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Abstract 13 

In order to quantify total error affecting hydrological models and predictions, we must 14 
explicitly recognise errors in input data, model structure, model parameters and 15 
validation data. This paper tackles the last of these: errors in discharge measurements 16 
used to calibrate a rainfall-runoff model, caused by stage-discharge rating curve 17 
uncertainty. This uncertainty may be due to several combined sources, including 18 
errors in stage and velocity measurements during individual gaugings, assumptions 19 
regarding a particular form of stage-discharge relationship, extrapolation of the stage-20 
discharge relationship beyond the maximum gauging, and cross-section change due to 21 
vegetation growth and/or bed movement.  22 

A methodology is presented to systematically assess and quantify the uncertainty in 23 
discharge measurements due to all of these sources. For a given stage measurement, a 24 
complete PDF of true discharge is estimated. Consequently new model calibration 25 
techniques can be introduced to explicitly account for the discharge error distribution. 26 
The method is demonstrated for a gravel-bed river in New Zealand, where all the 27 
above uncertainty sources can be identified, including significant uncertainty in cross-28 
section form due to scour and re-deposition of sediment. Results show that rigorous 29 
consideration of uncertainty in flow data results in significant improvement of the 30 
model’s ability to predict the observed flow. 31 

 32 

1. Introduction 33 

Conceptual hydrological models are important tools for understanding and predicting 34 
catchment responses to measured or modelled climate and land-use scenarios. 35 
However, the necessary gross simplifications which occur when translating a complex 36 
perceptual model of catchment behaviour into a conceptual model lead to recognised 37 
model structural omissions and model parameters which cannot be directly related to 38 
measured physical properties (Beven, 2006). Calibration methods must therefore be 39 
used to identify model parameters, based on measured data. The most commonly used 40 
calibration methods, based on minimisation of squared errors, make the implicit 41 
assumption that the only source of error is a Gaussian ‘measurement error’. In truth, 42 
there are many different sources of error including uncertainties in input data (e.g. 43 
precipitation, temperature), calibration/validation data (e.g. streamflow), model 44 
structure and parameters. Where the incidence and distribution of each of these error 45 
sources is not explicitly recognised (a difficult task in very many cases; Beven et al, 46 
2008), the calibration process may yield biased parameter estimates (e.g. Kavetski et 47 
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al., 2002a,b; Thyer et al., 2009; Vrugt et al., 2008). This in turn leads to biased model 48 
predictions, and a loss of the potential opportunity to learn more about model error 49 
sources and methods to mitigate these.  50 

Our aim in designing model calibration techniques must therefore be to properly 51 
account for each uncertainty source and appropriately quantify or parameterise the 52 
resulting error distribution, which may be non-stationary in time (e.g. see Freer et al., 53 
2004). This paper takes one step towards that goal, by presenting a methodology to 54 
explicitly quantify one of these uncertainty sources: namely errors in the computed 55 
discharge series used to calibrate a rainfall-runoff model, caused by uncertainty in the 56 
rating curve used to transform continuously measured stage data into discharge. This 57 
uncertainty in turn derives from a combination of sources, including errors in stage 58 
and velocity measurements during gaugings, assumption of a particular form of stage-59 
discharge relationship, extrapolation of the stage-discharge relationship beyond the 60 
maximum gauging, and cross-section change due to vegetation growth or bed 61 
movement. This paper demonstrates how, using knowledge of each of these factors, a 62 
complete PDF of true discharge may be estimated for a given measured stage value.  63 

Several previous studies have investigated methods of including uncertainties in the 64 
stage-discharge relationship, from the first to suggest a statistical framework for those 65 
uncertainties (Venetis, 1970) to many modern studies (Di Baldassarre and Montanari, 66 
2009; Krueger et al, 2009; Liu et al., 2009; Moyeed and Clark, 2005; Pappenberger et 67 
al., 2006; Petersen-Øverleir, 2004; Reitan and Petersen-Øverleir 2006; 2009). These 68 
all rely on fitting a single set of gaugings (i.e. measured stage/discharge points) using 69 
a single rating curve of specified form, and investigate the uncertainty in the 70 
parameters of that rating curve. For example, Pappenberger et al. (2006) use eight 71 
data points to fit a power-law curve (Manning equation formulation), and hence 72 
determine an ‘envelope curve’: upper and lower acceptable limits on discharge 73 
prediction. Krueger (2009) fits stage-discharge relationships to two weirs at 74 
experimental field sites, with the power-law form and bed level defined by the 75 
appropriate weir equation, and again models are scored as having ‘perfect fit’ within 76 
the resulting envelope curve, with linear decline in performance measure outside of 77 
this. 78 

Other studies have considered the possible effects of uncertainty in the stage-79 
discharge relationship on calibration of, and predictions from, rainfall-runoff models. 80 
Aronica et al. (2006) calibrated a conceptual linear-nonlinear rainfall-runoff model 81 
using upper and lower bounds for multipliers of a rating curve, and demonstrated the 82 
resulting change in prediction limits. Montanari (2004) simulated uncertainty in the 83 
measured discharge by adding Gaussian errors (bounds calculated by consideration of 84 
uncertainty sources). Optimised parameter sets using different error realisations were 85 
then compared to show induced parameter uncertainty. However, these two studies 86 
are both restricted to sequential consideration of alternative rating curves, as opposed 87 
to admission of uncertainty during model calibration.  88 

This paper sets out to build on these previous methods in three ways. Firstly to extend 89 
the ‘envelope curve’ method suitability to rivers where there is significant uncertainty 90 
in cross-section form due to scour and re-deposition of sediment, and hence sequential 91 
gauging measurements may not all belong to a single rating curve. Secondly to 92 
produce an explicit PDF of discharge for any given stage, as opposed to upper and 93 
lower limits on acceptable discharge. Lastly, to demonstrate how this empirical 94 
discharge PDF can be used to form a likelihood function, and used within a Markov 95 
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 3 

Chain Monte Carlo method for parameter calibration with full consideration of 96 
uncertainty in the stage-discharge relationship. 97 

2. Catchment 98 

The method is demonstrated for a gravel-bed river in New Zealand, the Wairau River 99 
in the northern South Island, New Zealand (Figure 1).  The Wairau drains an area of 100 
3,825 km2, and elevations in the catchment range from sea level to 2,309 m.  101 
Vegetation in the Wairau includes pasture throughout the southern hills, native ever-102 
green beech forest in the mountains to the west and southwest, a mix of native beech 103 
forest and exotic pine forest on the northern ranges, and vineyards on the Wairau 104 
plains (Figure 1).  The Wairau River is a braided gravel-bed river that is 105 
approximately 100 m wide in the lower reaches.  Rainfall in the Wairau is lowest over 106 
the Wairau plains and southern hills (600 mm / year) and highest over the western 107 
ranges (5,000 mm / year).  There is a small hydropower scheme in the middle reaches 108 
of the Wairau and some irrigation on the Wairau plains, but these have only minor 109 
effects on catchment streamflow. 110 
 111 

Figure 1.  The Wairau River basin, showing (left) location; (middle) elevation, digital 112 
river network, location of discharge gauging sites (circles) and rainfall stations 113 
(triangles); and (right) land cover.  For TopNet simulations the Wairau basin is 114 
disaggregated into 380 sub-catchments, linked with the digital river network (middle). 115 
Figure reproduced from Clark et al. (2008). 116 

 117 

The Wairau is managed for water allocation and flood mitigation purposes; these 118 
applications require long and short term estimates of discharge data statistics 119 
(Williman, 1995; Rae and Wadsworth, 1990; Rae, 1987). In addition to the input and 120 
model structural uncertainty which are usually assumed to dominate more stable river 121 
systems (e.g. Kavetski et al., 2002a,b), scour and re-deposition of the bed gravels (and 122 
additionally anthropogenic gravel extraction) are known to introduce additional errors 123 
into models of the system. Current rainfall-runoff models in use in the catchment use 124 
a deterministic rating curve established from gauging data and adjusted over time to 125 
include new data points and discard older points which are no longer deemed 126 
representative (Ibbitt and Wild, 2005). This is problematic in the case of flood-stage 127 
gaugings which are rarely collected. The process relies on expert judgement to 128 
determine the frequency and extent to which the curve should be updated (Whalley et 129 
al., 2001), and implicitly on an assessment of the balance between gauging errors and 130 
rating curve change. The Wairau therefore presents a good example of a catchment 131 
where the assumption of zero uncertainty in the rating curve is unjustified and a 132 
rainfall-runoff model calibration technique that is able to account for rating curve 133 
estimation errors would be a valuable tool. 134 

3. Data and model 135 

Flow Data 136 

Flow gauging has been undertaken at various locations on the Wairau river since 137 
1937, using stage recorders backed up by gaugings to determine the rating curve (Rae, 138 
1987). The catchment outlet site at Barnett’s Bank is used in this study, and represents 139 
the longest and most reliable record for the Wairau. Despite this, there is considerable 140 
scatter in the stage-discharge relationship: refer to Figure 2 for a photograph of the 141 
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gauged cross-section and Figure 4 which shows individual gaugings.  This scatter in 142 
part represents the difficulties associated with flow gauging in braided, gravel-bed 143 
rivers. For the majority of its length the Wairau has a mobile gravel bed where 144 
frequent movement of gravel changes the cross-section of the river and determines the 145 
relative flow in each of the river braids. This includes the Barnett’s Bank gauging site 146 
where records show that between 2005 and 2008 the river thalweg switched from the 147 
braid nearest the true left bank where the stage recorder is located, to the true right 148 
bank, and back again. The impact of river bed movement at this location outweighs 149 
any hysteresis effects which are minor due to the relatively steep gradient of the 150 
Wairau. The site is also used for gravel extraction which alters the channel cross-151 
section.  152 

Figure 2: Photograph of the gauged cross-section at Barnett’s Bank  153 

Frequent gaugings go some way to identifying such changes in flow regime and hence 154 
in the required rating curve, however undertaking a new set of gaugings at a full range 155 
of river flows is an extended process which may not keep pace with river bed 156 
movement. Gaugings are taken by wading at low flows (stage height less than 3m on 157 
the gauge) and the exact cross-section used varies depending on braid locations to 158 
ensure the safety of the field team. At high flows gaugings are taken from the road 159 
bridge crossing the Wairau close to the gauge, and hence may record cross-section 160 
changes due to scour around the bridge piers. For flood flows (stage heights over 5m), 161 
ADCP gauging from a jet-boat is the preferred method, although gaugings from the 162 
bridge are still used in some cases. It is particularly hard to identify ratings for high 163 
flow events where scour and fill is continuously occurring during the event (the 164 
effects of this can be seen as ‘sawtooth’ patterns in stage recordings relating to waves 165 
of gravel passing the recorder, and are also recorded as a non-zero bed velocity during 166 
ADCP (Acoustic Doppler Current Profiler) gaugings; not shown). Clearly multiple 167 
gaugings would be required to fully characterise the uncertainty at flood flows; 168 
however practical constraints mean that a limited number of such gaugings can be 169 
collected. 170 

 171 

Model 172 

The distributed rainfall-runoff model TopNet was used in this study to provide flow 173 
predictions in the Wairau. TopNet was developed by combining TOPMODEL (Beven 174 
and Kirkby, 1979; Beven et al., 1995), which is most suited to small watersheds, with 175 
a kinematic wave channel routing algorithm (Goring, 1994) so as to have a modeling 176 
system that can be applied over large watersheds, using smaller sub-basins as model 177 
elements (Ibbitt and Woods, 2002; Bandaragoda et al., 2004; Clark et al., 2008). 178 
TopNet uses TopModel concepts for the representation of sub-surface storage 179 
controlling the dynamics of the saturated contributing area and baseflow recession, 180 
with additional components for evapotranspiration, interception (based on the work of 181 
Ibbitt, 1971), infiltration (using a Green-Ampt mechanism; Mein and Larsen, 1973) 182 
and soil zone. Kinematic wave routing moves the sub-basin inputs through the stream 183 
channel network.  Complete model equations are provided by Clark et al. (2008). 184 

The model uses input precipitation and climate data from Tait et al. (2006) who 185 
interpolated data from over 500 climate stations in New Zealand across a regular 186 
0.05° latitude-longitude grid (approximately 5 km * 5 km), including data from 12 187 
climate stations within the Wairau catchment. These data are provided at daily time 188 
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 5 

steps, and are disaggregated to hourly data before use in the model, based on an 189 
interpolation of the sub-daily distribution at the climate stations. In this study we use 190 
data from the winter months of 2004 and 2006, in both cases including flood peaks 191 
where discharge exceeded the mean annual flood. 192 

To apply TopNet in the Wairau, TopNet requires information on catchment 193 
topography, physical and hydrological properties. This information is available from a 194 
variety of sources. The New Zealand River Environment Classification (REC; Snelder 195 
and Biggs, 2002) includes a digital network of approximately 600,000 river reaches 196 
and related sub-basins for New Zealand. A 30 m Digital Elevation Model (DEM) 197 
provides topographic properties. Land cover and soil data is available from the New 198 
Zealand Land Cover Database (LCDB) and the New Zealand Land Resource 199 
Inventory (LRI; Newsome et al., 2000). The river basin was first disaggregated into 200 
individual sub-catchments, each one of which becomes a model element. We use the 201 
Strahler 3 sub-catchments from the REC, which have a typical size of 10 km2, and 202 
split the Wairau Basin into 380 elements. The REC also provides the geometrical 203 
parameters of the river network. Frequency distributions of the topographic wetness 204 
index and distance to streams are calculated from the DEM. The wetness index is 205 

formulated as 







βtan

ln
a

 where a is the contributing upstream area and β is surface 206 

slope (Beven and Kirkby, 1979). Average soil and landcover parameters are derived 207 
from the LRI and LCDB respectively. In total, 12 parameters are required for each 208 
sub-catchment, of which 6 may be specified using the information described above; 209 
the remaining 6 must be calibrated (Refer to Table 1 for descriptions of all the 210 
parameters). In addition, the Manning’s n value for the sub-catchment channel section 211 
must also be calibrated. 212 

 213 

4. Uncertainty Quantification 214 

As previously described, discharge is derived at Barnett’s Bank using a rating curve to 215 
transform stage measurements into discharge estimates (Ibbitt and Wild, 2005). In 216 
order to quantify discharge uncertainty, we use the concept of an ‘uncertain rating 217 
curve’ which decomposes into a PDF of discharge for any given stage measurement. 218 
To create the uncertain rating curve, we account for the three components of 219 
uncertainty that were considered most important at this site: 220 

1. Lack of knowledge as to the current cross-section state due chiefly to bed 221 
movement, but also possibly affected by seasonal growth of vegetation. 222 

2. Uncertainty in individual gauging measurements, via inaccuracies of stage and 223 
velocity measurement, and interpolation between point velocity 224 
measurements. 225 

3. Uncertainty as to the correct form of the rating curve, leading to its 226 
approximation by a functional type, e.g. power law. 227 

We now explore each of these components in more detail to define our methodology: 228 

Cross-Section State 229 

The first component relates to the scatter in the set of {stage, discharge} data points. 230 
These data represent snapshots of river state during the continuous process of bed 231 
movement and channel cross-section change, and hence cannot be lumped into a 232 
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 6 

single rating curve. Instead we assume that the most significant changes in bed form 233 
occur during flood events, and hence divide the complete gauging series into coherent 234 
sets between major events, each of which represents a more stable phase in the bed 235 
evolution. We used a 0.5-year return period as the threshold to define a ‘major event’; 236 
however this measure is subjective, and should be set with knowledge of the 237 
individual gauging site. These gauging sets are each assumed to represent a possible 238 
state of the current cross-section, and hence are each used to construct possible rating 239 
curves. Low flows may be additionally affected by sedimentation between floods but 240 
this would be captured by a spread of gaugings and hence higher uncertainty within 241 
the gauging set. The number of individual points in each gauging set varies from 4 to 242 
12, depending on the length of the stable phase and the frequency of gauging during 243 
that time (refer to Figure 4 which differentiates the gauging sets). Phases where no 244 
high stage measurement is made contribute to greater uncertainty at high flows; this is 245 
in contrast to the previous deterministic rating curves used at Barnett’s Bank which 246 
were all forced through the highest recorded gauging. These greater uncertainties are 247 
retained when the uncertain rating curve is constructed, accounting for the component 248 
of uncertainty relating to rating curve extrapolation. Similarly, the uncertainty 249 
component relating to shifts in hydraulic geometry is captured through the multiple 250 
low-flow gauging sets. When making future predictions, no distinction is made as to 251 
which gauging set is most representative, as it is recognized that rapid changes in bed 252 
form due to gravel transportation during a flood event may significantly alter the cross 253 
section in a short period of time. In rivers where bed form changes only over long 254 
timescales, it might be more appropriate to weight recent gaugings more highly than 255 
past gaugings. 256 

Uncertainty in gauging measurement and rating curve form 257 

These two points are considered together. To account for the uncertainty in gauging 258 
measurements and hence rating curve shape, our method builds on the idea of a fuzzy 259 
rating curve developed by Pappenberger et al. (2006) and Krueger et al. (2009). We 260 
accept the common assumption that the gauging discharge measurements are 261 
corrupted by an error of size proportional to the discharge magnitude, here 262 
approximated as a truncated Gaussian distribution centred on the true discharge 263 
(Equation 1) 264 

( )
σ
σσ

3Q - Q  where0 

3Q - Q  where , QN 
 Q

TrueMeasured

TrueMeasured

2

True

Measured ≥=

<∝
  (Eq 1) 265 

Where QMeasured is the measured discharge, QTrue is the true discharge. The variance of 266 
the distribution is chosen so as to give a 95% confidence interval at 8% of the true 267 
discharge, a typical value for discharge uncertainty which is individually calculated 268 
for each Barnett’s Bank gauging by the hydrometrists taking into account equipment 269 

and method accuracy. Hence we set the standard deviation σ = 0.04 * QTrue. It is 270 
preferable to set the variance according to site-based knowledge, as here, however 271 
alternatively standard values could be used such as those provided by Pelletier (1988) 272 
or Whalley (2001) which are comparable with the value used here. 273 

The distribution is truncated at 3σ (12%) error, which captures > 99% of the 274 
distribution while avoiding very large error values which are not considered 275 
reasonable (the 12% bound only represents possible error for a single gauging and 276 
does not include error due to rating curve interpolation/extrapolation or cross section 277 
change). Given this error form, the probability distribution for QTrue can then be 278 
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 7 

calculated numerically for a given gauging measurement of QMeasured; this results in a 279 
skewed distribution due to the assumption that error magnitude increases with 280 
discharge. Accepting the common assumption that stage error is invariable with stage 281 
value, and again using typical uncertainty values recorded for Barnett’s Bank 282 
gaugings by the hydrometrists on-site, true stage is modelled using a Gaussian error 283 
centred on the measured stage and with standard deviation of 0.02m. As with 284 
discharge uncertainty, this value is comparable or conservative with respect to 285 
previous studies (Van der Made, 1982; Petersen-Øverleir and Reitan, 2005). 286 

Given error PDFs for discharge and stage, random samples may be drawn from these 287 
distributions to give many possible pairs of ‘true discharge’ and ‘true stage’ for each 288 
gauging point in the rating set. Using a Monte Carlo approach, multiple sample sets 289 
are taken to approximate the true joint distribution of the gauging points. Each sample 290 
set now becomes the basis for fitting of a rating curve.  291 

To fit the rating curve, a variation on the method proposed by Krueger et al. (2009) is 292 
used. The method is illustrated in Figure 3 and relies on using each combination of 293 
three sample points in the set in turn (allowing exact fitting via a three-parameter 294 
power law) to produce multiple possible rating curves: 295 

1. Loop through all combinations of three sample points. 296 

2. Fit the power law equation Q = a (h + b)
c exactly to these three points (this is 297 

solved numerically). 298 

3. Retain fitted rating if the curve intersects the error PDFs for all remaining 299 
sample points in the gauging set other than the three chosen in step 1. 300 

Figure 3: Illustration of the proposed Monte Carlo sampling method used to fit 301 
possible rating curves. (1) Select three points from the gauging set (2) Take a random 302 

sample of true stage/discharge (3) Fit the power law rating curve and check 303 
consistency with remaining points. (4) Repeat for multiple samples.  304 

Through this approach, we limit the individual rating curves to a single-segment, 305 
power law form. This low-complexity approach is commensurate with the often 306 
limited number of sample points in a single sample set. Were a denser set of gauging 307 
measurements available, formulations such as alternative models or multi-segment 308 
curves could be considered. If prior information were available as to the expected 309 
rating curve parameter values, it could also be included here via a Bayesian approach. 310 
Although the individual curve form is thus restricted, the final uncertain rating curve 311 
may take a free and un-parameterised shape as it combines thousands of individual 312 
curves (refer to following section and Figure 4 for an example), accounting for 313 
uncertainty in rating curve form.  314 

Constructing the uncertain rating curve 315 

The fitted power law curves for each sample set and for each gauging set are 316 
combined to produce the uncertain rating curve, as follows. First the rating curves are 317 
weighted such that each gauging set has equal total weight (as previously stated, no 318 
distinction is made as to which gauging set is most representative) and all rating 319 
curves within the same gauging set have equal weight. Then, for each value of stage 320 
for which discharge estimation is required, the discharge values given by all the rating 321 
curves are ordered. The constraint b > -h is enforced for the rating curve parameters, 322 
i.e. gaugings that were taken at a higher bed level where the gauged height h is lower 323 
than the current bed are ignored. There are approximately 105 individual rating 324 
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curves. Finally, the weighted discharge values combine to provide a CDF for 325 
discharge. The form of the CDF hence represents the likelihood of each discharge 326 
value based on the distribution of the Monte Carlo samples.  327 

5.  Results of Rating Curve Estimation 328 

The method described was used to estimate the form of the uncertain rating curve for 329 
the Wairau catchment outlet stage recorder at Barnett’s Bank. The results are 330 
summarised in Figure 4, which shows quantiles of the estimated true discharge, 331 
plotted against the recorded stage. 332 

Figure 4: Quantiles of estimated discharge at Barnett’s Bank gauging site at the 333 
catchment outlet of the Wairau River, shown in linear (A) and log (B) space. Markers 334 

show gauging points used, the symbols identifying discrete gauging sets.  335 

The results show that the combination of gauging sets gives a unique uncertain rating 336 
curve with a form tailored to the Barnetts Bank site. For example the log space plot 337 
(B) shows two preferred states at low flows, probably corresponding to different river 338 
braids carrying the flow thalweg. At flood flows uncertainty is high due to the limited 339 

number of gaugings, up to ±23% of the median discharge. 340 

6. Model Calibration 341 

6.1 Evaluation Measure 342 

In order to assess model flow predictions against uncertain validation data, a 343 
performance measure must be chosen which reflects the discharge uncertainty in 344 
additional to parametric and structural uncertainty. Previous studies have used a 345 
variety of methods to do this. Pappenberger and Beven (2004) use a ‘multicomponent 346 
mapping’ technique where an expected observation error structure is used to define 347 
membership values according to the distance between observed and modelled 348 
hydrographs. Krueger et al. (2009) define a timestep-based performance measure 349 
which scores any model prediction within the discharge envelope curve (min/max 350 
limits of the uncertainty estimation) as an exact match, and otherwise calculates the 351 
ratio of the distance between the prediction and the envelope curve to the width of the 352 
envelope curve; contrastingly Liu et al. (2009) use a triangular performance measure 353 
defined via a ‘limits of acceptability’ approach. 354 

The result of the rating curve estimation for Barnett’s Bank gauging station produced 355 
relatively wide uncertainty bounds due to the mobile nature of the river cross-section 356 
at the gauging site (Figure 4). However, to avoid overstating the uncertainty in the 357 
observed discharge we require a performance evaluation method which retains 358 
maximal information content from the gauging data. The method should therefore 359 
discriminate between values within the envelope of possible true discharge, using the 360 
CDF produced by the rating curve estimation procedure. Hence we use a timestep-361 
based method, which stores the conditional probability of the modeled flow given the 362 
observed flow for each timestep: this is an empirical function based on the gauging 363 
data and does not have an analytical form. The CDF for estimated discharge at 364 
Barnett’s Bank is shown in Figure 5 for various measured stage values, and Figure 6 365 
shows how this information translates into discharge bound quantiles for an example 366 
section of flow record. The conditional probabilities are unique to the gauging record 367 
at the Barnett’s Bank site: note, for example, that the lower density of gauging points 368 
in the lower quantiles of the uncertain discharge curve (Figure 4) lead to skewed 369 
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CDFs (Figure 5) which in turn lead to lower uncertainty limits that are wider than the 370 
upper limits in Figure 6. 371 

 372 

Figure 5: Empirical CDF for discharge at Barnett’s Bank: examples at six stage 373 
values. 374 

 375 

Figure 6: Illustration of discharge median and confidence bounds at Barnett’s Bank, 376 
compared with discharge calculated using deterministic rating curve 377 

 378 

A variety of methods could be used to aggregate the timestep-based likelihoods over 379 
the modeled time period: in classical Bayesian inference the product of the individual 380 
probabilities (p) would be used: 381 

( ) ( )ypp 1 θθ N∏=y   (Eq 2) 382 

Where y is a vector of observed data of length N, and θ are the model parameters. We 383 
assume here a uniform bounded prior.  However, this method assumes independence 384 
of observed data between timesteps which is unlikely for hydrological time series. 385 
Instead, we use here a modification of this product of probabilities which accounts for 386 
the reduction of information content of the data due to such autocorrelation: 387 

( ) ( )[ ] N

ESS
N ypp̂ 1 θθ ∏=y   (Eq 3) 388 

Where ESS is the ‘Effective Sample Size’: a measure of the information content of 389 
the data series. Several explanatory notes are required: 390 

1. To illustrate the coherence of this form of the conditional probability distribution, 391 
consider the classical assumption of independent Gaussian residuals, combined with a 392 
Jeffrey’s prior on σ2. Box and Tiao (1973) derive the likelihood function: 393 

( ) ( ) 2/
p

N
M

−∝ θθ y   (Eq 4) 394 

where M(θ) is the sum of squared errors and N is the number of data points. 395 

Following their derivation, but substituting the revised definition ( )yθp̂  as above (Eq 396 

3), it can be shown that the likelihood function takes the form: 397 

( ) ( ) 2/
p̂

ESS
M

−∝ θθ y   (Eq 5) 398 

hence showing that this revision of the product of probabilities gives the expected 399 
likelihood function when used with standard assumptions. 400 

2. We use Effective Sample Size (Thiebaux and Zwiers, 1995; Wilks, 1997) as a 401 
measure of information content. This measure is designed to represent the equivalent 402 
number of independent data points and uses autocovariance to quantify the degree of 403 
time coherence in the data series. The ESS is calculated from the true sample size N 404 
as follows: 405 
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  (Eq 6) 406 

Where τ is time lag and ρ(τ) is the corresponding autocorrelation function.  407 

3. While the methods in this study account for rating curve error, we recognize that 408 
additional uncertainty components (input uncertainty, model structural uncertainty), 409 
not explicitly characterized here, also affect model response. This has important 410 
implications for the multiplicative form of the likelihood function, as prediction for a 411 
single time-step outside the empirical discharge envelope (which is likely due to these 412 
additional error components) would give a total probability of zero. Therefore we use 413 
the simplest method possible to incorporate those effects: a uniform (small) error 414 

constant ε is added to the response surface before the multiplicative step. 415 

( ) ( )( )εθθ ,max ypyp =   (Eq 7) 416 

This addition has the result that simulations which lie outside the flow uncertainty 417 
bounds in some timesteps are disadvantaged but not rejected completely. This step is 418 
also important to improve the convergence speed of the MCMC algorithm (Section 419 
6.2) by allowing simulations to be properly ranked. In the extreme case where no 420 
predictions lie within the uncertainty bounds, the simulation would be ranked lower 421 
than any other realization, and quickly rejected by the MCMC algorithm.  422 

 423 

6.2 MCMC Parameter Search Method 424 

As has been extensively discussed by Beven (1993; 2005; Beven and Binley, 1992) 425 
and others (Wagener and Gupta, 2005), the many sources of uncertainty in a 426 
hydrological model application, including but not limited to the measurement 427 
uncertainty discussed in this paper, lead to equifinality of parameter sets in providing 428 
acceptable model performance. Performance is judged with reference to the observed 429 
data, here using the evaluation measure described in Section 6.1. The aim of our 430 
calibration technique is to enable an efficient search of the parameter space, 431 
identifying those regions where model performance is considered satisfactory in the 432 
light of observation error on the discharge. The task is made more difficult by the 433 
typically complex nature of the model response surface (Duan et al., 1992; 434 
Sorooshian et al., 1993) which may be exacerbated by artefacts of model timestep and 435 
solution techniques (Kavetski et al., 2006a,b).  436 

In response to these difficulties, Markov Chain Monte Carlo (MCMC) methods have 437 
gained increasing popularity, providing targeted sampling of the parameter space and 438 
hence considerable efficiency savings over uniform random sampling (Blasone et al., 439 
2008). These methods enable simulation of complex multivariate distributions by 440 
casting them as the invariant distribution of a Markov Chain. We use here a popular 441 
version of the original Metropolis-Hastings MCMC algorithm: the adaptive SCEM-442 
UA algorithm (Vrugt et al., 2003) which combines the Metropolis-Hastings sampler 443 
with the SCE-UA optimisation method (Duan et al., 1992), using information 444 
exchange between multiple sampler chains to improve convergence rates.  445 

MCMC algorithms have traditionally been used to sample posterior distributions 446 
derived from classical statistical likelihood functions (e.g. Thiemann et al., 2001; 447 
Vrugt et al., 2003). However, the careful use of ‘informal’ likelihood (performance) 448 
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measures chosen using modeler judgement can improve the ability of the algorithm to 449 
fully explore the response surface (McMillan and Clark, 2009). Here the evaluation 450 
measure described in Section 6.1 best reflects our knowledge of the information and 451 
uncertainty contained within the observed flow data, and hence is used to describe the 452 
response surface.  453 

The method used within the MCMC algorithm to adjust the model parameters is via 454 
parameter multipliers. In this approach, the default TopNet model parameters (which 455 
vary spatially within the river basin) are adjusted uniformly throughout the river basin 456 
using a spatially constant set of parameter multipliers. In this method all sub-457 
catchments receive the same multiplier, i.e. we assume that the spatial distribution of 458 
default TopNet parameters is suitable. While this approach represents a simplification, 459 
it is a valuable tool to reduce the dimensionality of the parameter estimation problem 460 
using prior knowledge of the spatial variation in catchment characteristics. The 461 
resulting estimation problem uses seven parameter multipliers, and accordingly the 462 
MCMC algorithm is run using seven parallel chains. A burn-in period of 2000 463 
iterations is followed by a parameter estimation period of 1000 iterations. Calculation 464 
of the Gelman-Rubin convergence statistic during the burn-in period was used to 465 
confirm that the Markov Chain had converged to the stationary distribution 466 
representing the model posterior distribution.   467 

 468 

7. Flow Modelling Results 469 

We now demonstrate how inclusion of explicit discharge uncertainty information can 470 
offer additional insights into model calibration, by applying the method described 471 
above to calibration of the TopNet model in the Wairau catchment. The calibration is 472 
done in two parts. First TopNet is calibrated using flow data produced from the 473 
deterministic rating curve recommended for the Wairau to serve as a benchmark with 474 
which to compare the new method. Secondly, the calibration is repeated using the 475 
uncertain rating curve previously derived. Refer to Figure 6 for an example 476 
comparison of the resulting flow data in the two cases. 477 

Deterministic Rating Curve 478 

Model calibration was carried out for a 6-month period in winter 2004 (1 April 2004 – 479 
1 October 2004). The MCMC algorithm was run using the likelihood function derived 480 

in Section 6.2 under the classical assumption of Gaussian error: ( ) ( ) 2/
p̂

ESS
M

−∝ θθ y  481 

(i.e. Eq 5) where M(θ) is the sum of squared errors and ESS is the effective sample 482 
size.  483 

The resulting uncertainty bounds on the flow hindcast are shown in Figure 7A; note 484 
that despite the use of the effective sample size measure which reduces the 485 
peakedness of the objective function, the uncertainty bounds have a very narrow range 486 
and are barely visible except during times of high flood.  487 

Uncertain Rating Curve 488 

The model calibration was repeated with the same MCMC algorithm, but using the 489 
performance measure described in Section 6.1 which incorporates rating curve 490 
uncertainty. The resulting flow hindcast with 90% confidence intervals is shown in 491 
Figure 7B.  492 

Comparison of Results 493 
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Both parameter estimation techniques are shown to underestimate the total uncertainty 494 
during some periods, demonstrated for example during the recession of the flood peak 495 
in late June: for both techniques the estimated flow bounds lie completely outside the 496 
estimation flow uncertainty (Figure 7). However, when the uncertain rating curve is 497 
used, the flow uncertainty bounds are wider and the model is more successful in 498 
predicting the flood peaks, especially during the wetting-up period of early winter. It 499 
is especially noticeable that during the highest flood peak, the calibration using the 500 
uncertain rating curve includes the median modelled flow within the uncertainty 501 
bounds, whereas the calibration using the deterministic rating curve underestimates 502 
the flood peak by almost 50%, even at the 90% confidence level. 503 

It is also desirable to provide a more objective measure of the ability of the two 504 
models to span the observed discharge data. For example, consider the percentage of 505 
time that the median gauged discharge lies within the bounds of the modelled 506 
discharge CDF. During the calibration period, this figure is 68% for the model using 507 
the deterministic rating curve vs. 86% for the model using the uncertain rating curve, 508 
suggesting an improvement in performance in the latter case. However this measure 509 
could be criticised as it favours models with overly wide uncertainty bounds. To 510 
overcome this, we consider a generalisation of the rank histogram, which measures 511 
how well the spread of a model forecasts represents the true variability of the 512 
observations. A rank histogram, usually based on deterministic observation data, is 513 
derived by tallying, for each timestep, the quantile at which the observed data lies 514 
within the model forecast. A perfect result gives a flat histogram. A ‘u’ shape 515 
histogram indicates an underdispersive model, with many observations lying outside 516 
the extremes of the model prediction; conversely a dome shape indicates that the 517 
model spread is too large. We extend this to the case of uncertain observed data, by 518 
tallying the model quantile at which each observed data quantile lies, for each 519 
observed data quantile and for each forecast timestep.  520 

Such generalised rank histograms are shown in Figure 8, for both deterministic and 521 
uncertain rating curves, for the winter 2004 calibration period. The rank histograms 522 
show additionally the proportion of the values in the lower and upper quantiles where 523 
the observed data lie outside the model bounds. It is clear that both models are 524 
underdispersive, i.e. the uncertainty bounds are not wide enough to capture the errors 525 
between modelled and measured discharge data. However, the underdispersion is less 526 
severe in the case of the uncertain rating curve. This is consistent with the fact that our 527 
method has taken into account one source of uncertainty in the modelling procedure, 528 
i.e. rating curve uncertainty; but there are still many uncertainty sources not 529 
considered which contribute to the underdispersion. 530 

 531 

Figure 7: Parameter estimation incorporating rating curve uncertainty: 90% 532 
confidence interval for streamflow at Barnett’s Bank during example section of model 533 

calibration period. Comparison of results using deterministic rating curve (A) vs. 534 
rating curve including uncertainty (B). 535 

 536 

Figure 8: Generalised Rank Histogram showing spread of model predictions 537 
compared with variability of uncertain discharge data, during calibration period. 538 

Results shown for both deterministic and uncertain rating curve cases.  539 

 540 
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Effects on Behavioural Model Parameter Sets 541 

In order to compare the effects of the deterministic vs. uncertain rating curve on 542 
model behaviour, we examine the differences in the distribution of model parameters 543 
between the two methods. Figure 9 presents histograms showing the marginal 544 
posterior probability density function for each of the TopNet model parameters, for 545 
both the deterministic and the uncertain rating curve calibration run. We observe that, 546 
in general, parameter distributions are less constrained when the uncertain rating 547 
curve is used. This result reflects the wider range of model behaviour considered 548 
behavioural when the errors on the discharge measurements are not artificially 549 
constrained. The result suggests that the identifiability of parameters such as the 550 
Topmodel f parameter may be a consequence of the artificially peaked response 551 
surface due to the use of a deterministic rating curve. 552 

 553 

Figure 9: Parameter estimation: comparison of results using deterministic rating curve 554 
vs. rating curve including uncertainty. Plots show marginal posterior probability 555 

density functions for each of the TopNet model parameters. 556 

 557 

Validation 558 

The model calibration process was tested by running the model with deterministic and 559 
uncertain rating curve calibrations for an independent validation time period. Again a 560 
6-month winter period was used (1 April 2006 – 1 October 2006) where significant 561 
flood events occurred in the Wairau and were recorded at Barnett’s Bank gauge. The 562 
model predictions for these flood events are shown in Figure 10, with the model 563 
uncertainty bounds compared as before with the 5%, median and 95% quantiles of the 564 
measured flow data series. The results show that when using the deterministic rating 565 
curve calibration, the uncertainty in the model predictions is severely underestimated 566 
in the validation phase, especially during flood events (Figure 10A). When using the 567 
uncertain rating curve calibration, there is a significant improvement in the model’s 568 
ability to bracket the observed flow (Figure 10B). This improvement is at the cost of 569 
increased uncertainty in the predictions, however the results suggest that the wider 570 
uncertainty bounds are warranted due to discrepancies between modelled and 571 
measured flow in the deterministic rating curve case. While increased forecast 572 
uncertainty may be unwelcome for decision makers, previous research has 573 
demonstrated that model predictions including significant uncertainty can be 574 
successfully accommodated within a flood forecasting framework, using techniques 575 
such as probabilistic assessment of threshold exceedance (de Roo et al., 2003; 576 
Pappenberger et al., 2008).  577 

 578 

Figure 10: Model validation results: 90% confidence interval for streamflow at 579 
Barnett’s Bank during model validation period. Comparison of results from model 580 

calibrated using a deterministic rating curve (A) vs. rating curve including uncertainty 581 
(B). 582 

 583 

Figure 11: Generalised Rank Histogram showing spread of model predictions 584 
compared with variability of uncertain discharge data, during calibration period. 585 

Results shown for both deterministic and uncertain rating curve cases.  586 
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 587 

As before, a rank histogram is calculated to show how well the model spread captures 588 
the variability in the observed data (Figure 11). Similar to the calibration period, the 589 
underdispersion of the model forecast is less severe when the uncertain rating curve is 590 
used. In part this measure demonstrates conditional bias in the model, which tends to 591 
underpredict during flood peaks and overpredict during recession periods; with the 592 
bias being more severe in the case of the deterministic rating curve. Overpredictions 593 
also arise from errors in timing of model predictions for the second flood peak in the 594 
validation phase, which may signal the influence of other unaccounted-for uncertainty 595 
sources. 596 

8. Discussion 597 

This paper demonstrates the improvements in model performance, and particularly in 598 
uncertainty estimation, that can be gained by explicit recognition of uncertainty in the 599 
stage-discharge relationship embodied in the rating curve. Application of the model to 600 
a ‘validation’ time period showed that ignoring rating curve uncertainty could lead to 601 
significant underestimation of the uncertainty associated with the model flow 602 
predictions, particularly during flood events. While the improvement is particularly 603 
pronounced in mobile-bed rivers, such as the Wairau River considered here, all rivers 604 
gauged using a stage-discharge relationship are subject to rating curve uncertainty. 605 
Perhaps the most important advance demonstrated by our method was the ability to 606 
produce an explicit PDF of discharge as opposed to upper and lower limits on 607 
acceptable discharge. This allowed the discharge PDF to be used to form a likelihood 608 
function which could be used within a conventional uncertainty estimation method. 609 
However subjective choices were not completely removed from the method (for 610 
example, choice of return period for temporal segregate of the time series; choice of 611 
error distribution for individual measurements (Gaussian used); weighting of gauging 612 
sets by time), and these choices might be investigated further in future applications of 613 
the method. 614 

It must be noted that this paper takes only one step towards the goal of total error 615 
quantification in hydrological modelling. To achieve that aim, the type of analysis 616 
suggested here must be combined with methods to quantify uncertainty due to input 617 
(precipitation) error, initial and boundary condition error, structural error, and others. 618 
Until then, unaccounted-for uncertainties are implicitly mapped onto parameter 619 
uncertainty, which can lead to bias, under- or over-estimation of uncertainty in model 620 
predictions. Recognition and evaluation of rating curve uncertainty magnitude may 621 
also help to define those situations where the uncertainty could be reduced, for 622 
example by increasing the number of verticals in manual discharge measurements. 623 
However this study has also demonstrated that the contribution of such “measurement 624 
uncertainties” is often small when compared to “natural uncertainties” such as shifts 625 
in hydraulic geometry occurring during flood events. 626 

Note also that the Wairau, despite its challenges, is regularly gauged; in contrast there 627 
are many parts of the world where large river systems are remote and difficult to 628 
access or monitor. In these types of environments, gaugings will be infrequent or non-629 
existent, and discharge estimation may necessarily be undertaken using remote-630 
sensing methods (Bjerklie et al., 2003; 2005). Such methods introduce new sources of 631 
discharge measurement error; and additional difficulties, such as ice cover at the 632 
gauging site, may occur in some regions (Shiklomanov et al., 2006). In such areas, 633 
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integrated measures such as mean annual discharge may be required rather than 634 
continuous discharge measurement; however these are also strongly affected by rating 635 
curve error (Clarke, 1999; Clarke et al., 2000). Many large rivers of the world have 636 
complex and unstable morphology affected by multiple channel-changing 637 
mechanisms including floods, landslides and changes in sediment supply (e.g. Sarma, 638 
2005; Goswamu et al., 1999; Ashworth et al., 2000). Globally, significant discharge 639 
uncertainty may be the norm rather than the exception. 640 

More general recognition of uncertainty in measured flow data will have implications 641 
for other hydrological modelling techniques which rely on flow data as input. For 642 
example, when data assimilation is used to update model states based on observed 643 
flow data (as it has been in the Wairau: Clark et al., 2008), errors in the flow data 644 
must be explicitly specified. Good performance of the data assimilation method relies 645 
on accurate error estimates; hence it is essential to take in account the multiple 646 
sources of rating curve uncertainty such that the error estimates are valid even during 647 
flood events. An analysis such as that suggested here would allow those errors to be 648 
confidently specified.  649 

Another example of the implications of uncertainty in flow data is in the recent 650 
suggestion that integrated performance measures, which evaluate a range of aspects of 651 
model behaviour via a single number, should be replaced by more meaningful 652 
‘diagnostic signatures’ (Gupta et al., 2008). These signatures would use a specific 653 
interpretation of model output to focus the evaluation on a particular component of 654 
model structure or parameterisation, and to identify deficiencies and suggest 655 
improvements to the conceptual model structure. As an example, an analysis of dQ/dt 656 
vs. Q could be used to study the form of the catchment storage-discharge relationship. 657 
Where uncertainty in the stage-discharge relationship is recognised, it follows that the 658 
‘true catchment behaviour’ used to define the diagnostic signature (Q or dQ/dt in this 659 
case) is not known exactly. Hence the true ‘diagnostic signatures’ will become a fuzzy 660 
quantity, with consequences for the methods used to compare them with model 661 
output. In whatever form that observed data is used for model calibration, whether via 662 
diagnostic signatures, ‘soft data’ or expert knowledge (Seibert and McDonnell, 2002), 663 
manual or automatic calibration (Boyle et al., 2000); it is essential that the 664 
information, uncertainty and error within that data is evaluated, so that models are not 665 
incorrectly forced to fit uncertain data treated as though it were deterministic.  666 

 667 

9. Conclusions 668 

This paper presents a method to quantify uncertainty in river discharge measurements 669 
caused by uncertainties in the rating curve used to transform stage values into 670 
discharge values. The method was designed to assess the combined uncertainty 671 
caused by errors in stage and velocity measurements, rating curve interpolation or 672 
extrapolation and cross-section change due to vegetation growth of bed movement. 673 

We demonstrate how the method can be used to provide a complete PDF (and hence 674 
also confidence bounds) for measured discharge, and how this PDF can be used to 675 
form a likelihood function to enable model calibration allowing for rating curve 676 
uncertainty. The method is tested on the Wairau River in New Zealand, and results for 677 
calibration and validation periods using both deterministic and uncertain rating curves 678 
are compared. We show that explicit consideration of the uncertainty in flow 679 
measurements leads to a flatter response surface with higher parameter uncertainty 680 
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and hence wider uncertainty bounds for flow predictions. Use of the uncertain rating 681 
curve therefore provides model predictions with confidence bounds which are more 682 
successful at enclosing the measured flow during model validation, and hence we 683 
suggest provide a more realistic estimate of model uncertainty. 684 
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Table 1 869 
TOPNET model parameters 870 
 871 
 Name Estimation 

Sub-basin Parameters   

f (m-1) Saturated store 
sensitivity 

Constant = 12.4  
(multiplier calibrated) 

K0 (m/h) Surface saturated 
hydraulic conductivity 

Constant = 0.01  
(multiplier calibrated) 

∆θ1  Drainable porosity  From soils  
(multiplier calibrated) 

∆θ2  Plant available porosity  From soils  
(multiplier calibrated) 

D (m)  Depth of soil zone  Depth ¼ 1=f from soils 
(multiplier calibrated) 

C  
 

Soil zone drainage 
sensitivity 

1 

φ (m)  Wetting front suction  From soils 

V (m/s) Overland flow velocity  Constant = 0.1  
(multiplier calibrated) 

CC (m)  Canopy capacity  From vegetation 

Cr  Intercepted evaporation 
enhancement 

From vegetation 

A  Albedo  From vegetation 

Lapse (°C/m)  Lapse rate  0.0065 

Channel parameters   

N  Mannings n  Constant = 0.024  
(multiplier calibrated) 

A  
 

Hydraulic geometry 
constant 

0.00011 

B 
 

Hydraulic geometry 
exponent 

0.518 

State variables  Initialization 

z' (m)  
 

Average depth to 
water table 

Saturated zone drainage matches 
initial 
observed flow 

SR (m) Soil zone storage 0.02 

CV (m) Canopy storage 0.0005 

 872 

 873 
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The Wairau River basin, showing (left) location; (middle) elevation, digital river network, location of 
discharge gauging sites (circles) and rainfall stations (triangles); and (right) land cover.  For TopNet 
simulations the Wairau basin is disaggregated into 380 sub-catchments, linked with the digital river 

network (middle). Figure reproduced from Clark et al. (2008).  
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Photograph of the gauged cross-section at Barnett’s Bank  
651x504mm (72 x 72 DPI)  

 

Page 23 of 32

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

: Illustration of the proposed Monte Carlo sampling method used to fit possible rating curves. (1) 
Select three points from the gauging set (2) Take a random sample of true stage/discharge (3) Fit 
the power law rating curve and check consistency with remaining points. (4) Repeat for multiple 

samples.  
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Quantiles of estimated discharge at Barnett’s Bank gauging site at the catchment outlet of the 
Wairau River, shown in linear (A) and log (B) space. Markers show gauging points used, the 

symbols identifying discrete gauging sets.  
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Empirical CDF for discharge at Barnett’s Bank: examples at six stage values.  
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: Illustration of discharge median and confidence bounds at Barnett’s Bank, compared with 
discharge calculated using deterministic rating curve  
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Parameter estimation incorporating rating curve uncertainty: 90% confidence interval for 
streamflow at Barnett’s Bank during example section of model calibration period. Comparison of 

results using deterministic rating curve (A) vs. rating curve including uncertainty (B).  
247x158mm (600 x 600 DPI)  
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Generalised Rank Histogram showing spread of model predictions compared with variability of 
uncertain discharge data, during calibration period. Results shown for both deterministic and 

uncertain rating curve cases.  
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Parameter estimation: comparison of results using deterministic rating curve vs. rating curve 
including uncertainty. Plots show marginal posterior probability density functions for each of the 

TopNet model parameters.  
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Model validation results: 90% confidence interval for streamflow at Barnett’s Bank during model 
validation period. Comparison of results from model calibrated using a deterministic rating curve (A) 

vs. rating curve including uncertainty (B).  
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Generalised Rank Histogram showing spread of model predictions compared with variability of 
uncertain discharge data, during calibration period. Results shown for both deterministic and 

uncertain rating curve cases.  
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