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Abstract11

This paper presents an investigation of rainfall error models used in rainfall-runoff model 12

calibration and prediction. Traditional calibration methods assume input error to be13

negligible: an assumption which can lead to bias in parameter and estimation and 14

compromise model predictions. In response, a growing number of studies now specify an 15

error model for rainfall input, usually simple in form due to computational constraints during 16

parameter estimation. Such rainfall error models have not typically been validated against 17

experimental evidence: in this study we use data from a dense gauge/radar network to directly 18

evaluate the form of basic statistical rainfall error models. Our results confirm the suitability 19

of a multiplicative error formulation subject to constraints on rainfall intensity. We show that 20

the standard lognormal multiplier distribution provides a relatively close approximation to the 21

true error characteristics but does not fully capture the distribution tails, especially during 22

heavy rainfall where input errors have important consequences for runoff prediction. Our 23
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research highlights the dependency of rainfall error model on model timestep and catchment 24

size.25

26

1. Introduction 27

Adequate characterisation of rainfall inputs is fundamental to success in rainfall-runoff 28

modelling: no model, however well-founded in physical theory or empirically justified by 29

past performance, can produce accurate runoff predictions if forced with inaccurate rainfall 30

data (Beven, 2004). The impact of rainfall errors on predicted flow has been highlighted by 31

many authors, including Sun et al., 2000; Kavetski et al., 2002, 2006a, Bardossy and Das, 32

2008, and Moulin et al., 2009. From a management perspective, inaccuracies in rainfall 33

inputs directly compromise model predictions and hence robust decision-making on water 34

and risk management options. Furthermore, errors in rainfall reduce our ability to identify 35

other sources of error and uncertainty, slowing scientific advancement and compromising the 36

reliability of operational applications. This issue is recognized as a major challenge for 37

hydrological modelling science (Kuczera et al, 2006a).38

The impact of input uncertainty on streamflow simulations can be quantified by error 39

propagation, either by using conditional simulation or simply by stochastically perturbing the 40

rainfall inputs. Conditional simulation involves simulating ensemble rainfall fields 41

conditioned on the mean and error of spatial rainfall interpolations (e.g., Clark and Slater, 42

2006; Götzinger and Bárdossy, 2008).  Conditional simulation methods do not require many 43

assumptions on rainfall errors (e.g., Clark and Slater, 2006), but can be time consuming to 44

implement.  Stochastic perturbation of rainfall inputs is therefore more common (Reichle et 45

al., 2002; Carpenter and Georgakakos, 2004; Crow and van Loon, 2006; Pauwels and de 46

Lannoy, 2006; Komma et al., 2008; Pan et al., 2008; Turner et al., 2008).47
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In the stochastic perturbation approach it is common to perturb the model rainfall inputs 48

based only on order of magnitude considerations. For example, Reichle et al. (2002) used 49

additive perturbations from a Gaussian distribution, with standard deviation equal to 50% of 50

the rainfall total at each model time step. Given that uncertainty in hydrological simulations 51

directly depends on adequate characterization of input error (e.g., Crow and van Loon, 2006; 52

Götzinger and Bárdossy, 2008), detailed analysis of the observed error of rainfall inputs is a 53

critical research priority.54

This paper directly evaluates rainfall error models that are commonly used in rainfall-runoff 55

model calibration and prediction. Research is focused on the 50 km2 Mahurangi catchment in 56

Northland, New Zealand, where there is detailed space-time information on rainfall from both 57

a dense gauge network (13 stations) and radar rainfall estimates, which provide an 58

unprecedented opportunity to evaluate basic statistical rainfall error models.  Our main focus 59

is on understanding uncertainties in raingauge network measurements, since they remain the 60

most common form of model input data. We also provide a comparative analysis based on 61

available high-resolution radar fields, to enhance our understanding of the spatial/temporal 62

rainfall variability and its effects on rainfall uncertainty at both the distributed and point 63

scale, in space and in time. We aim to provide practical guidance on what error models and 64

parameterisations might be appropriate at different temporal and spatial resolutions, and 65

hence to provide the independent information necessary to develop ongoing work on 66

quantifying the impact of errors and uncertainties in rainfall on the quality of calibrated 67

parameters and/or on streamflow estimates (Carpenter and Georgakakos, 2004, Bardossy and 68

Das, 2008, Thyer et al, 2009; Moulin et al, 2009; Kavetski et al 2006b Ajami et al., 2007; 69

Vrugt et al, 2003b).70

71
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2. Sources of rainfall input uncertainty in hydrological models72

When using raingauge data, as is currently common in hydrological modelling, a major 73

source of uncertainty in streamflow simulations arises from poor representativeness of a 74

discrete set of gauges of the precipitation over the entire catchment (Refsgaard et al., 2006; 75

Villarini et al., 2008, Moulin et al., 2009), and from the assumptions used to interpolate rain 76

rates between these gauges. The commonly used tipping bucket raingauges are themselves 77

subject to both systematic and random errors, with mechanical limitations, wind effects and 78

evaporation losses (Molini et al. 2001, la Barbera et al., 2002; Shedekar et al, 2009).79

At the other end of the spectrum, radars offer the potential of providing integrated rainfall 80

estimates over large spatial areas, though several challenges remain in interpreting the raw 81

radar data into quantitative rainfall intensities (Moulin et al., 2009). Weather radar coverage82

has dramatically increased over the last few decades, giving access to measurements at high 83

spatial and temporal resolutions (Moulin et al., 2009). Although signal treatment methods 84

have significantly improved (Krajewski and Smith, 2002; Chapon et al., 2008), quantitative 85

precipitation estimates still present difficulties.86

It is increasingly recognised that uncertainty in rainfall has a critical effect on the accuracy of 87

model predictions, and that efforts to advance scientific understanding through interrogating 88

model parameters and structural hypotheses against data are hampered by errors and incorrect 89

assumptions regarding the quality of the rainfall used to drive the model. Reichert and 90

Mieleitner (2009) recently showed that allowing time dependency in rainfall bias improved 91

model performance more than inclusion of any other time dependent parameter. Kavetski et 92

al. (2006a) note that despite advances in data collection and model construction, remaining 93

issues and the high spatial and temporal variability of precipitation input make it probable 94

that rainfall input uncertainty will remain considerable in the foreseeable future.95
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3. Error models for Rainfall measurements96

All calibration methods are based on hypotheses and assumptions, either explicit or implicit, 97

describing how errors arise and propagate through a hydrological system (Kavetski et al., 98

2002). In traditional calibration, such as standard least squares (SLS) and equivalent methods 99

based on the Nash-Sutcliffe optimization, input error is assumed negligible and the model and 100

response errors are represented by a pseudo-additive random process (Kavetski et al. 2002; 101

Kuczera et al, 2006). In the last two decades, increasing research effort has been devoted to 102

moving towards more robust, integrated frameworks for separating and treating all sources of 103

uncertainty (Liu and Gupta, 2007). 104

Beven and Binley (1992) introduced the generalized likelihood uncertainty estimation 105

(GLUE) methodology for model calibration that takes into account the effects of uncertainty 106

associated with the model structure and parameters. However, uncertainties associated with 107

input data and output data (i.e., data errors) are not explicitly considered. Thiemann et al.108

(2001) introduced the Bayesian recursive parameter estimation (BaRE) methodology that 109

poses the parameter estimation problem within the context of a formal Bayesian framework. 110

BaRE explicitly considers the uncertainties associated with model-parameter selection and 111

output measurements, but input data uncertainty and model structural uncertainty are not 112

specifically separated out and are only implicitly considered, by expanding the predictive 113

uncertainty bounds in a somewhat subjective manner (Liu and Gupta, 2007). A variety of 114

other frameworks that have moved the science forward in recent years include the Shuffled 115

Complex Evolution Metropolis algorithm (SCEM) and extensions (Vrugt et al., 2003a,b), the 116

DYNamic  Identifiability Analysis framework (DYNIA) (Wagener et al., 2003), the 117

maximum likelihood Bayesian averaging method (MLBMA) (Neuman, 2003), the dual state-118

parameter estimation methods (Moradkhani et al., 2005a, 2005b), and the Simultaneous 119

Optimization and Data assimilation algorithm (SODA) (Vrugt et al., 2005). However, these 120
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methods do not address all three critical aspects of uncertainty analysis (input error, structural 121

error and output error) in a comprehensive, explicit and cohesive way (Liu and Gupta, 2007).122

Despite the challenges in dealing with multiple sources of uncertainty, several important 123

developments have taken place in the last decade. In particular, Kavetski et al. (2002, 2006a, 124

2006b) introduced the Bayesian total error analysis (BATEA) methodology, which explicitly 125

treats input and output uncertainty, as well as structural errors (Kuczera et al 2006), within a 126

Bayesian framework. BATEA allows the modeller to specify error models for all sources of 127

uncertainty and integrates these models into the posterior inference of model parameters and128

predictions. Similarly, Ajami et al. (2007) introduced the Integrated Bayesian Uncertainty 129

Estimator (IBUNE), which combines a probabilistic parameter estimator algorithm and 130

Bayesian model combination techniques to provide an integrated assessment of uncertainty 131

propagation within a system. If successful, representing and separating individual sources of 132

error would represent a significant advance in environmental uncertainty analysis. 133

In current applications of BATEA and IBUNE, input errors have been assumed to be 134

multiplicative and independent: while both frameworks are model-independent, there is 135

currently little understanding of what an appropriate rainfall error model should look like.136

Other error models, such as additive Gaussian errors, have also been used (e.g. Huard and 137

Mailhot, 2006). Almost all rainfall error models to date are empirical in nature, partly due to 138

computational restrictions. However, Moulin et al. (2009) propose a notable exception, 139

developing and calibrating an error model for hourly precipitation rates combining 140

geostatistical tools based on kriging and an autoregressive model to account for temporal 141

dependence of errors. Finally, in order to ensure statistical and computational well-posedness 142

of the inference, typical applications apply the multiplicative assumption either to entire 143

storm events (preserving the pattern but allowing for depth errors, Kavetski et al (2006b)), or 144
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to individual days with high leverage on model predictions (determined using sensitivity 145

analysis, Thyer et al. (2009)). 146

Fundamentally, progressive disaggregation of individual sources of uncertainty requires more 147

detailed probabilistic models describing the uncertainty in each data source, increasing the 148

parameterization of the inference problem. Meaningful development and application of these 149

hypotheses necessarily require reliable quantitative a priori information. In the absence of 150

such knowledge, unsupported assumptions may be made, undermining the integrity of the 151

inference. In particular, input error is likely to interact with model structural error, making 152

posterior distributions of rainfall model-dependent, as well as affecting the inference of 153

model parameters themselves (Beven, 2004, Balin et al., 2007). The critical significance of 154

developing accurate prior knowledge of rainfall uncertainty is stressed in the findings of 155

Renard et al (2009).156

It is important that the data error models should be developed using data analysis that is 157

independent from the hydrological model calibration, to bring genuine independent 158

information into the inference (Renard et al, 2009). This paper is an early step in this 159

direction, where we test the common multiplicative rainfall error model and comment on its 160

suitability for use at varying spatial and temporal scales of the hydrological model.161

4. Site and campaign description162

The Mahurangi catchment is located in the North Island of New Zealand (Figure 1a). The 163

Mahurangi River drains 50 km2 of steep hills and gently rolling lowlands; catchment 164

elevations range from 250m above sea level on the northern and southern boundaries, to near 165

sea level at Warkworth on the east coast. Approximately half of the catchment (the central 166

lowlands) is planted in pasture; one quarter of the catchment is in plantation forestry; and one 167

quarter native forest. The catchment’s soils have developed over Waitemata sandstones, 168
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which typically display alternating layers of sandstone and siltstone. Most soils in the 169

catchment are clay loams, no more than a metre deep; clay and silt loam soils are also present 170

in some parts of the catchment.171

The climate is generally warm and humid, with mean annual rainfall of 1628mm and mean 172

annual pan evaporation of 1315mm. Frosts are rare, and snow and ice are unknown. In late 173

summer (February and March), remnants of tropical cyclones occasionally pass over northern 174

New Zealand, producing intense bursts of rain. Convective activity is significant over the 175

summer, whereas the majority of the winter rain comes from frontal systems. Maximum 176

rainfall is usually in July, (the middle of the austral winter) while maximum monthly177

temperature and pan evaporation occur in January or February.178

The catchment was extensively instrumented during the period 1997-2001 (refer to Woods et 179

al., 2001 for further details): data from 29 nested stream gauges and 13 raingauges was 180

complemented by measurements of soil moisture, evaporation and tracer experiments. We 181

describe here only the rainfall data collection. The location of the 13 raingauges is shown in 182

Figure 1b; rainfall depths were measured every two minutes using standard 200 mm 183

collectors and 0.2mm tipping buckets. To augment the rainfall observations, the Physics184

Department of the University of Auckland deployed a mobile X-band radar for intensive 185

campaigns of 1-2 months duration. This radar was sited in the southwest corner of the 186

catchment and resolves rainfall on a 150m grid, every 5 seconds (typically amalgamated to 187

two-minute average values), for the whole of the catchment.188

Figure 1. A. Mahurangi Catchment Location Map.      B. Instrumentation Locations189

190

191

192
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5. Analysis193

Our investigation of the rainfall data available in the Mahurangi catchment is divided into 194

two main themes.195

The first part analyses the spatial variability and uncertainty in rainfall when considered 196

solely as a binary (two-state) process. In other words, what is the consistency of wet and dry 197

periods over the catchment? This type of analysis is a crucial check on the assumptions 198

underlying multiplicative rainfall error models, since the latter cannot account for rain events 199

with only partial catchment cover that are hence not recorded by a rain gauge. 200

The second part examines the consistency of rainfall quantities over the catchment; based 201

both on complete rainfall records and also for individual storm events when correct 202

estimation of rainfall is most crucial. This allows us to estimate the statistical distributions of 203

rainfall multipliers and test if these could form the basis of an adequate rainfall error model. 204

In addition, analysis of rainfall profiles at a given gauge during individual storm events is 205

used to put multipliers into the context of an event and understand interactions between 206

temporal and spatial variability within a storm. 207

5.1 Rainfall State208

Raingauges209

Records from the 13 raingauges in the Mahurangi catchment are available as a complete 210

record from 1997-2001. Although some of the records are available at shorter timesteps, all 211

are aggregated to 15 minute intervals: typical of the timestep used in a high resolution 212

hydrological model and designed to be sufficiently long to reduce the influence of random 213

instrument/sampling errors which might otherwise be difficult to distinguish from true spatial 214

variation in rainfall. The analyses are also repeated with rainfall aggregated to 1 hourly 215



10

measurements, in order to add insight into changes in rainfall variability and hence suitable 216

error formulations according to model timestep.217

Our initial hypothesis was that the consistency of rainfall over the catchment is related to the 218

severity of the storm event; i.e. that drizzle or low intensity rainfall might be patchy across 219

the catchment but that heavy rainfall was more likely to be part of an extended weather 220

system covering the complete catchment. The exception might be convective rainfall which 221

could produce intense but localised showers.222

To test this hypothesis, rainfall at each timestep over a 4.1 year period was tallied according 223

to mean rainfall intensity (taken over all gauges in the catchment) and number of gauges 224

recording rainfall. These results are plotted in Figure 2 below. The analysis shows that, using 225

the hourly data (Figure 2A), where mean rainfall intensity recorded by the gauges is greater 226

than 1 mm / hour, rainfall occurs at least 12 of the 13 gauges at least 94% of the time. For 227

intensities 1 mm/hour or greater, the consistency of rainfall across the catchment therefore 228

suggests that a multiplicative error model for rainfall would be suitable regardless of the 229

location of the raingauge in the catchment. Comparing the CDF plots for 15-minute data and 230

hourly data, it can be seen that variability in wet/dry states across the catchment becomes 231

more pronounced at shorter time scales- at rainfall intensities greater than 1mm /hour, rainfall 232

is only captured at 12 or 13 gauges 70% of the time and therefore the threshold for suitability 233

of the multiplicative error model would need to be adjusted accordingly. The choice of 234

threshold would be highly dependent on the required level of accuracy- even at 1.5 mm/hour 235

only 81% capture at 12 or more gauges is obtained, by 2 mm/hour capture reaches 86% and 236

90% capture does not occur until intensities pass 2.6 mm/hour.237

Figure 2: Consistency of rainfall state across raingauges for different critical rainfall 238

intensities, at (A) Hourly and (B) 15-minute timesteps239
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Radar240

Radar data provides much more detail about the spatial variation in rainfall state (wet/dry) as 241

it is resolved on a 150 m grid, but the data is only available for specific field campaign 242

periods (approximately 28 days total during the 4-year rainfall measurement period). Hence 243

radar data is used to provide supplementary evidence to compare with conclusions drawn 244

from the raingauge data analysis. The time periods used for this investigation were the 5 245

storm events captured with the radar, as follows: 7/8/98-12/8/98, 26/8/98-28/8/98, 15/9/98-246

18/9/98, 3/11/99-4/11/99, 9/11/99-13/11/99. Rainfall intensities measured by the radar were 247

aggregated to timesteps of 15 minutes, 1 hour and 24 hours, for comparison.  248

As with the raingauge data, the first analysis was intended to investigate the consistency of 249

rainfall estimates over the catchment. Rainfall consistency can be quantified more exactly 250

using radar data than with raingauges, as the proportion of the catchment under rainfall. 251

Figure 3 below shows simple histograms of this proportion, for the three different time steps.252

Figure 3: Distributions of percentage of catchment under rainfall at different time steps, 253

for five storm events254

As before, we also quantify the relationship between mean intensity of rainfall and 255

consistency of rainfall, by plotting average catchment rainfall against fraction of catchment 256

under rainfall, using the radar data (Figure 4).257

Figure 4: Consistency of rainfall state across radar pixels for different critical rainfall 258

intensities, at (A) Hourly and (B) 15-minute timesteps 259

The results show that, at a 15 minute timestep, there are a significant number of periods 260

during storm events where rainfall is scattered over the catchment (for 35% of timesteps,261

between 10% and 90% of the catchment is under rainfall). As expected, at an hourly timestep,262
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rainfall appears more uniform in time (42% of timesteps with less than 10% rainfall, 31% of 263

timesteps between 10% and 90% rainfall and 27% of timesteps with greater than 90% 264

rainfall). Finally, at a daily timestep, it was unusual to find significant dry areas of the 265

catchment during a storm day (Figure 3).266

Corroborating these observations, the cumulative plots of fraction of catchment under rainfall 267

against intensity (Figure 4) show similar results. At a 15 minute timestep (Figure 4B), rainfall 268

is not consistent across the catchment when mean intensity is below 1 mm/hour, suggesting 269

that a multiplicative rainfall error model would not be suitable. For an hourly timestep this 270

critical intensity is reduced to approximately 0.4 mm/hour (Figure 4B) and for a daily 271

timestep an intensity criterion would not be necessary (not shown). For rainfall with intensity 272

above these thresholds, a multiplicative rainfall error would be suitable. This finding 273

confirms that the approach taken in current applications of the BATEA model calibration 274

strategy (Thyer et al., 2009), with rainfall multipliers applied to those days where the model 275

is most sensitive to rainfall uncertainty (which are generally high-rainfall days), is consistent 276

with observed rainfall spatial variability.277

278

5.2 Rainfall Quantity279

Distributions of rainfall totals280

Where rainfall occurrence is consistent across the catchment and hence suitable for 281

representation by a multiplicative error model, the distribution (type and parameters) of 282

multipliers must be specified. Previous studies have in general specified multipliers as arising 283

from a lognormal distribution with zero mean (Kavetski et al., 2006a;b), or unknown mean 284

(Thyer et al., 2009). The data at Mahurangi allows us to directly test this hypothesis.285
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For each of the 13 raingauges, and for each storm timestep (defined as mean catchment 286

rainfall greater than 0.2mm/hour and at least 6 gauges recording rainfall), the corrective 287

multiplier was calculated in order to transform rainfall measured at the gauge into the mean 288

rainfall over the 13 gauges. These distributions are plotted in Figure 5 below, for both 15 289

minute and hourly timesteps, along with the mean and standard deviation of the empirical 290

multiplier distribution, and the unbiased (zero) line for comparison. An additional plot is 291

shown with all distributions overlaid for comparison.292

Figure 5: Multipliers required to convert raingauge readings to catchment mean rainfall, 293

at (A) Hourly and (B) 15-minute timesteps294

Following the same methodology as for the raingauges, the radar data analysis was repeated 295

using the 28 days, at both 15 minute and hourly timescales. Gauged records were 296

approximated using the radar pixel closed to the gauge location, and multipliers were 297

calculated to transform this value to the catchment mean calculated from the complete radar 298

data set (not just gauge locations). Results are shown in Figures 6A and 6B.299

Figure 6: Multipliers required to convert radar readings at raingauge locations to 300

catchment mean rainfall measured by radar, at (A) Hourly and (B) 15-minute timesteps301

The log multipliers calculated using both 15-minute data and hourly data were also 302

summarised using normal quantile-quantile plots (Figure 7A;B), and via the Lilliefors test to 303

test for normality. The normality hypothesis was rejected for all 13 sites using the raingauge 304

data, and for 12 of the 13 sites using the radar data (the exception being Upper Goatley). The 305

qq-plots show the fat negative tail and excessive kurtosis causing this result, and show that a 306

lognormal distribution does not fully capture the empirical multiplier distribution.307
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Figure 7: QQ-Plot of Multiplier Distribution against Normal Distribution for raingauge 308

and radar data at (A) Hourly and (B) 15-minute timestep309

When multiplicative error models for rainfall are used in hydrological modelling applications, 310

the assumptions are typically made that rainfall multipliers are uncorrelated in time and have 311

an invariant distribution (Kavetski 2006a;b). Autocorrelations of the empirical multiplier 312

series were calculated: at an hourly timestep the maximum autocorrelation occurs at lag 1, 313

with a mean value of 0.15 over all gauges, and decreases rapidly for higher lags. At a 15-314

minute timestep the value is increased to 0.34. Therefore for models operating at a 15-minute 315

timestep where multipliers are applied to consecutive timesteps, an error model including an 316

autocorrelation term would improve the representation of errors; however for models at an 317

hourly timestep or where multipliers are applied only to selected heavy-rainfall timesteps, 318

autocorrelation would be less important.319

To test for invariance in multiplier distribution, comparisons were made amongst storm 320

timesteps of different rainfall depth (Figure 8A) and according to the season during which the 321

rain fell (Figure 8B). The figures show that the multiplier distribution does not vary 322

significantly with season, although there is slightly more variation between gauges during the 323

wetter seasons (winter and spring) than in the drier seasons (summer and autumn). The depth 324

of rainfall does however affect the multiplier distribution: during light rain the distribution is 325

close to lognormal; but during heavy rainfall multipliers have increased skew and the 326

distribution has heavier tails with more outliers. Although it is not unexpected that heavy rain 327

events show more variation over the catchment (e.g. during convective rain), this result 328

shows that high multiplier values are caused by true variation in rainfall processes and not by 329

noise (i.e. sampling and instrument error) obscuring the signal at low rainfall depths.330
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Figure 8: QQ-Plot of Multiplier Distribution against Normal Distribution at hourly 331

timestep, compared by (A) Rainfall Depth and (A) Season332

333

Raingauge versus radar data334

Comparing Figures 7A and 7B significant differences are shown between using raingauge 335

data (improved temporal coverage; reduced spatial coverage) versus radar data (shorter 336

temporal coverage, improved spatial coverage). In particular, the skew is more pronounced in 337

the radar data than in the raingauge measurements, especially at 15-minute timescale. In 338

addition, the radar data shows noticeable changes in error distribution between gauges, unlike 339

the raingauge data, where the errors tended to follow a more consistent shape.340

It is likely that the more complete sampling of catchment rainfall provided by the radar, 341

including the more inaccessible hillcountry and bush areas where raingauges are more 342

difficult to site, is in part responsible for these differences. However, the susceptibility of 343

radar data to transient errors from sources such as measuring the field at some distance above 344

the ground and recording the reflectivity data with a limited radiometric resolution (e.g. 345

Fabry et al., 1994; Nicol and Austin, 2003; Jordan et al., 2000) may also play a role. 346

Another important distinction is that the radar data is concentrated during storm periods, and 347

multiplier distributions are more skewed during large storms (Figure 8A). For example, if348

only timesteps where the raingauge reading is greater than 2 mm per 15 mins are considered, 349

skewness typically triples (although this effect may be partly due to the resulting change in 350

sample size). The result is particularly pronounced in atypical areas of the catchment, such as 351

Moirs Hill, which lies in the hills in the South-West of the catchment and consistently records 352

higher than average rainfall in response to orographic rainfall effects. Increased skewness 353
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during storm events must be accounted for if rainfall multipliers are to be applied to high-354

rainfall days only (as in the BATEA case study of Thyer et al, 2009), and suggests that a 355

skew distribution together with careful siting of the raingauge would be necessary to capture 356

the multiplier distribution even at a relatively small basin such as the Mahurangi.357

It is also interesting to note the differences in the representativeness of individual gauges. For 358

example, the Toovey Road gauge is highly representative of the catchment mean rainfall, 359

showing a strongly peaked distribution with mean close to zero, while other sites such as 360

Falls Road are less representative for both raingauge and radar analyses. This observation 361

echoes previous studies into representative areas of a catchment for given variables such as 362

soil moisture, designed to reduce gauging requirement requirements, e.g. Martinez-Fernandez 363

and Ceballos (2005), Vachaud et al. (1985).364

365

Consistency in rainfall profiles366

In response to the differences between raingauge and radar data, highlighted in the previous 367

section, further investigation was carried out into the spatial and temporal variation in rainfall 368

volumes. In particular, this analysis may provide insights into the increased variability in 369

multiplier distributions in the radar data, not seen in the raingauge totals.370

Firstly, spatial variation in rainfall totals was investigated. Hourly and 15-minute rainfall 371

profiles were extracted for all raingauges, for the nine largest storms over the study period 372

(Figure 9A;B).373

Figure 9: Comparison of storm profiles between raingauges, at (A) Hourly and (B) 15-374

minute timesteps375
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These profiles show remarkably little variation in storm profile between raingauges, with 376

peaks generally occurring at all gauges within a timespan of 1 hour. This result may be due to 377

an underlying lack of variability in rainfall or may rather be caused by the averaging effect of 378

recording raingauge totals at hourly intervals, which could hide rainfall variability at short 379

temporal scales. One storm where both 2 min and 15 min data are available from the radar is 380

investigated in more detail: Figure 10A below shows the storm profile at both 2 min and 15 381

min timesteps, for 3 of the raingauge locations. In addition, the multipliers from each of those 382

gauges to the mean catchment rainfall are calculated, again at both 2 min and 15 min 383

timesteps, and shown in Figure 10B. 384

Secondly, the ability to capure peak rainfalls was examined. The peaks of rainfall intensity 385

are significantly damped (Figure 10A; max intensity reduced by more than 60% for some 386

peaks) and this effect would lead to important changes in the tails of the multiplier 387

distributions. Multiplier distributions must therefore be considered dependent on timestep 388

length. The fluctuations caused by rain cells tracking over the catchment occur in the 2 min 389

data, but much of the variation is lost in the 15 min data. The time for a typical rain cell to 390

travel across the catchment has been estimated as close to 15 minutes, assuming raincell size 391

of 1-5 km, a speed of the order of 10 ms-1 and a catchment width of 5 – 10 km (Woods et al, 392

2001). We conclude that in this case, consistency between raingauges at 15 minutes is due 393

mainly to the averaging effect seen at timescales longer than the time taken for a raincell to 394

traverse the catchment. When using spatial maps of radar data to calculate multipliers, as 395

oppose to raingauges, more of this variation may be captured as areas both directly under the 396

track of the raincell, and those on the edge of the rain area, are fully sampled.397

Figure 10: Comparison of (A) storm profile and (B) log multipliers calculated at 2 minute 398

and 15 minute timesteps for the rainstorm of 10-11 Aug 1998, for 3 raingauge sites.399



18

400

6. Effects of Rainfall Variability on Rainfall-Runoff Processes401

Additional knowledge of spatial rainfall variability has the potential not only to inform 402

statistical models of rainfall uncertainty, but also to change our understanding of the 403

catchment processes and hence our conceptual model of the catchment. The dense monitoring 404

network at Mahurangi draws to our attention the intense bursts of rainfall at short space or 405

time scales (as demonstrated by the long tails of the multiplier distributions (Figures 5;6) and 406

increased variability in multipliers at the 2 minute timescale (Figure 10)) which would not be 407

apparent when using catchment average data at typical model timescales. A range of ‘fast-408

response’ processes such as infiltration excess flow, transient overland flow or macropore 409

flow might therefore be under-represented in models where catchment average rainfall is 410

used; or cause compensatory effects in model calibration to correct the bias.411

Figure 11 below shows a simplified example where the Mahurangi catchment is classified 412

into two soil texture zones (loam vs. clay; Figure 11A). We then plot (Figure 11B) the mean 413

catchment rainfall against the percentage of the catchment where radar-measured rainfall 414

intensity exceeds the estimated saturated hydraulic conductivity of the soil (estimated using 415

the Clapp and Hornberger (1978) soil parameters for the two soil texture zones). Infiltration 416

excess conditions in some areas can start to occur with average catchment rainfall as low as 1 417

mm/hour, although that average rate would be insufficient to activate this process. Areas 418

under infiltration excess are likely to contribute an over-representative fraction of channel 419

flow and therefore be essential in the rainfall-runoff mechanism. We conclude that while 420

multiplicative error hypotheses may capture some of the rainfall error structure and enable421

point measurements of rainfall to be corrected to the catchment average, multipliers alone 422

cannot capture the interaction of soil and land cover variability with rainfall variability. As 423
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the latter is progressively elucidated using spatially-distributed rainfall measurements, more 424

complex error models could and should be derived.425

Figure 11: (A) Catchment soil texture and (B) Estimated catchment area under infiltration 426

excess conditions vs. average rainfall rate 427

428

7. Conclusions429

Our investigation of rainfall variability within the dense gauge/radar network at Mahurangi 430

has highlighted some important results for understanding rainfall uncertainty and deriving 431

data-based probabilistic error models for use in hydrological calibration.432

Our examination of the variability of wet/dry states over the catchment has confirmed that 433

multiplicative error is a suitable formulation for correcting mean catchment rainfall values 434

during high-rainfall periods (e.g. intensities over 1 mm/hour); or for longer timesteps at any 435

rainfall intensity (timestep 1 day or greater). We suggest that the effect of timestep on 436

multiplier suitability is regulated by catchment size: specifically the time required for typical 437

raincells to cross the catchment could be used as a first estimate of critical timestep.438

We found that the standard distribution used for rainfall multipliers, the lognormal, provides 439

a relatively close fit to the empirical multiplier distributions. However the empirical 440

distributions have greater excess kurtosis and positive skew than the lognormal, and therefore 441

alternative distributions should be considered where the tails of the multiplier distribution are 442

considered particularly important. Since heavy rainfall events display multiplier distributions 443

differing most significantly from the lognormal, a skewed and heavier-tailed distribution to 444

be used for times of high rainfall would more faithfully reproduce the observed error 445
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characteristics. We found that the error distributions do not vary significantly with season and 446

hence an invariant distribution is sufficient.447

Lastly, the high resolution of the data available demonstrated the time/space complexity of 448

rainfall behaviour that cannot be corrected by a simple multiplicative error on measured449

rainfall. A hydrological model that aims to capture the full effects of rainfall variability (and 450

its interaction with topographical and ecological variability) would therefore need an 451

additional mechanism, such as a distribution function approach to rainfall input; or a blurred 452

threshold for processes such as infiltration excess. 453
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