ‘Pumice-type’ and ‘Greywacke-type’ behawi respectively. The resulting
marginal distributions are shown in Figure 10: Tr@pmodel f parameter is seen to
show non-intersecting ranges for the two parametets the\0; andA6, parameters
show defined ranges for the ‘greywacke-type’ patanseonly. Other parameters (not

shown) did not show good discrimination betweenavedural types.

Figure 10: Multiplier ranges categorised by beharab type for parameters: (a)
Topmodel f (b)AO; effective drained porosity (@0, root zone storage. These plots

were used to define constrained parameter ranges

The calibration was re-run using appropriate patamanges for each sub-catchment
according to its geological classification. An infal likelihood measure was used as

this is consistent with the analysis suggestingpiiesence of behavioural simulations

20



449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

within the constrained range: the formal likelihaneasure in contrast rejected at the
90% level all simulations within the new constrainThe Extended Nash-Sutcliffe
measure was used in order to allow proper condidaraf both magnitude and

timing errors.

Figure 11: Internal Flow predictions at Muruparar(pce subcatchment) and Galatea
(greywacke subcatchment) using informal likelihaneasures under a constrained

calibration procedure.

The results for flow predictions at the two intdroatchment flow gauges are shown
in Figure 11. These results show accurate flowiptied in each subcatchment with
substantially reduced uncertainty compared to theonstrained calibration. We
therefore conclude that imposing constraints on 3hgarameters fA6;, AB, was

sufficient to guide the MCMC algorithm to the carreptimum.

5 Discussion and Conclusions

Where a catchment has sub-regions of contrastimgological behaviour, such as
those caused by different geologies, there is getathat distributed hydrological
models calibrated using integrated data such aficent outlet discharge may fail to
properly represent the range of hydrological behid. Due to a wide range of
possible distributions of flow within different brehes of the catchment, the response
surface representing the posterior distribution imaye multiple optima and flat areas
characteristic of complex equifinal behaviour. ¢t therefore important to use a
calibration procedure which is capable of fully wapmg and describing the

behavioural regions of the parameter space.
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MCMC algorithms such as the Metropolis-Hastings aisd variants are popular
choices for efficient exploration of complex respersurfaces, however this paper has
shown that the formal likelihood measures which ga@cally used within such
algorithms may prevent the Markov Chain from fulxploring regions of the
parameter space which might be considered behaliovnen assessed using a
standard performance measure such as the NashH8usthtistic. Such formal
Bayesian approaches assume that the model strustaoerect, and therefore do not
account for cases where the parameters compensatevdaknesses in model
structure. This may lead to cases where, althoaganpeter uncertainty is small, the
optimised parameter values are in fact ‘wrongslagwn in Section 4.1 in the form of

extremely poor flow predictions at internal locaiso

By using instead an informal likelihood measure, ateempt to capture the total
uncertainty in flow predictions due a range of kmoand unknown error sources. This
methodology results in a greater volume of the ipatar space being sampled, thus
revealing more complete information about possihldtiple optima or flat areas of
the response surface. Of course, the posteriorapility distribution to be sampled
must reflect the hydrologist’s best understandihthe errors present in the modeling
process; where these can be described very exafilynal likelihood measure would
be a more appropriate choice and would better septethe information on posterior
parameter distribution which could be derived fritta observed data. Unfortunately,
however, it may often be the case that a formalillood measure which makes
strong assumptions about model error distributienused under conditions of

incomplete information on error form.

Finally, this paper has shown how the additiondbnmation gained using an

exploration of the response surface using an indbitikelihood measure can be used
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to improve the calibration process in order to ®te Markov Chain trajectory on
regions of the parameter space reflecting our tpisde knowledge of system
behaviour. The ability to incorporate qualitative ®oft’ data into calibration
algorithms is very valuable but may be more effextyi deployed in conjunction with
a description of the response surface which idestithreshold or boundaries between

different response types.
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Appendix A

Algorithm for Calculation of Extended Nash-Sutcliffe Performance Measure

1. Defineer as the timing error (e.g. in hours) which is cdesed ‘equally bad’ as a
discharge error of 1 unit (typically 1°s1), andt the maximum allowable timing

error.
For each timestep (t) in turn:
2. Identify the greater of the two discharge seridséoved, modelled) at time t:
Qu(t) = MaX{Quus(t), Quoa (1)}
3. Create a vector of timesteps within the allowabteetwindow:
T=[t-r,. ,t-At t,t+At . t+7]
4. Create a vector of discharges corresponding tethe® steps:

Q_ - { [Qobs(t - T)’ ’Qobs(t)""’Qobs(t + T)] where Q. (t) 2 Qobs(t)
" |[Quaalt = 7). Quo(t) - Quoalt +7)] - Where Quuy(t) > Quea t)

5. Calculate the squared error vector relating togkitsof time steps:

SE= (t _sz +H0)-Qf

T

6. Minimise the squared error over the time window:
SquaredError (t) = min{SE

Having calculated the squared error for each tigpesteturn to the standard Nash-

Sutcliffe method:
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7. Calculate the error variance

o’ = ni—l " SquaredError (t)

&

8. Calculated the Extended Nash-Sutcliffe Score:

o,’
o 2

0o

ExtendedNSE=1-

wheres, is the variance of the observed flow series.

Note that at each timestep the oval search windoeentred on the greater of the
modelled and observed discharges: this avoids itii@tien where narrow, high

discharge peaks which are not predicted correctynat accounted for in the error
calculation as the search window picks up low fldxe$ore or after these events. The
reverse situation with a sudden trough in dischéagels would be extremely unusual

in either a modelled or observed flow series.
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669

670 Figure 1: Geology of the Rangitaiki River basimsdified according to permeability.
671 Gauging Locations are marked.
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674 Figure 2: A synthetic example of hydrographs inakhé model with minor (2 hour)
675 timing error is graded as having poorer performahae a model with 40% discharge
676 error
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679 Figure 3: Search window to determine ‘distanceiMgetn observed and predicted
680 flow values under the Extended Nash Sutcliffe ikebd measure.
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683 Figure 4: 90% Uncertainty bounds on flow at Te Takmmg formal likelihood
684 measure to control MCMC search algorithm. Note thatbounds are sufficiently
685 narrow to be hardly visible as distinct from thediam calibrated prediction.
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688 Figure 5: 90% Uncertainty bounds on flow at Te Taking Nash-Sutcliffe informal
689 likelihood measure to control MCMC search algorithm
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692 Figure 6: 90% Uncertainty bounds on flow at Te Takong Extended Nash-Sutcliffe
693 informal likelihood measure to control MCMC seagdgorithm.
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696 Figure 7: Topmodel ‘f' parameter value over sucioesterations of the MCMC
697 search algorithm using formal Bayesian (exponestiadr model) likelihood measure
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700 Figure 8: Topmodel ‘T parameter value over sucioesterations of the MCMC
701 search algorithm using informal ‘Extended Nash-Hfteclikelihood measure
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704  Figure 9: Comparison of Internal Flow predictiond/mrupara (pumice
705 subcatchment) and Galatea (greywacke subcatchomging) formal and informal
706 likelihood measures
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Figure 10: Multiplier ranges categorised by behaxabtype for parameters:

(a) Topmodel f (b6, effective drained porosity (&0.root zone storage. These
plots were used to define constrained parametgesan
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Figure 11: Internal Flow predictions at Muruparar(pce subcatchment) and Galatea
(greywacke subcatchment) using informal likelihaoeasures under a constrained

calibration procedure
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Table 1

TOPNET model parameters

Name

Estimation

Sub-basin Parameters

f(m7

Saturated store
Sensitivity

Constant = 12.4
(multiplier calibrated)

Ko (m/h) Surface saturated Constant = 0.01
hydraulic conductivity (multiplier calibrated)
AB; Drainable porosity From soils
(multiplier calibrated)
AB, Plant available porosity From soils
(multiplier calibrated)
D (m) Depth of soil zone Depth¥ 1=f from soils
(multiplier calibrated)
C Soil zone drainage 1
sensitivity
¢ (m) Wetting front suction From soils
V (m/s) Overland flow velocity Constant = 0.1
(multiplier calibrated)
CC (m) Canopy capacity From vegetation
Cr Intercepted evaporation From vegetation
enhancement
A Albedo From vegetation
Lapse {C/m) Lapse rate 0.0065
Channel parameters
N Mannings n Constant = 0.024

(multiplier calibrated)

A Hydraulic geometry 0.00011
constant

B Hydraulic geometry 0.518
exponent

Statevariables Initialization

z'(m) Average depth to Saturated zone drainage
water table matches initial
observed flow
SR (m) Soil zone storage 0.02
CV (m) Canopy storage 0.0005
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