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Abstract 21 

In this paper we explore the use of time-variable tracer data as a complementary tool for 22 

model structure evaluation. We augment the modular rainfall-runoff modelling framework 23 

FUSE (Framework for Understanding Structural Errors) with the ability to track the age 24 

distribution of water in all model stores and fluxes. We therefore gain the novel ability to 25 

compare tracer/water age signatures measured in a catchment with those predicted using 26 

hydrological models built from components based on 4 existing popular models. Key 27 

modelling decisions available in FUSE are evaluated against streamflow tracer dynamics 28 

using weekly observations of tracer concentration which reflect the tracer Transit Time 29 

Distribution (TTD). Model structure choice is shown to have a significant effect on simulated 30 

water age characteristics, even when simulated flow series are very similar. We show that for 31 

a Scottish case study catchment, careful selection of model structure enables good predictions 32 

of both streamflow and tracer dynamics. We then use FUSE as a hypothesis testing tool to 33 

understand how different model characterisation of TTDs and MTTs affect multi-criteria 34 

model performance. We demonstrate the importance of time-variation in TTDs in simulating 35 

water movement along fast flow pathways, and investigate sensitivity of the models to 36 

assumptions about our ability to sample fast, near-surface flow.   37 

 38 

 39 

40 
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1.   Introduction  41 

A wide range of lumped, conceptual, rainfall-runoff model structures are currently used for 42 

hydrological modelling applications (e.g. Singh, 1995). The model parameters are typically 43 

set by calibration which continues to be an important research strand within hydrology (e.g. 44 

Kavetski et al., 2011; McMillan and Clark, 2009; Reichert and Mieleitner, 2009). However, a 45 

current shift in thinking is leading the hydrological community to re-emphasise the 46 

importance of model structure over and above model calibration (Beven, 2010; Clark et al., 47 

2011b; Krueger et al., 2010; Savenije, 2009; Sivapalan, 2009). Model structure is critical 48 

because if model representations of the dominant runoff generation mechanisms of a 49 

catchment are not consistent with reality, the predictive power of the model may be reduced, 50 

especially outside the range of calibration conditions (Kirchner, 2006). 51 

The challenge of selecting appropriate model structure for a given catchment is substantial. 52 

Aggregated performance measures such as the Nash-Sutcliffe may fail to distinguish between 53 

model structures (Clark et al., 2008). This may be due to the compression of the error series 54 

into a single-valued measure (Gupta et al., 2008; Schaefli and Gupta, 2007), to the choice of 55 

performance measure which may be sensitive to model structural complexity (e.g. Akaike, 56 

1974), or to flexibility in parameterisation meaning that very similar flow predictions may be 57 

obtained from multiple model structures. Multi-response data have the potential to reduce 58 

ambiguity between competing model structures via evaluation of individual model 59 

components. This was shown in diagnostic tests proposed recently by McMillan et al. (2011) 60 

and Clark et al. (2011a), building on the concept of diagnostic signatures for model 61 

evaluation (Gupta et al., 2008) and previous research into the benefits of auxiliary data to 62 

improve process understanding (e.g. Fenicia et al., 2007; 2008; Seibert and McDonnell, 63 

2002; Son and Sivapalan, 2007). Further challenges to selecting model structure include the 64 

common finding that increased model complexity is needed as extra data sources become 65 
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available for evaluation (Vache and McDonnell, 2006) and the inability of standard data 66 

sources of rainfall and flow to discriminate between some aspects of model structure.  67 

In this paper we explore the use of environmental tracer data as a complementary response 68 

dataset for model structure evaluation. Tracers are used to investigate geographical source 69 

areas and runoff pathways (e.g. Bergstrom et al., 1985; Rodgers et al., 2005a; Soulsby et al., 70 

2003; Soulsby et al., 2006; Tetzlaff et al., 2007b). Diagnostic tests using hydrometric data in 71 

conjunction with time domain or geographic source tracers, offer an alternative view on 72 

model performance (Birkel et al., 2011a; Birkel et al., 2011b; Botter et al., 2008; Iorgulescu 73 

et al., 2005). For example, Uhlenbrook and Leibundgut (2002) carried out a multi-response 74 

validation of a process-orientated catchment model, using measured runoff together with 75 

silica, 18O, tritium and CFC tracers, and showed how the auxiliary data sources enabled a 76 

more realistic conceptualisation of runoff generation in their catchment. An important 77 

additional benefit of validating a hydrological model against both flow and tracer dynamics is 78 

that it could be used for integrated water quantity and quality applications (Krueger et al., 79 

2009).  80 

When evaluating a hydrological model using environmental tracer data, two characterisations 81 

of transit time, i.e. the time water spends travelling through a catchment to the stream, are 82 

commonly used for comparison. These are the Mean Transit Time (MTT) and the Transit 83 

Time Distribution (TTD) of the tracer (which is assumed to be identical to that of the water). 84 

The TTD is the probability density function (pdf) of the time taken for water (or tracer) 85 

falling at a given moment to exit the catchment (i.e. the breakthrough curve). The MTT is the 86 

mean of this distribution. Estimates of MTT from observed data rely on an underlying model 87 

of tracer transport, often a simple pre-specified time-invariant TTD with calibrated 88 

parameters. Popular distributions include gamma, exponential, or exponential-piston flow; a 89 
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review is given by McGuire and McDonnell (2006). The gamma distribution with shape 90 

parameter ≈0.5 has been shown to be appropriate for many catchments by analysis of the 91 

power spectra of conservative tracers in rainfall and streamflow (Godsey et al., 2010; 92 

Kirchner et al., 2000), implying the general need for a more peaked initial response and more 93 

sustained tail than a exponential distribution, i.e., as derived from a completely mixed 94 

reservoir. 95 

For two reasons, the approach of a pre-specified time-invariant transit time distribution has 96 

recently been put under scrutiny. Firstly, work by Rinaldo et al. (2011; 2006) and Botter et al. 97 

(2011) has emphasised the differences between water ages in different storages and fluxes in 98 

a generalised theoretical model of a catchment, leading to inherent time-variation in TTDs. 99 

Secondly, Beven (2010) highlighted the need to apply a hypothesis testing framework to the 100 

estimation of TTDs and not to assume a particular form without evidence. Working within a 101 

multi-modelling framework allows exploration of these assumptions. The model performance 102 

can be evaluated using the tracer concentrations in the stream, requiring the model to 103 

reproduce the observed tracer dynamics, with the assessment made either graphically or using 104 

a performance measure (Fenicia et al., 2010; Vache and McDonnell, 2006). The model 105 

simulations can then be used to derive and investigate the MTT, the shape of the TTD, and its 106 

variation with time and catchment wetness conditions. These characteristics can also be 107 

compared to possible TTD shapes and previous estimates of the MTT.  108 

In this study we augment the modular modelling system FUSE (Framework for 109 

Understanding Structural Errors; Clark et al., 2008) with the ability to track the age 110 

distribution of water in all model storages and fluxes. FUSE is a rainfall-runoff model 111 

building toolkit which allows the user to investigate hydrological modelling decisions, in 112 

particular the choice of state variables and flux equations to simulate water flow through a 113 
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catchment. A complete model can be constructed with components based on well-known 114 

rainfall-runoff models: ARNO/VIC (Wood et al., 1992), PRMS (Leavesley et al., 1983), 115 

Sacramento (Burnash et al., 1973) and Topmodel (Beven and Kirkby, 1979). The FUSE 116 

concept is designed to allow testing of competing modelling hypotheses of similar 117 

complexity but alternative structures, with individual control of each model component 118 

allowing systematic testing. We therefore gain the novel ability to track conservative tracers 119 

and compare tracer/water transit time signatures measured in a catchment with predictions 120 

made using this flexible modelling system. Our aims are as follows: [1] To compare the 121 

ability of competing model structures to predict stream tracer response, while retaining 122 

similar stream flow behaviour [2] To use the FUSE models as a tool to explore how different 123 

model characterisations of TTDs and MTTs (including time-variability) affect model 124 

behaviour and multi-criteria model performance [3] To use sensitivity analyses to show how 125 

simulated tracer response is affected by the interaction of model structure with parameter 126 

values and mixing assumptions.  127 

 128 

2.   Study Site  129 

2.1   Catchment Characteristics 130 

The Loch Ard Burn 10 (B10) catchment (0.9 km2) lies in the Central Scottish Highlands 131 

(Figure 1), and was chosen due to availability of long-term hydrochemical tracer data. 132 

Average annual precipitation is 1980 mm and average runoff is 1660 mm. Slopes are gentle 133 

(generally less than 10º) and mean elevation is 170 m. The catchment is forested with 134 

plantations of Sitka Spruce (Pitea Sitchensis). Forest operations occurred between 1990-2002 135 

with 39% of forest cover felled, however there is little evidence for any major change in 136 

average or high flows after the felling (Tetzlaff et al., 2007a). The geology is dominated by 137 

low permeability metamorphic rocks (Miller et al., 1990); bedrock outcrops occur on 138 
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interfluves of the steep northwestern slopes. The most common soils are thin, poorly drained 139 

minerogenic gleyed soils.  140 

Runoff generation processes are relatively well understood in the catchment (Dawson et al., 141 

2008; Hrachowitz et al., 2009a; Tetzlaff et al., 2010; Tetzlaff et al., 2007a). The catchment is 142 

highly responsive, with low baseflow levels compared to stormflow (the ratio of low flows to 143 

flood flows may be up to 104) (Tetzlaff et al., 2007a). The catchment maintains low soil 144 

moisture deficits and most parts of the catchment are highly connected to the stream network 145 

via a series of drainage ditches and saturated riparian zones, leading to high runoff:rainfall 146 

ratios (varying between 0.64 and 0.98; Dawson et al., 2008). Storm runoff is thought to be 147 

dominated by flow paths in the upper soil horizons, influenced by high vertical gradients in 148 

the saturated hydraulic conductivity of the soil. Conductivity was found to vary from 0.3 149 

cmh-1 in lower layers to 600 cmh-1 in surface layers in similar forested gley soils elsewhere 150 

(Soulsby and Reynolds, 1993). However tree roots and areas of exposed bedrock provide 151 

pathways to fracture systems in the bedrock, allowing some deeper recharge to occur 152 

(Tetzlaff et al., 2010). Although hydrograph separations based on stream alkalinity are 153 

uncertain, average groundwater contributions to annual streamflow were estimated to be in 154 

the range 35 – 47 %.  155 

2.2   Hydrometric Data 156 

Daily rainfall totals were available using records from three gauges close to the catchment. 157 

Due to the flashy nature of the small catchment, rainfall totals at a sub-daily timestep were 158 

required in order to capture the fast runoff generation mechanisms and ensure correct timing 159 

of runoff in the model. Hourly rainfall data was available from four stations (Sloy, Loch 160 

Venachar. Abbotsinch and Bishopton) at 18 to 30 km from Loch Ard. The hourly data were 161 

expressed as a fraction of daily precipitation total at each hourly station, and the hourly ratios 162 
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were interpolated (using inverse distance weighting) to the basin centroid. This timing 163 

information was then used to disaggregate the daily rainfall totals. Potential 164 

evapotranspiration (PET) was calculated based on daily temperature data using the Hamon 165 

method which is recommended for cases where radiation data is not available (Lu et al., 166 

2005). Flow data has been collected since 1989, using a concrete crump weir maintained by 167 

the Scottish Environment Protection Agency (SEPA). Flow data was extracted at a daily time 168 

step from the UK National River Flow Archive.  169 

2.3   Hydrochemical Data 170 

During the period 1990-2002, a consistent set of hydrochemical data including weekly 171 

precipitation and streamflow samples was available, and hence this time period was used for 172 

analysis (Figure 2). The precipitation samples (collected using open funnel bulk deposition 173 

samplers) and streamflow dip samples were filtered through a 0.45 μm polycarbonate 174 

membrane filter. Ion chromatography was then used to determine Chloride (Cl-) 175 

concentrations. Chloride quantities in the catchment are increased due to dry and occult 176 

deposition, and hence the input concentrations were rescaled to ensure mass balance using an 177 

adjustment factor, assumed constant with time. Some previous studies suggest a range of 178 

models of dry and occult deposition including dependence on wind speed, wind direction and 179 

land use changes (e.g. Page et al., 2007; Oda et al., 2009). However, in the Atlantic-maritime 180 

Scottish context, dry and occult deposition is generally highest when sea-salt concentrations 181 

in the atmosphere are highest, which is also when wet deposition tends to be highest, hence a 182 

constant correction is a reasonable assumption. Kirchner et al. (2010) showed that when 183 

using a constant correction assumption in Scottish catchments, the use of chloride vs. isotope 184 

tracers led to consistent process identification, and therefore concluded that the unmodelled 185 

depositional processes do not materially affect inferences drawn from the data. For further 186 
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details on the hydrochemical data collection, processing, and mass balance adjustment refer 187 

to Hrachowitz et al. (2009). 188 

 189 

3.   Methods 190 

3.1   Tracking water through hydrological models 191 

This paper uses the FUSE multi-model framework to enable individual control of 192 

hydrological model components, based on a variety of popular models. The modelling 193 

choices available include the choice of state variables in the unsaturated and saturated zones, 194 

and the choice of flux equations for surface runoff, interflow, vertical drainage, baseflow and 195 

evaporation. In order to compare modelled and measured tracer dynamics, in addition to flow 196 

dynamics, capability was added to the models to simulate routing and transit times of 197 

individual water ‘parcels’ through conceptual model stores. 198 

We identified two possible strategies to achieve this capability, distinguished by the 199 

additional state variables used to track water movement. The first strategy uses state variables 200 

which quantify tracer concentrations in each conceptual store. The evolution of tracer 201 

concentration is controlled by input precipitation depth and tracer concentration, and flux 202 

equations describing tracer movement between storages. This is the method most commonly 203 

used in previous studies which integrate tracer information into hydrological models (e.g. 204 

Birkel et al., 2010; Birkel et al., 2011b; Dunn et al., 2010; Fenicia et al., 2010; Vache and 205 

McDonnell, 2006). 206 

The second strategy uses state variables which quantify the distribution of water ages 207 

(defined as the elapsed time since a particle of water fell as rainfall) in each store, at a given 208 

time (i.e. the state variables are multi-dimensional and specify an empirical histogram of 209 

water ages). The evolution of the distributions is controlled by input precipitation depths, 210 
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aging of the water in each store, and flux equations describing water movement between 211 

stores. This strategy is a generalisation of the previous method, as tracer concentrations in 212 

any store or flux can be directly calculated using convolution of the water age distribution 213 

with the corresponding input tracer concentrations (Figure 3). It also allows additional 214 

information to be easily derived such as mean and shape of the simulated water age 215 

distribution. This strategy relies on the underlying equations for conservative tracers derived 216 

by Botter et al. (2010; in particular Eq 17 for tracer mass flux) and summarised in Botter et 217 

al. (2011; Table 1). However the numerical implementation used in this paper differs as we 218 

solve concurrently for both soil water dynamics and age distributions. 219 

An example of the implementation of the second strategy is given here for demonstration. 220 

Consider a simple model with variable S1 representing water volume in the soil zone. The 221 

equation controlling evolution of S1 may be as follows: 222 

( ) qeqp
dt

dS
sx −−−=1  Eq 1 223 

Where p is precipitation, qsx is saturation excess runoff, e is evaporation and q is drainage. 224 

Now define a histogram (i.e. numerical vector representation of the pdf) S1
t partitioning the 225 

volume S1 by age. The equivalent differential equation for S1
t is as follows: 226 

( ) ttt
sx

t
t
1 qeqp

S −−−=
dt

d
 Eq 2 227 

Eq 2 relies on similar histogram distributions pt, qsx
t, et and qt of the fluxes p, qsx, e and q. 228 

However, these histograms are known: water in rainfall (p) and  qsx is all of age 1; water in e 229 

and q has age distributions equal to that of S1
t
  at the start of the timestep under the complete 230 

mixing assumption (refer to Section 3.3 on mixing assumptions), and the magnitude of these 231 
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fluxes is given by the model equations. Therefore Eq 2 can be solved for S1
t at the next 232 

timestep. The same strategy can be used for each model state equation, giving a complete 233 

solution for water age evolution in each store and flux. Finally, the method requires an initial 234 

histogram form (exactly as an initial value for all model states is required). A uniform 235 

distribution is used, followed by a spin up period as for the other model states. 236 

In this study, the second strategy was preferred for its generality. An important aim of the 237 

study is to understand how different model characterisations of MTTs and TTDs affect model 238 

performance, and this information can be estimated more completely using the second 239 

method (see Section 3.2 for description of the relationship between TTD and water age). 240 

Hence, the additional capability was added to a FUSE prototype.  241 

3.2   Model Output 242 

The water-tracking model framework was designed to allow output of various aspects of 243 

simulated water age and transit times. Time series of the model state variables provide the 244 

age distribution in all stores, at each timestep (1 day increments were used here, matching the 245 

flow data resolution, but the timestep could be varied). Age distributions of all fluxes, 246 

including the catchment outlet flow, are also calculated. Time-varying statistics of the 247 

distributions, e.g. mean water age, can easily be derived. The TTD is calculated for each 248 

timestep in a secondary step which links each input quantity of rainfall to its age at the time it 249 

exited the catchment as streamflow. The TTD depends on both antecedent and current 250 

catchment wetness conditions, which determine how quickly water is driven through the 251 

catchment system. The TTDs may also be averaged over all timesteps to create a ‘master 252 

TTD’ (Botter et al., 2011; Rinaldo et al., 2011). The tracer volume or flux is given by the 253 

convolution of the water age distribution with the time series of input tracer concentrations. 254 

The model can be evaluated by its ability to simulate tracer dynamics by direct comparison of 255 
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modelled and measured tracer outflow concentrations. This is a more direct and powerful test 256 

than invoking the MTT as a comparison tool, as any calculation of MTT relies on some 257 

underlying model of TTD. 258 

3.3   Mixing Assumptions 259 

Simulated water ages within a hydrological model are strongly dependent on the mixing 260 

assumptions used. Within a conceptual model store, instantaneous and complete mixing is the 261 

most usual assumption (e.g. Fenicia et al., 2010; Vache and McDonnell, 2006). A 262 

justification for this may be that by stipulating the store as the fundamental unit of model 263 

design, complete mixing within that store is implicit: otherwise the store would represent an 264 

amalgamation of lower-level stores in which complete mixing did occur.  265 

Recent work has however suggested that partial mixing behaviour may provide a more 266 

accurate representation of observed tracer concentrations (Barnes and Bonell, 1996; Dunn et 267 

al., 2007; Fenicia et al., 2010). Partial mixing refers to a water store in which some fraction 268 

of the volume controls hydrological response, with the remaining inert volume contributing 269 

only to tracer mixing. This concept is equivalent to a modification of the storage-discharge 270 

behaviour of the water store, i.e. that no discharge occurs below some threshold. Such 271 

behaviour is commonly assumed in hydrological models, e.g. that modelled percolation only 272 

occurs when soils are above field capacity (e.g. in the PRMS and Sacramento models 273 

underlying FUSE). In this study, mixing behaviours will only be changed in this way, i.e. 274 

through alternative storage-discharge parameterisations for both unsaturated and saturated 275 

model zones. The relevant model choices are as follows: In the upper zone, use of a single 276 

state variable simulates partial mixing, whereas use of split state variables simulates total 277 

mixing within the free storage reservoir. In the lower zone, the parallel linear reservoirs 278 

options simulate total mixing, but the Topmodel option simulates a hybrid method whereby 279 
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discharge is greatly reduced but not zero as the volume of stored water decreases (for 280 

information on these model options refer to Section 3.4 and Figure 4). 281 

An important aspect of mixing behaviour is the extent to which precipitation is assumed to 282 

mix with shallow soil water before flowing into the channel as saturation excess or other 283 

overland flow representations. Although saturation excess flow might be visualised as 284 

unmixed with soil water, empirical evidence using geochemical tracers in Scottish 285 

catchments suggests that surface runoff does in often partially acquire the chemical signature 286 

of soil water (Birkel et al., 2011b). If model simulation of mixing is required, its occurrence 287 

and extent must be exactly specified, possibly through introduction of calibrated parameters 288 

if sufficient process knowledge is not available. In this study, the simplest option was used 289 

whereby saturation excess flow was treated as unmixed, in common with previous studies 290 

(e.g. Botter et al., 2008). To explore the impact of this assumption, a sensitivity analysis was 291 

carried out to investigate the effect of flow partitioning between surface (unmixed) and 292 

subsurface (mixed) pathways (refer to Section 4.5).  293 

3.4   Model Implementation 294 

The FUSE framework provides hundreds of possible model combinations using different 295 

combinations of components from 4 popular hydrological models (Clark et al., 2008). In this 296 

study, to provide a manageable scope we investigate the effect of key decisions of upper and 297 

lower layer architecture on the simulated streamwater transit time (Conceptual diagrams 298 

including the outflow pathways for each model component are shown in Figure 4).  299 

In all cases the following decisions are treated as fixed. [a] Evapotranspiration is satisfied 300 

from the single upper soil layer: this is the simplest option available. [b] Percolation is 301 

parameterised as a linear function of upper zone storage above field capacity: again the 302 

simplest option. Note also that the alternative formulation of percolation as a power function 303 
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of total upper zone storage was found to give poor results in initial trials. [c] Surface runoff is 304 

parameterised as a power function of total upper zone storage, except when using the 305 

Topmodel formulation where it is controlled directly from lower zone storage. The state and 306 

flux equations defining each of the resulting 6 models are given in Table 1, with fluxes 307 

defined in Table 2. The alternative choices provided for in FUSE could be investigated for 308 

their effect on transit time in future work. 309 

FUSE is formulated as a state-space model and enables several classes of time stepping 310 

schemes to control model numerical behaviour (Clark and Kavetski, 2010; Kavetski and 311 

Clark, 2010). The additional model equations required to track water age are similarly written 312 

in state-space form. The numeric scheme chosen was a fixed-step Explicit Euler for 313 

simplicity, using short 15 minute sub-steps to ensure numerical stability and accuracy. The 314 

model used input precipitation data at hourly resolution. Model flow simulations were 315 

evaluated at a daily timestep, commensurate with flow data availability and which minimises 316 

the effect of any rainfall timing errors introduced by the interpolation method used for rainfall 317 

disaggregation. In our study, evaluation at daily timestep seemed sufficient to capture the 318 

flow generation processes of interest (i.e. the effect of upper and lower zone model 319 

architecture choices), and is at higher resolution than processes captured by tracer 320 

measurements which relate to (slower) water transit times rather than the sub-daily dynamic 321 

response. 322 

3.5   Model Parameters 323 

When comparisons are made between hydrological model structures, there is interplay 324 

between the choice of model structure and the choice of model parameters: both can 325 

influence flow and transit time predictions and each can compensate for deficiencies in the 326 

other, though not necessarily in agreement with reality. In this study the focus was on model 327 
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structure. Therefore default parameter values for the FUSE models were used where possible, 328 

as recommended by Clark et al. (2011a). Measured information or process knowledge from 329 

the Loch Ard catchment was also used to set parameter values where appropriate; this method 330 

assumes a translation from field to model scale but given the process-orientated nature of the 331 

models it was considered preferable to setting the parameters via calibration. The depth of the 332 

upper humic/peaty soil layer contributing to shallow subsurface slow is approximately 400 333 

mm (Tetzlaff et al., 2007a); assuming a typical porosity for peat of 0.8 allows the upper store 334 

depth to be set as 320 mm. Typical field capacity for peat of 0.35 enables the fraction of total 335 

storage as tension storage to be set at 0.44 (=0.35/0.8). Known values of the fractional 336 

groundwater contribution to streamflow were also used as ‘soft data’ (Seibert and 337 

McDonnell, 2002) to guide the parameter choice. A digital terrain model (EDINA Digimap) 338 

of the catchment was used to estimate the topographic index distribution parameters required 339 

for the Topmodel component of FUSE. 340 

The remaining 1 or 2 parameters relating to the lower zone storage (storage depth, baseflow 341 

exponents, baseflow depletion rate(s)) were chosen using a simple calibration procedure by 342 

exhaustive search (accompanying visualisation by contour plot) of model performance in 343 

relation to parameter value (Figure 5). As shown, the single linear reservoir model is not 344 

sensitive to the lower zone storage depth (this parameter only influences model predictions in 345 

the rare case that the tank fills completely) and hence this is set to infinite depth in the model 346 

(this is also true for the stores in the model with two parallel linear reservoirs). The Topmodel 347 

nonlinear reservoir model shows dependency between the lower zone storage size and 348 

baseflow exponent, which could therefore be varied jointly in the model to improve tracer 349 

simulations if necessary. The dependence is indicated by the form of the baseflow equation 350 

(Table 1). The same parameter sets were used for both single and split variable upper zone 351 

structures. The complete parameter sets thus derived provide a robust baseline calibration for 352 
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comparisons between structures (Table 3). The fitted models all give very similar predictions 353 

of flow dynamics, with only very minor differences in the flood peaks and low recessions. 354 

Nash Sutcliffe scores were all in the range 0.75 – 0.80 when validated over a 12 year period. 355 

 356 

4.   Results 357 

This section is organised as follows. First the 6 different FUSE model structures (2 options 358 

for upper zone architecture * 3 options for lower zone architecture) are evaluated against the 359 

tracer measurements from the B10 catchment using direct comparison using tracer output 360 

series [Section 4.1]. A comparison with the results of previous studies is also made using 361 

MTTs [Section 4.2]. 362 

Secondly, we use the FUSE models as a tool for hypothesis testing by comparing 363 

characteristics of simulated TTDs and MTTs between models with differing performance. (1) 364 

Models are run in steady state (i.e. constant precipitation input) to study time-invariant 365 

representations of the TTD [Section 4.3.1] (2) Models are run dynamically (i.e. measured 366 

precipitation input) to study time-varying behaviour on MTT and TTD caused by 367 

seasonal/event-scale changes in wetness conditions [Section 4.3.2] (3) A sensitivity analysis 368 

of effect of model calibration [Section 4.4] and mixing behaviour [Section 4.5] on the shape 369 

of the modelled TTD  370 

4.1   Model structure evaluation: Output tracer dynamics 371 

The models were driven using measured precipitation depths and weekly precipitation 372 

chloride concentrations for the years 1990 – 2002. Observed chloride concentrations in 373 

streamwater were then compared with the model simulations. The results are shown in Figure 374 

6 (Panels A & B), with close-ups (Panels C & D) of the largest peak in the tracer 375 

concentration series, from Dec 1992 – Oct 1993. 376 
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Figure 6 shows the clear differences in simulated tracer response between models using 377 

single vs. split upper state variables. The models using a single variable simulate greater 378 

mixing of soil water and hence a more damped tracer response, which corresponds more 379 

closely to the measured streamwater chloride concentrations. The split upper state variable 380 

approach produces simulated spikes in tracer concentration (due to reduced mixing within the 381 

model leading to faster tracer breakthrough) which do not occur in the measured data. Hence 382 

to provide a model which can simulate both flow dynamics and tracer response in the Loch 383 

Ard catchment, the single state variable formulation would be the preferred choice.  384 

Within those models using the single upper state variable, the choice of lower zone 385 

formulation makes a smaller but evident difference in simulated tracer response. The single 386 

linear reservoir model simulates extended peaks of tracer concentration higher than those 387 

measured, and concentrations which are too low during recession periods. This indicates that 388 

water is routed too quickly through the model, with insufficient depth of stored water for 389 

realistic mixing behaviour. The parallel linear reservoir and Topmodel formulations simulate 390 

less sustained peak concentrations which more closely match the measured values (e.g. 391 

Figure 6C). In recession periods however, the parallel linear reservoir model simulates too 392 

low concentrations, and hence this model has insufficient mixing in the lower reservoirs. The 393 

Topmodel architecture (i.e. a single nonlinear reservoir) most closely simulates tracer 394 

recession behaviour, and is overall most successful in reproducing the tracer dynamics. 395 

Both the parallel linear reservoir and Topmodel architectures produce unobserved short-396 

duration fluctuations in tracer concentration, and all models simulate unrealistic periods of 397 

constant tracer concentration. Recessions in the chloride concentrations are also too rapid in 398 

some cases (e.g. 1997-1998). These weaknesses are caused by limitations in all the structures 399 

tested which assume a maximum 3 flow pathways, often decreasing to 1 flow pathway during 400 
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recession periods when surface and subsurface stormflow pathways are not active. The short-401 

duration fluctuations are largest in the Topmodel architecture because water ages differ most 402 

strongly between the upper and lower reservoirs, the same characteristic which produces 403 

realistic extended recession curves. In reality, chloride concentrations represent an 404 

aggregation of pathways derived from the spatial and temporal heterogeneity of the 405 

catchment (as shown by Rinaldo et al., 2006). This aggregated solute mixing behaviour is 406 

analogous to that found for flow recessions at the catchment scale which integrate the 407 

behaviour of many hillslopes (Harman et al., 2009). 408 

4.2   Model Structure Evaluation: Mean Transit Times 409 

In this section we investigate the effect of model structure on MTT and compare the 6 FUSE 410 

model estimates of MTT with those previously derived for the Loch Ard B10 catchment. The 411 

MTTs predicted by the FUSE models are all relatively short, less than 150 days (Figure 7). 412 

There is a marked split whereby models which use a single upper state variable [S/1Linear, 413 

S/2Linear, S/Topmodel] have longer MTTs than those which use split upper state variables 414 

for tension and free storage [Sp/1Linear, Sp/2Linear, Sp/Topmodel]; resulting from the 415 

different mixing characteristics as described in the previous section. Short MTTs are 416 

consistent with the dominant responsive soils (peats, gleys) that generate a quickflow 417 

response in the Loch Ard catchment. Indeed, previous work has shown dominant soil cover to 418 

be the best single landscape predictor of catchment MTTs in the Scottish Highlands 419 

(Hrachowitz et al., 2009a; Rodgers et al., 2005b; Speed et al., 2010; Tetzlaff et al., 2009). 420 

Previous estimates of the MTT (Table 4 and Figure 7) are typically longer than the FUSE 421 

estimates, and have a wide range due to the range of models used (refer to Table 4), 422 

highlighting the difficulty of choosing an appropriate TTD shape, particularly under an 423 

assumption of time invariance. The time invariance assumption may also lead to an under-424 

representation of fast flow pathways and hence a longer MTT (refer to Section 4.3.2 for a 425 
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discussion). The FUSE models demonstrate that the range in MTT due to dynamic wetness 426 

conditions can be greater than the range due to choice of model structure.  427 

 428 

4.3   Synthetic Experiments  429 

The FUSE models can be used to investigate the relationship of model structure to simulated 430 

water age characteristics. The performance of the models in reproducing tracer concentrations 431 

(Figure 6) can then be used to judge which types of water age dynamics are most realistic. 432 

The models can be used to investigate aspects of water age which we are not currently able to 433 

measure directly, such as TTDs. 434 

4.3.1   Steady State Models 435 

In real conditions, TTDs can change seasonally or by event (McGuire and McDonnell, 2010; 436 

Weiler et al., 2003) in any catchment due to varying catchment wetness (Birkel et al., 2012; 437 

Hrachowitz et al., 2010; McGuire et al., 2007; Nyberg et al., 1999); this correspondingly 438 

causes temporal variation of MTTs (Lindstrom and Rodhe, 1992; Turner et al., 1987). We 439 

initially avoided this complexity by using a synthetic constant precipitation input, to 440 

determine whether different model structures simulate different steady state water TTDs 441 

(even when simulated flow dynamics are similar) and how that gives rise to the different 442 

tracer dynamics shown in Figure 6. 443 

Each catchment model was run with constant rainfall and PET input set at the average per-444 

timestep depth. The models were spun up to steady state (1 year) and then run for a further 11 445 

years to capture the TTD including the tail, consistent with the findings of Hrachowitz et al. 446 

(2011) who found that a spin-up period of approximately 3 times the MTT was required. The 447 

steady state TTDs are shown in Figure 8 for (A) Total subsurface flow and (B) Deep 448 

groundwater only.  449 
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The TTDs demonstrate clear differences between model structures. The total flow TTDs 450 

show that models with split upper state variables have a more peaked initial response than 451 

those with a single variable. This helps to explain differences in simulated tracer dynamics, as 452 

the former route storm water more quickly to the channel with less mixing with older water. 453 

The poorer performance in tracer simulation for these models shows that this is a less realistic 454 

conceptualisation, concurring with previous studies which highlight the importance of deep 455 

flow pathways for solute transport (e.g. Botter et al., 2008).  456 

The maximum of the distribution is typically close to zero indicating the dominance of fast 457 

flow pathways; although models using a single upper state variable and linear lower zone 458 

reservoirs have a slightly later maximum. Non-zero peaks have been found in previous 459 

studies e.g. McGuire et al. (2007) who simulated bromide tracer flux in a steep hillslope with 460 

gravelly clay loam soils over relatively low permeability bedrock and found that modelled 461 

TTDs peaked at 10 days rather 0 days. In some drier climates, lags may also be related to 462 

inter-arrival times of storms or wet periods when more than one storm event is required to 463 

flush the tracer through the catchment (Rinaldo et al., 2011; the climate example used was 464 

180 mm/yr rainfall with 10% rainy days). The models using the Topmodel formulation, most 465 

successful in simulating tracer response, have flatter responses than those using linear 466 

reservoirs. Note that the TTDs given do not include the saturation excess flow pathway: this 467 

pathway provides an unmixed pulse of tracers at transit times of < 1 day. The TTDs for 468 

baseflow only (indicative of the behaviour of the catchment in a drier state) are flatter with 469 

more delayed responses showing the longer transit times for water following deeper flow 470 

pathways.  471 

4.3.2   Effect of rainfall variation and antecedent catchment wetness on water transit 472 

time distribution 473 
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The previous section examined the case of the catchment in steady state, and hence an 474 

invariant transit time distribution. This assumption lies behind the majority of interpretations 475 

provided of experimental data for MTTs which use a fixed distribution to model the TTD. In 476 

reality, TTDs vary according to the wetness state of the catchment on both a seasonal and 477 

event time-scale. Recently, the time variant nature of TTDs has been stressed by Botter et al. 478 

(2010) who also developed the underlying theory. Complementary work by Hrachowitz et al. 479 

(2010) demonstrated inter-annual variation in gamma TTDs and showed that the b (scale) 480 

parameter could be linked to precipitation intensity. However, when applied to a catchment 481 

like Loch Ard B10, time-variance may be weaker due to the year-round wet climate and 482 

peaty soils, as has been found in other case studies carried out in wet catchments (Hrachowitz 483 

et al., 2010; Rinaldo et al., 2011). The long data record also helps to ensure that the full range 484 

of catchment response pathways is captured and hence a stationary TTD more completely 485 

represents catchment behaviour. 486 

The FUSE framework allows us to explore the TTD time variation simulated by different 487 

model structures, and hence test the hypothesis that these variations are required for realistic 488 

tracer simulation. Here, the FUSE models were driven using the recorded precipitation time 489 

series (after spin-up to steady state as for Section 4.3.1). Figure 9 demonstrates how MTT 490 

varies over a multi-year period, showing strong seasonal variation in 4 of the 6 models. The 491 

longer MTTs during dry periods contribute proportionately less to the total MTT due to the 492 

weighting effect of the lower fluxes involved. Note that the modelled dry season MTTs are 493 

still relatively short, reflecting the small size of the actual groundwater stores at Loch Ard 494 

and their rapid turnover. The 2 models with weak seasonality have split upper state variables 495 

and linear lower reservoirs, and display very short MTTs (< 10 days) which vary with 496 

individual rainfall events rather than the seasonal cycle. Models with a single upper state 497 

variable display longer MTTs as these simulate greater mixing of water within the soil zone 498 
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(a conceptualisation of mixing of water held in tension in the soil matrix with free water in 499 

the matrix or macropores). The structure of the lower zone also affects MTT: in particular the 500 

Topmodel formulation leads to longer MTTs since the nonlinear drainage function means that 501 

a greater volume of water is retained in the lower store between rainfall events.  502 

By comparing the MTT variability (Figure 9) with model tracer simulations (Figure 6) we see 503 

that the models which simulate longer, seasonally-varying MTTs provide most realistic tracer 504 

dynamics. However it is not sufficient for a model to reproduce the seasonal cycle in MTT to 505 

achieve good performance. For example, the model with split upper state variables, and 506 

Topmodel formulation lower architecture, produces a seasonal cycle due to the larger lower 507 

store, but produces unrealistic event-scale tracer response due to lack of simulated mixing in 508 

the upper soil zone. None of the models tested are able to simulate long MTTs without also 509 

producing a seasonal cycle in MTT, because tracers that persist over multiple months are 510 

subject to seasonal changes in the model wetness state that are necessary to simulate seasonal 511 

differences in the flow dynamics. 512 

In addition to the MTT, the full TTDs for different wetness conditions can be compared with 513 

both the master and steady-state TTDs (Figure 10). This helps to determine whether steady 514 

state models can produce a good approximation to the master TTD. The answer is likely to be 515 

catchment-specific, as catchments with less pronounced fluctuations in their climate 516 

(including seasonality and other timescales) will have more similar master and steady-state 517 

TTDs. Here we show TTDs for the three model structures which simulated the most realistic 518 

tracer series, i.e. upper zone modelled with a single variable, 3 lower zone architectures. In all 519 

cases, there is a strong differential between TTD shapes in wet and dry conditions for fast 520 

flow pathways (less than 30 days). In particular, the dry TTD is bimodal with peaks at < 5 521 

days and 50-60 days, but a reduction in flow paths compared to the wet TTD in the 522 
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approximate range 5-30 days. The differences between wet and dry TTDs are due to the 523 

initial water depth in the model, the extent to which later rainfall fills model stores and 524 

increases flow, and the proportions of runoff from saturation excess flow, interflow and 525 

baseflow. 526 

The differences in TTD for timescales up to 30 days for wet and dry conditions (with 527 

corresponding differences between the master and steady state TTDs), suggest that steady 528 

state models will not simulate realistic tracer transport at short time scales. However, at 529 

longer time scales there is less difference between TTDs for wet or dry conditions, especially 530 

in the best performing model (Topmodel formulation) where all TTDs have heavier tails. We 531 

conclude that for slow flow pathways in the B10 catchment, the dynamic nature of the TTD 532 

is less important and could reasonably be approximated by a steady state model. In log space 533 

[not shown] the steady state TTDs are approximately linear, suggesting that an exponential 534 

model could be used. However the dynamic TTDs show additional fast flow pathways which 535 

are not captured by the exponential distribution. This helps to explain why a gamma function 536 

is often found to be more successful than an exponential function in reproducing tracer 537 

dynamics (Godsey et al., 2010), especially at the event scale (Birkel et al., 2012), although 538 

modelled TTDs do not always conform to simple statistical distributions (Dunn et al., 2010). 539 

4.4   Sensitivity of TTDs to model parameters 540 

The model TTD is sensitive to parameter values as well as model structure. Although most 541 

parameters were set using field knowledge, there is still uncertainty in the appropriate value 542 

at model scale. We therefore undertook a sensitivity analysis to investigate the effect of 543 

available depths of upper and lower zone storage on the model TTD, allowing some insights 544 

into the interplay of model structure and parameterisation. The storage depths were chosen as 545 
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parameters to be varied because the depth of water available for mixing is know to be an 546 

important control on model ability to simulate tracer dynamics (Fenicia et al., 2010). 547 

The model used was [Upper zone: Single Variable, Lower Zone: Topmodel], as this produced 548 

the most realistic simulation of tracer dynamics (Figure 6). The effects of changing upper and 549 

lower zone storage depths on TTD and model performance are shown in Figure 11. The 550 

results show that the TTD is more sensitive to the size of the upper zone store than the lower 551 

zone. We suggest that this is due to the greater nonlinearity of response in the upper store 552 

which is controlled by a threshold rather than a power function. The changes resulting from 553 

perturbation of upper zone size are of comparable magnitude to those resulting from a change 554 

in model structure and should therefore be considered alongside model structure when 555 

creating a model which realistically reproduces tracer dynamics.   556 

Figure 11 also shows that model performance is more sensitive to the size of the lower zone 557 

store than the upper. Performance falls quickly away from the optimal value. Less sensitivity 558 

is found to the size of upper zone store but model performance could be slightly improved by 559 

increasing the store size above the value of 320mm set using results from field knowledge, 560 

with a corresponding increase in MTT. 561 

4.5   Sensitivity of TTDs to mixing of saturation excess flow 562 

An important decision in the modelling process was whether saturation excess flow should be 563 

treated as mixed or unmixed with subsurface stormflow. In some environments, high 564 

intensity rainfall may run off quickly and be missed by weekly sampling. However in the 565 

Loch Ard wet environment with peaty soils and relatively low intensity frontal rainfall, there 566 

is usually ready availability of water in the upper organic horizons for mixing and hence the 567 

displacement of resident soil water becomes the dominant source of runoff. 568 



 25 

To explore this question a sensitivity analysis was carried out into the effect of flow 569 

partitioning between surface (unmixed) and subsurface (mixed) pathways. We used the 570 

model with a single upper state variable and 2 parallel linear reservoirs, because it provides a 571 

good simulation of tracer dynamics during high flows (when surface pathways are active) and 572 

the effect of surface flow mixing can be easily studied by changing the parameter 573 

‘ARNO/VIC b exponent’ which controls the quantity of surface vs. subsurface flow by 574 

changing the estimate of saturated area based on upper zone soil water storage (see model 575 

equation in Table 1). The results (Figure 12) show that the TTDs are relatively insensitive to 576 

the introduction of additional water into the soil zone (i.e. increasing b), when compared to 577 

sensitivity to store sizes (Figure 11). We therefore suggest that in this case it is acceptable to 578 

make the simplifying assumption the saturation excess flow is unmixed. 579 

 580 

5.   Discussion 581 

Water transit time characteristics provide a valuable diagnostic tool for evaluation of model 582 

structure, to complement the traditional comparison of modelled and measured discharge 583 

series, as shown both in this and previous papers (Birkel et al., 2011b). While other data 584 

sources such as soil moisture or depth to water table can also be used for multi-response 585 

evaluation, they are typically point measurements subject to the ‘scaling problem’ (Blöschl 586 

and Sivapalan, 1995; Sivapalan et al., 2004). Tracer dynamics are particularly useful as they 587 

provide an alternative integrated signal to the hydrograph. 588 

In return, hydrological models (including mixing assumptions) provide a tool for 589 

investigating scenarios of water TTD shape, and variability with catchment wetness. These 590 

characteristics are not directly measurable using environmental tracers, and hence models 591 

provide a method for their estimation. An estimate of the TTD shape is required for studies 592 

which use inverse modelling to obtain MTT estimates and then apply the results to simulate 593 
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tracer, chemical or contaminant transport (McDonnell et al., 2010). It is hoped that future 594 

work will indicate whether distribution shapes and variability are transferable between 595 

neighbouring or hydrologically similar catchments.  596 

This study relied on several assumptions. Firstly, uncertainty in rainfall, climate, streamflow 597 

and chloride measurements was not considered, although it is well known that measured 598 

hydrological data is subject to many sources of uncertainty (e.g. Andreassian et al., 2004; 599 

Beck, 1987; Pelletier, 1988). These uncertainties can have substantial effects on calibrated 600 

parameter values (e.g. McMillan et al., 2010) and may therefore indirectly affect water transit 601 

time characteristics predicted by the model. A second assumption was that the effects of dry 602 

deposition and biogeochemical cycling on chloride concentrations were modelled using a 603 

constant, multiplicative adjustment factor to correct the mass balance (refer to Section 2.3).  604 

Our modelled transit times were generally shorter than previous estimates from tracer data, 605 

consistent with previous findings that model storage volumes required to capture water 606 

quantity dynamics are smaller than those required to reproduce tracer dynamics (e.g. Fenicia 607 

et al., 2010). Our work highlighted the value of FUSE to understand which model structure 608 

and TTD characteristics (shape, time-variability) enable simulation of both flow and tracer 609 

concentrations. For example, at Loch Ard this could be achieved using a Topmodel style 610 

nonlinear lower zone store, with a TTD which has a greater weight of fast flow pathways 611 

than the exponential distribution and varies with catchment wetness at short time-scales.  612 

Although previous studies have shown that water and tracer dynamics can be used to tailor a 613 

model for an individual catchment (e.g. Birkel et al., 2011b), the FUSE framework provides 614 

much greater flexibility in model structure. It leads towards a robust, transferable method for 615 

water and tracer modelling that could be relatively easily used in a wide range of catchments 616 
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by selection of appropriate FUSE model components according to process knowledge or 617 

structural diagnostics, on a per-catchment basis or using a regionalisation method. 618 

The study has also led to recommendations for model structure options that could be added to 619 

FUSE to improve the concurrent representation of streamflow and tracer dynamics. For 620 

example, subsurface stormflow is currently modelled as a linear function of free storage in 621 

the upper zone. When this pathway is used in a model with separate state variables for 622 

tension and free storage, the free storage becomes a very fast response store with low transit 623 

times. Recent ecohydrologic experiments suggest that in a strongly seasonal, Mediterranean 624 

climate where there is significant summer soil drying, water in the soil matrix may be largely 625 

decoupled from that in fast flows paths (Brooks et al., 2010; Phillips, 2010). In climates 626 

where it occurs, this behaviour would be more closely modelled by the split upper state 627 

variables approach. One method to reconcile longer mean transit times with split state 628 

variables would be to use a nonlinear response function for interflow (e.g. a power function 629 

similar to those used to model percolation).  630 

 631 

There are many needs for future research into transit time distribution characterisation; a 632 

summary was provided by McDonnell et al. (2010). This study highlighted that although 633 

MTT provides a very useful summary statistic of catchment behaviour, there is a need for 634 

better measurement techniques which work towards characterisation of the complete time-635 

variable TTD: this would reduce ambiguity in transit time estimates and provide extremely 636 

valuable data against which to test different model structures. Further, although of lesser 637 

importance in a fast-responding catchment such as Loch Ard, conservative/natural tracers are 638 

not adequate to capture behaviour in catchments with MTT of greater than a few years 639 

(Hrachowitz et al., 2009a; Stewart et al., 2010), meaning that alternative tracers or methods 640 

are needed to investigate TTD tails in catchments with long response times. Improved 641 
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understanding of the true TTD would also help to counter other causes of bias such as 642 

streamwater tracer sampling biased towards low flows, or model inability to differentiate 643 

multiple deep groundwater stores.  644 

 645 

6.   Conclusions 646 

In this paper we demonstrated how augmenting the FUSE rainfall-runoff modelling 647 

framework with a water-tracking ability provides the opportunity to use tracer data as an 648 

additional model structure diagnostic. Using a range of calibrated models for the Loch Ard 649 

B10 catchment in Scotland, we showed that different model structures which provide very 650 

similar flow dynamics (and hence performance as measured by a sum-of-squared-errors 651 

score) can produce very different simulations of water TTD and tracer dynamics. We 652 

evaluated different model structures against streamflow tracer dynamics using weekly 653 

observations of tracer concentration. In the Loch Ard catchment, a model structure could be 654 

selected to provide good simulations of both flow and tracer dynamics. We used the water-655 

tracking models as a hypothesis testing tool to explore the effect of catchment transit time 656 

characteristics on model behaviour and performance. Across model structures we showed 657 

strong seasonality and event-scale fluctuation in MTT and TTDs; and corresponding 658 

differences between dynamic and steady state TTDs. The results suggest that steady-state 659 

approximations to the catchment TTD at Loch Ard will not simulate realistic tracer transport 660 

at short time scales (< 30 days), although differences are less marked at longer time scales. 661 

The FUSE framework with water age characterisation provides a tool to investigate flow and 662 

tracer modelling in competing model structures, which could be relatively easily applied to 663 

many catchments. 664 

 665 
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Figure Captions 669 

Figure 1. (A) Loch Ard B10 catchment map and instrument locations (B) Photograph of Loch 670 
Ard B10 catchment 671 

Figure 2. Hydrometric and hydrochemical data available for the Loch Ard B10 catchment 672 

Figure 3. Conceptual diagram showing process used to calculated model TTDs and outflow 673 
tracer concentrations in a sample FUSE model. (A) Water age distribution of each reservoir 674 
(S1 upper zone, S2

A,B lower zone) stored as histogram. Fluxes (p precipitation, qif interflow, 675 
q12 drainage, qb

A,B baseflow) have the age signature of their source reservoir. (B) Outflow age 676 
distribution for time t is the sum of distributions from component fluxes (qif, qb

A,B).  (C) TTD 677 
of input water is calculated from the corresponding outflow times. (D) Outflow tracer 678 
concentration calculated by convolution of outflow age distribution with precipitation tracer 679 
concentrations 680 

Figure 4. Simplified wiring diagram showing model architecture options used in this study. 681 
Upper Zone: [S] A single state variable S1 combining tension and free storage [Sp] Separate 682 
state variables for tension S1

T and free S1
F storage. Lower Zone: [1 Linear] S2 A single linear 683 

reservoir [2 Linear] S2
A, S2

B Two parallel linear reservoirs [Topmodel] S2 A single nonlinear 684 
reservoir based on Topmodel concepts (where surface runoff qsx is controlled by the lower 685 
zone). Key to soil moisture values: θW wilting point (here 0), θF field capacity ( )max,1S⋅φ , θS 686 

saturation point ( )max,1S . 687 

Figure 5. Calibration results for lower zone storage parameters for 3 lower zone model 688 
architectures. The objective function is the sum of squared errors between modelled and 689 
measured discharge series, after Box-Cox transformation to normalise error variance. The 690 
calibration period was over two hydrological years (1998-1999). 691 

Figure 6: Time series of measured Chloride input and output concentrations and comparisons 692 
with model predictions. (A) Models with a single upper zone storage variable (B) Models 693 
with split upper zone storage variables (C) Close-up of A for largest event (Dec 1992 – Oct 694 
1993). (D) Close-up of B for largest event 695 

Figure 7: Comparisons of MTT estimates between models (run in dynamic and steady state 696 
mode) and from previous studies (Table 4) of the B10 catchment. 697 

Figure 8 Steady state transit time distributions for a range of model structures. (A) Combined 698 
flow: Subsurface stormflow + groundwater flow (B) Groundwater flow only 699 

Figure 9: Variation of Mean Transit Time with time for a range of model structures (A) 700 
Models with single upper state variable, (B) Models with split upper state variables. (C) 701 
Measured Flow is plotted for comparison 702 

Figure 10: Variation in transit time distribution according to catchment wetness condition for 703 
3 model structures. TTDs are given for (All): All days in record, (Wet): Days in lower 704 
quartile of MTT distribution, (Dry): Days in upper quartile of MTT distribution, (Steady 705 
State): Steady state TTD for comparison. 706 
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Figure 11. The effects of changing upper and lower zone storage depths on Transit Time 707 
Distribution (upper panels) and model performance (lower panels). TTDs are shown for equal 708 
increments/decrements of store size (thin lines) up to the maximum/minimum values given 709 
(thick lines). 710 

Figure 12. The sensitivity of the model to soil water mixing is shown by varying the surface 711 
flow b parameter. Effects are shown on Transit Time Distribution (upper panel) and 712 
Percentage share of flow volume between pathways (lower panel). 713 

 714 

 715 
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Table 1. State and flux equations for the 6 FUSE models tested in this paper.  716 

Model 1 (Single Upper /  
1-Linear Lower) 

2 (Single Upper /  
2-Linear Lower) 

3 (Single Upper / 
Topmodel Lower) 
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* Overflows from tension (qutof), free (qqufof) and lower (qsfof) reservoirs represent addition flow into the free storage, surface runoff and baseflow, respectively. Logistic 717 
functions are used to smooth the threshold relating to the fixed storage capacities (following Clark et al., 2008; Section 4.8). 718 
** The variable ζ  for surface runoff parameterization of Models 3 and 6 describes the spatial distribution of the topographic index (Beven and Kirkby, 1979). The 719 
distribution used is Γ(λ,χ) fitted to data from the digital elevation model (following Clark et al., 2008; Section 4.6). 720 
*** The time delay in runoff is modelled using a gamma distribution Γ(μ,3) of routing times applied to all fluxes (following Clark et al., 2008; Section 4.9)721 
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Table 2. Model Fluxes (all unit are mm d-1) 722 
 723 
Variable Name Description 
p Precipitation 
e Evapotranspiration 
qsx Saturation Excess Runoff 
qif Interflow (Subsurface Stormflow) 
q12 Drainage from upper to lower zone 
qb  qb

A qb
B Baseflow (from single, primary, 

secondary reservoir) 
qutof  qufof   Overflow from upper zone (from 

tension, free reservoir) 
qsfof   qsfofa  qsfofb  Overflow from lower zone 
 724 
 725 
 726 
Table 3. Parameters used for different FUSE models. Parameter values are identified as 727 
[Field] identified from field knowledge, [Default] Default recommended FUSE values, or 728 
[Calibrate] Calibrated. Refer to Section 3.5 for details. 729 
 730 

  Lower Zone Formulation 

Parameter 
Description 

Single Linear 
Parallel 
Linear 

Topmodel 
Parameter 

Type 

max,1S  Maximum storage in unsaturated zone (mm) 320.0 320.0 320.0 Field 

max,2S  Maximum storage in saturated zone (mm) Inf Inf 91.3 Calibrate 

φ  Fraction total storage as tension storage 0.440 0.440 0.440 Field 

uk  Vertical drainage rate (mm/day) 750.0 750.0 750.0 Default 

c  Vertical drainage exponent 1.0 1.0 1.0 Default 

ik  Interflow rate (mm/day) 1000.0 1000.0 1000.0 Default 

sk  Baseflow rate (mm/day) 1000.0 1000.0 1000.0 Default 

n  Baseflow exponent N/A N/A 12.18 Calibrate 

υ  Baseflow depletion rate (single reservoir) (/day) 0.176 N/A N/A Calibrate 

Aυ  Baseflow depletion rate (primary reservoir) (/day) N/A 0.840 N/A Calibrate 

Bυ  Baseflow depletion rate (secondary reservoir) 
(/day)

N/A 0.0317 N/A Calibrate 

b  ARNO/VIC ‘b’ exponent 0.500 0.500 0.500 Default 

λ  Mean of log topographic index distribution (m) N/A N/A 5.91 Field 

χ  Shape parameter of topographic index distribution N/A N/A 2.57 Field 

μ  Time delay in runoff 0.3 0.3 0.3 Calibrate 
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Table 4. Previous estimates of MTT in the Loch Ard B10 catchment 734 

Reference Model MTT (days).  
Tetzlaff et al. (2007a) Exponential 120-180 

Exponential-Piston flow 180-270 
Sine wave 60 

Godsey et al. (2010) Gamma (α = 0.56) 29.2 
Hrachowitz et al. 
(2009b) 

Exponential 93 
Gamma 62-203 
Two parallel linear 
reservoirs 

54-254 
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 975 

Figure 1. (A) Loch Ard B10 catchment map and instrument locations (B) Photograph of Loch Ard B10 catchment 976 

 977 
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 978 

 979 

Figure 2. Hydrometric and hydrochemical data available for the Loch Ard B10 catchment 980 
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 981 

Figure 3. Conceptual diagram showing process used to calculated model TTDs and outflow tracer concentrations in a sample FUSE model. (A) 982 
Water age distribution of each reservoir (S1 upper zone, S2

A,B lower zone) stored as histogram. Fluxes (p precipitation, qif interflow, q12 drainage, 983 
qb

A,B baseflow) have the age signature of their source reservoir. (B) Outflow age distribution for time t is the sum of distributions from 984 
component fluxes (qif, qb

A,B).  (C) TTD of input water is calculated from the corresponding outflow times. (D) Outflow tracer concentration 985 
calculated by convolution of outflow age distribution with precipitation tracer concentrations 986 

987 
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 988 

Figure 4. Simplified wiring diagram showing model architecture options used in this study. Upper Zone: [S] A single state variable S1 combining 989 
tension and free storage [Sp] Separate state variables for tension S1

T and free S1
F storage. Lower Zone: [1 Linear] S2 A single linear reservoir [2 990 

Linear] S2
A, S2

B Two parallel linear reservoirs [Topmodel] S2 A single nonlinear reservoir based on Topmodel concepts (where surface runoff qsx 991 
is controlled by the lower zone). Key to soil moisture values: θW wilting point (here 0), θF field capacity ( )max,1S⋅φ , θS saturation point ( )max,1S  992 

993 
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 994 

 995 

Figure 5. Calibration results for lower zone storage parameters for 3 lower zone model architectures. The objective function is the sum of squared 996 
errors between modelled and measured discharge series, after Box-Cox transformation to normalise error variance. The calibration period was 997 
over two hydrological years (1998-1999). 998 

 999 
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 1000 

Figure 6. Time series of measured Chloride input and output concentrations and comparisons 1001 
with model predictions. (A) Models with a single upper zone storage variable (B) Models 1002 
with split upper zone storage variables (C) Close-up of A for largest event (Dec 1992 – Oct 1003 
1993). (D) Close-up of B for largest event 1004 
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 1006 

 1007 

Figure 7. Comparisons of MTT estimates between models (run in dynamic and steady state 1008 
mode) and from previous studies (Table 4) of the B10 catchment. 1009 
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 1012 

Figure 8. Steady state transit time distributions for a range of model structures. (A) Combined 1013 
flow: Subsurface stormflow + groundwater flow (B) Groundwater flow only 1014 

1015 
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 1016 

 1017 

Figure 9. Variation of Mean Transit Time with time for a range of model structures (A) 1018 
Models with single upper state variable, (B) Models with split upper state variables. (C) 1019 
Measured Flow is plotted for comparison 1020 
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 1022 

 1023 

Figure 10. Variation in transit time distribution according to catchment wetness condition for 1024 
3 model structures. TTDs are given for (All): All days in record, (Wet): Days in lower 1025 
quartile of MTT distribution, (Dry): Days in upper quartile of MTT distribution, (Steady 1026 
State): Steady state TTD for comparison. 1027 
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 1029 

 1030 

Figure 11. The effects of changing upper and lower zone storage depths on Transit Time 1031 
Distribution (upper panels) and model performance (lower panels). TTDs are shown for equal 1032 
increments/decrements of store size (thin lines) up to the maximum/minimum values given 1033 
(thick lines). 1034 
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 1036 

 1037 

Figure 12. The sensitivity of the model to soil water mixing is shown by varying the surface 1038 
flow b parameter. Effects are shown on Transit Time Distribution (upper panel) and 1039 
Percentage share of flow volume between pathways (lower panel). 1040 
 1041 


