Spatial variability of hydrological processes and model structure diagnostics in a 50 km² catchment

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Hydrological Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>HYP-12-0783.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Research Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | McMillan, Hilary; National Institute of Water and Atmospheric Research Ltd, Hydrological Processes  
Gueguen, Myriam; Montpellier SupAgro, -  
Grimon, Elisabeth; ETH Zürich, Department of Civil, Environmental and Geomatic Engineering  
Woods, Ross; NIWA, Hydrology and Catchment Processes  
Clark, Martyn; NCAR, Hydrometeorological Applications Program;  
Rupp, David; Oregon State University, Oregon Climate Change Research Institute |
| Keywords: | Hydrology, Process, Variability, Model Structure, Diagnostic, Signatures |
Spatial variability of hydrological processes and model structure diagnostics in a 50 km$^2$ catchment

Hilary McMillan*1
Myriam Gueguen2
Elisabeth Grimon3
Ross Woods4
Martyn Clark5
David E. Rupp6

1 National Institute of Water and Atmospheric Research, Christchurch, NZ
2 Montpellier SupAgro, France
3 Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Switzerland
4 Department of Civil Engineering, University of Bristol, UK
5 National Center for Atmospheric Research, Boulder, Colorado, USA
6 Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, USA

Revision submitted to Hydrological Processes

14th June 2012

Abstract

In this paper we develop diagnostic methods to assess spatial variability in hydrological processes, particularly those relevant to catchment modelling. We target a range of catchment responses, including runoff volume, runoff timing, storage-discharge relationships and threshold responses to rainfall and soil moisture. The diagnostics allow us to map the scales and patterns of process variability, to test whether climate or physical catchment characteristics can be used to predict patterns in processes, and to explore the implications for appropriate spatial variability in hydrological model structures or parameters.

We apply the diagnostic tests to the mid-sized (50 km$^2$) Mahurangi catchment in Northland, New Zealand, combining data from 28 flow gauges, 13 rain gauges and 18 soil moisture measurement sites to build a comprehensive description of spatial variation in catchment response. The results show a complex picture: different diagnostics reveal different patterns of hydrological processes, and large variations in processes occur, even over the short length scales involved (~10 km). Catchment and climate characteristics almost all show the same pattern, i.e. that subcatchments in the far North and South of the Mahurangi are similar to each other (higher elevation, steep,
for Peered Review

1

forested), but contrast with central subcatchments (lower elevation, shallower slopes, pasture). Surprisingly, this pattern is not reflected in the patterns of diagnostic indices, demonstrating the difficulty of defining realistic a-priori estimates of spatial variability in processes. We discuss how process variations correspond to the design of components of a simple lumped conceptual model. In the Mahurangi catchment, we find that spatial variations in multiple aspects of the hydrological response imply a need for spatial variation in both model structures and parameters.

1 Introduction

Conceptual hydrological models are simplifications of the flow pathways in a catchment. Creating a hydrological model involves learning about water partitioning and runoff generation processes, and describing these mathematically (Beven, 2001; Gupta et al., 2012). Because each catchment is unique (Beven, 2000), recent work has called for hydrological model structure to be tailored to the catchment (Kirchner, 2006; Gupta et al., 2008; Savenije, 2009; Fenicia et al., 2011; Kavetski and Fenicia, 2011). The contrasting view seeks a unified hydrological theory, where catchments reflect common organising principles such as minimisation of entropy generation or flow resistance (Sivapalan, 2005; Troch et al., 2008). Both viewpoints emphasise diagnostic evaluation of process heterogeneity, whether to learn about specific catchments or to generalise and extrapolate (McDonnell et al., 2007).

Diagnostic signatures provide targeted analyses of catchment response data, which are used to build understanding of hydrological processes (Li et al., 2012; Tian et al., 2012) and to choose appropriate model structures (Clark et al., 2011; Kavetski and Fenicia, 2011; McMillan et al., 2011, Euser et al., 2013). The concept follows that of diagnostic tests to choose model parameter values (Gupta et al., 2008; Yilmaz et al., 2008; Pokhrel et al., 2012). Diagnostic signatures can help us test hypotheses about catchment function, which is a useful framework for hydrological learning (Beven, 2001; Beven, 2008; Wagener et al., 2010; Clark et al., 2011).

In this study, we use diagnostic signatures to examine the extent to which hydrological behaviour, and hence recommended model structure and parameters, vary within the mid-size (50 km²) Mahurangi catchment in New Zealand. Our long-term goal is to develop generalisable strategies for model structure selection. In this paper, we view alternative model structures in the context of simple, lumped, conceptual models, as recently popularised by the FUSE (Clark et al., 2008) and FLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011) multi-model frameworks; and used in the FARM model evaluation framework (Euser et al., 2013). We recognise that complex, physically based models may be able to represent a wide variety of processes within a single model structure. In these cases, there may be multiple, equally plausible model structures, and findings of spatial variability in processes would map to spatially variable model parameters rather than structures.

We use distributed rainfall, flow and soil moisture data from the 50 km² Mahurangi catchment in New Zealand. The Mahurangi provides an unusually rich data set of hydrological measurements, including rainfall, flow and soil moisture data. Previous authors have demonstrated the value of auxiliary data sets (in addition to rainfall and flow) to improve the range of diagnostic tools available (Seibert and McDonnell, 2002; Son and Sivapalan, 2007; Fenicia et al., 2008; Blume et al., 2009). This paper builds on diagnostic analysis of model structure in the 0.25 km² ‘Satellite Right’ subcatchment.
of the Mahurangi (Clark et al., 2011; McMillan et al., 2011). By extending the approach to all subcatchments, we can use inter-site comparisons to investigate controls and mechanisms of hydrological behaviour (e.g. Jones, 2005; Carrillo et al., 2011). The Mahurangi varies in slope, soil texture and land-use, but is relatively small, with a relatively narrow range of annual precipitation. The Mahurangi is therefore a valuable location to test hydrological controls without the influence of a dominant climate gradient (Sawicz et al., 2011).

If different catchments are found to require different model structures, a related question is to ask whether these structures can be predicted a priori, using readily available data on characteristics to hydrological data in the catchment. Finding relationships between process descriptions and catchment characteristics would allow us to preselect model structures for predictions on a regional or national scale. This aim is analogous to parameter regionalisation (e.g. Merz and Bloschl, 2004; Wagener and Wheater, 2006), and has many similarities to catchment classification which aims to characterise the drivers of hydrological function (McDonnell and Woods, 2004; Wagener et al., 2007). Relationships between process and catchment indices can be tested using correlations (e.g. Zecharias and Brutsaert, 1988; Krakauer and Temimi, 2011), or informally by visual comparison of maps (e.g. Sivapalan et al., 2011).

The aim of this paper is therefore to test the null hypothesis that a single process description, and hence conceptual model structure, would be suitable for all subcatchments of the Mahurangi. Our alternative hypothesis is that processes and hence appropriate structures vary over small scales (1 – 10 km), driven by physical characteristics. These characteristics may be linked to commonly-available data such as land-use, terrain or soil type; or they may reflect more complex processes such as co-evolution of flora, soil structure and connectivity, which we are not yet able to quantify. We will achieve the aim as follows: [1] Select a range of diagnostic signatures which evaluate different aspects of catchment response. [2] Evaluate the diagnostics for each subcatchment of the Mahurangi to help determine important differences in processes. [3] Translate the process descriptions into recommendations for spatial variations in conceptual model structure. [4] Identify any spatial patterns in the signatures or model conceptualisations, the scale over which process descriptions vary, and whether patterns of different signatures are related. [5] Determine whether patterns of diagnostics can be attributed to identifiable patterns of physical catchment characteristics.

The paper is structured as follows. Section 2 describes how we selected the diagnostic analyses, reviewing previous literature. Section 3 describes the Mahurangi catchment and data, and current understanding of the catchment processes. Section 4 presents the methods we used to calculate and interpret the diagnostic signatures. Section 5 gives the results of the diagnostic signature calculations. Section 6 combines the signatures to assess spatial variability in processes and model conceptualisations, the significance for model building, and relationships with physical characteristics. In Section 7 we discuss our results in the context of previous work. We conclude in Section 8.

2 Selection of diagnostic analyses
Our objective in selecting the diagnostic analyses was to evaluate as wide a range as possible of aspects of catchment behaviour, and hence model structure decisions, given the data available. The selection of diagnostics was guided by McMillan et al. (2011), who considered the structure decisions required in a typical conceptual model, and which data sources influenced those decisions. We also follow advice from Sawicz et al. (2011) that diagnostic signatures are most useful for catchment classification when they have an interpretable link to catchment function. We chose four themes of catchment response: [1] Water balance characteristics, [2] Hydrograph characteristics, [3] Recession characteristics, [4] Hydrological thresholds. Each of these themes will be discussed in more detail below.

2.1 Water balance characteristics: Runoff ratio.

A fundamental descriptor of catchment function is the water balance: partitioning of water by the landscape into evaporation, runoff and recharge. Inter-catchment variability of mean annual water balance can be used to study regional patterns and relationships with catchment similarity indices (Sivapalan et al., 2011; Norbiato et al., 2009; Merz and Bloschl, 2009). The water balance can also be explored via ‘catchment elasticity’, the sensitivity of annual streamflow to precipitation (Harman et al., 2011). The diagnostic that we selected for this study was runoff ratio, i.e. the proportion of rainfall that becomes runoff, which is a useful characteristic of the water balance. We calculated runoff ratio for both storm events (‘event runoff ratio’), and over continuous rainfall and runoff series (‘total runoff ratio’). The two calculations give insights into different components of hydrological behaviour. Total runoff ratio is controlled by water that bypasses the gauge, i.e. evaporation and groundwater fluxes, whereas event runoff ratio quantifies the split between fast and slow runoff processes.

2.2 Hydrograph characteristics: Runoff timing.

The timing of events can give insight into catchment processes. Clark et al. (2011) suggest that when assembling a hydrological model, a strong control on runoff timing is partitioning between surface/near-surface runoff and baseflow, with higher surface runoff volumes corresponding to faster response times. Runoff timing therefore helped to determine the preferred model relationship between soil moisture and drainage, which influenced this partitioning. Li and Sivapalan (2011) noted that, theoretically, characteristic overland flow response time can increase under wet conditions, as areas distant to the channel become saturated. It has also been widely noted that fast runoff responses may result from pipe flow mechanisms (Beven, 2001). To characterise event timing, we used the metric suggested by Clark et al. (2011), that is, the length of time between 50% of event rainfall depth occurring and 50% of event discharge depth occurring. This metric distinguishes between flashy responses and damped responses. We are interested in speed of the dynamic response rather than travel time of water particles.

2.3 Recession characteristics: Timescale, nonlinearity and seasonality.

The storage-discharge relationship is a key element of catchment function, and one of the fundamental building blocks of most conceptual models. This relationship describes catchment behaviour after the immediate response to rainfall has passed, when slow-flow and evaporation processes dominate. At this time, runoff rate is controlled by the quantity and distribution of water in the catchment. In a conceptual model, the storage-discharge relationship is controlled mostly strongly by the number of lower zone reservoirs, their release characteristics, and distribution of
water volume between them (Clark et al., 2011). There are also more minor influences from the
unsaturated zone representation, particularly in summer (Rupp et al., 2009; Staudinger et al., 2011),
and from return flow (Wang, 2011).

In this study, we use recession analysis as a diagnostic to identify storage-discharge relationships
(Hall, 1968; Tallaksen, 1995). An established recession analysis method is to study the relationship
between flow and its time-derivative. In the theoretical case of a conceptual model with a single
reservoir, where flow Q is a power function of storage S,

\[ Q = cS^d \]  

Eq 1

And assuming that flow is equal to change in storage (i.e. negligible evaporation), this leads to the
recession relationship

\[ \frac{dQ}{dt} = aQ^b \]  

Eq 2

where c and d can be expressed in terms of a and b. The same relationship (Eq 2) was derived by
Brutsaert and Nieber (1977) to describe groundwater outflow in an idealised aquifer. It is common
to plot -dQ/dt against Q on logarithmic axes, to find a and b. Values of b typically range between 1
and 3. A value of 1 implies a simple linear reservoir, with b > 1 implying greater nonlinearity.
However, b > 1 can also be interpreted as a recession controlled by multiple water stores draining at
different rates. As the intercept a depends on flow magnitude, flows Q can be scaled by the median
flow Q\textsubscript{0} and written as

\[ \frac{d\hat{Q}}{dt} = -\hat{Q}^b/T_0 \]

Where \( \hat{Q} = Q/Q_0 \) and \( T_0 \) is a characteristic recession time, at the median flow.

Clark et al. (2009) showed that in the Panola catchment (an experimental catchment in Georgia,
USA), recessions from subcatchments of sizes 0.1 ha, 10 ha and 41 ha resulted in approximate b-
values of 1, 2 and 3 respectively. They suggested that increasing b reflected increasingly complex
processes, with spatial variability and riparian controls on flow becoming more important with
increasing catchment size. Wang (2011) noted that at Panola, reservoirs could function in series as
well as in parallel due to bedrock leakage to the aquifer. Harman et al. (2009) showed that in the
general case, the exponent b increases with increasing heterogeneity in catchment hydraulic
properties.

To characterise catchment recessions, we use parameters \( T_0 \) (timescale), b (nonlinearity) and
interannual variation in \( T_0 \) (seasonality). Refer to Section 4.1.3 for details of the implementation.

### 2.4 Hydrological thresholds

Thresholds exist in many flow pathways, for example field capacity and saturation point of soils, and
are a key contributor to hydrological complexity (Blöschl and Zehe, 2005; Ali et al., 2013). For the
relationship between soil moisture and vertical drainage, popular conceptual models exist with
(Leavesley et al., 1983; Quick, 1995) and without (Wood et al., 1992) a hard threshold at field
capacity, and this modelling decision can be a strong control on predictions. Therefore, diagnostics
which test the strength of threshold behaviours can provide key clues to suitable model
cosomalisations.

The ability of a catchment to transport water often has a threshold response to catchment wetness. The
threshold may occur in lateral hillslope flow response to rainfall depth (Tromp-van Meerveld
and McDonnell, 2006; Tromp-van Meerveld and McDonnell, 2006; Lehmann et al., 2007; Graham et
al., 2010), runoff ratio response to antecedent soil moisture (Woods et al., 2001; Penna et al., 2011),
or runoff ratio response to maximum soil moisture or water table elevation (Peters et al., 2003). The
threshold can be interpreted as showing a causal relationship, or purely co-variation, as discussed by
Tromp-van Meerveld and McDonnell (2005) and Western et al. (2005).

For this study, we chose to test for threshold behaviour in two relationships. Firstly, we tested for
thresholds between antecedent soil moisture and event runoff ratio. This analysis was chosen as soil
moisture is known to be a strong control on runoff in Satellite subcatchment (Woods et al., 2001). Secondly, we tested for threshold responses between rainfall depth and flow. This type of threshold
was noted in Satellite subcatchment by McMillan et al. (2011).

3 Case study: Mahurangi catchment

To test the ability of diagnostic signatures to identify and differentiate aspects of catchment
response, we used a case study in the Mahurangi catchment in the North island of New Zealand. As
we will consider the spatial variability of catchment function, it is appropriate to start by reviewing
the spatially-variable characteristics of the Mahurangi, and to what extent these are represented by
measured data. The Mahurangi has a warm, humid climate; annual rainfall is approximately 1600
mm, annual pan evaporation is approximately 1300 mm. Catchment land use is a mixture of native
and exotic forestry, and pasture. The soils are typically clay or clay loams, less than 1 m deep. Maps
elevation and land use for the Mahurangi are shown in Figure 1.

3.1 Instrumentation

Data were collected from 1997 – 2001 during the Mahurangi River Variability Experiment (Woods et
al., 2001). Figure 2 shows the locations of rain gauges, flow gauges and soil moisture measurement
sites. The 28 flow gauges used compound v-notch weirs, taking measurements every two minutes.
Tipping bucket rain gauges were used, also recording every two minutes. Soil moisture
measurements were taken every 30 minutes, at 6 sites, each site having Campbell Scientific CS615
sensors at three hillslope locations and 2 depths, a total of 36 sensors. The shallow sensors were
placed in the top 300 mm of soil and the deep sensors over a 250 mm depth at the base of the
column (generally around 500-800 mm). An extensive effort was undertaken to calibrate each
sensor, include comparisons with Neutron Moisture Meter measurements (Western and Seyfried,
2005). For this study, we aggregated all measurements to 1 hr intervals.

3.2 Dominant processes in the the Mahurangi catchment

Field and model-based work contribute to our knowledge of dominant flow pathways in the
Mahurangi. The most intensively studied area is the Satellite subcatchment. Detailed mapping
showed that shallow soil moisture is controlled by soil texture and macroporosity at small scales,
topography being less important (Wilson et al., 2003; Western et al., 2004). The lack of topographic
influence on soil moisture, even in wet conditions, provides evidence against shallow downslope flow through the soil matrix (Woods et al., 2001). Findings of perennial discharge areas at the base of hillslopes, together with a gradational soil profile, suggested the presence of deeper lateral flow paths (Western et al., 2004). An unpublished study by Bowden (2009, pers. comm.), based on a hillside in Satellite Left subcatchment, rejected earlier hypotheses of fast lateral flow, concluding instead that vertical, preferential flow dominates. The study applied bromide tracer to the upper hillslope, and chloride and deuterated water to the lower hillslope. However, no tracer response was detected in the stream at the base of the hillslope over a two-month period after tracer application, and tracers often bypassed samplers in the soil matrix. These observations suggest that hillslope precipitation percolates downwards via preferential flow paths to the saturated zone, and led to the conclusion that despite the small size of Satellite catchment, groundwater processes are involved in the runoff response. This theory is supported by modelling studies (Chirico et al., 2003; Clark et al., 2011; McMillan et al., 2011) which found that nonlinear and seasonally varying slow flow processes required models with multiple nonlinear storages.

In the Mahurangi catchment, variability in runoff generation is a recurring theme. Atkinson et al. (2003a; 2003b) echoed results from Satellite, finding that conceptual models needed multiple storage buckets for good streamflow predictions. This was most important in summer when early rainfall contributed to wetting up the catchment. The interpretation was that these buckets (with storage capacities chosen at equally-spaced quantiles along a one-parameter probability distribution) mimicked variable source areas for saturation excess flow. Although variable saturation excess flux can also be represented using a single soil moisture state (for example Moore, 2007), the multiple-bucket representation also allows for variable water volume distribution across the buckets. Atkinson et al. (2003b) also tested other changes which increased structural complexity, such as allowing spatially variable inputs or parameters. Explicit representation of rainfall variability also improved predictions, but the multiple bucket representation was the single most effective change. McMillan (2012) provided a possible explanation for the need for multiple storage buckets, by showing that seasonality-changing variability in soil moisture controls the nonlinearity of emergent catchment-scale drainage behaviour.

4 Methods

The methods section is divided into two subsections. In Section 4.1, we explain how each diagnostic signature from Section 2 is applied to our case study catchment. In Section 4.2 we describe how the signatures are used to interpret spatial variation in processes and model conceptualisations.

4.1 Calculation of diagnostic signatures

4.1.1 Runoff Ratio

We calculated runoff ratios for each subcatchment of the Mahurangi (28 flow gauges). This required areal mean rainfall estimates for each subcatchment. We used inverse distance weighting to interpolate the hourly rainfall data, collected at 13 locations within the Mahurangi catchment, onto the centroid of each flow gauge catchment. Total runoff ratios were calculated by dividing total runoff depth (mm) by total rainfall depth (mm), over the whole measurement period (1997 – 2001).
We also calculated runoff ratios on a per-event basis. Storm events were identified from the interpolated rainfall series (see previous paragraph). We defined events when more than 2 mm/hour or 10 mm/day of precipitation fell. Events were considered distinct if they were separated by at least 12 dry hours. Events were deemed to end 5 days after the last rainfall, or when rainfall greater than 0.2 mm/hr signifies the start of a new event. To reduce subjective choices, no baseflow separation was implemented. A minimum of 158 (Satellite Right) and a maximum of 171 (Marine Road) events were identified. Event precipitation depths ranged from 2.56 mm to 250.46 mm. The runoff ratio for each event was defined as event runoff (mm) divided by event rainfall (mm). Event runoff ratio was calculated for each subcatchment as the mean over all events.

4.1.2 Runoff timing

We calculated runoff timing for each subcatchment, and for each event, as the length of time between 50% of event rainfall depth occurring and 50% of event discharge depth occurring. We used rainfall series and events as defined in Section 4.1.1. We took the average over all events to give mean runoff timing for each subcatchment.

4.1.3 Recession characteristics

Criteria for recession periods

Recessions were defined as periods of at least 12 hr with no rainfall greater than 0.2 mm/hour. The rainfall series were described in Section 4.1.1. A delay was imposed after rainfall, to eliminate quickflow; previous studies used 1 day for the whole catchment (Atkinson et al., 2002), or 1 hour for the small Satellite subcatchment (Chirico et al., 2003). We used a sliding scale according to catchment size, with delays of 4 - 16 hours.

It is difficult to obtain accurate values of \( \frac{dQ}{dt} \) during low flows. We used the accumulated volume method of Rupp and Selker (2006) to increase the period over which \( \frac{dQ}{dt} \) was calculated for low values of Q. Despite this, the flow often displayed steps due to limited measurement precision, or small fluctuations due to a diurnal cycle (assumed to be a response to evaporation in the riparian zone). Therefore, prior to recession period selection, a 24-hour moving average filter was applied to all non-storm periods (defined as less than twice the median flow). Visual inspection showed that this method provided a good fit to the measured flow series.

Calculation of recession parameters

We used flow data from each subcatchment to plot \( -\frac{dQ}{dt} \) against Q on logarithmic axes. A linear fit gives b as the slope. We used Total Least Squares regression that allows for errors in both log(Q) and log(\( -\frac{dQ}{dt} \)) (Brutsaert and Lopez, 1998). Shaw and Riha (2012) show that seasonal variation in the Q – \( \frac{dQ}{dt} \) relationship can change the derived b (nonlinearity) and \( T_0 \) (timescale) values depending whether recessions are fitted (1) using all data, (2) by month or season, (3) on individual events. We used all three methods, and compared the results. Seasonal variation is caused by changing distributions of water within the catchment. For example, in summer, shallow stores may be depleted, with a higher proportion of water lying in deeper stores. Catchment conceptualisations with a single slow-flow store cannot produce seasonally varying Q - \( \frac{dQ}{dt} \) relationships. To quantify the degree of seasonality in recessions, we calculated the interquartile range of \( T_0 \) for each catchment. Interquartile range is robust to outliers, which can easily occur where few recessions are available in a particular month. \( T_0 \) was used in preference to b as variation in recession shapes
commonly takes the form of translations, which do not alter the $b$ value (Biswal and Marani, 2010; McMillan et al. 2011; Shaw and Riha, 2012).

### 4.1.4 Hydrological thresholds

**Soil moisture thresholds.** We analysed threshold response of event runoff ratio to antecedent soil moisture at each of the 18 soil moisture sensor locations. In each case, we used only the lower sensor at depth c. 600 mm, for simplicity (results from the upper sensors were similar; not shown). For each event, we took soil moisture at the time rainfall started, and event runoff ratio as defined in Section 4.1.1. We plotted these points on a graph as a visual guide to threshold behaviour, and also colour coded points by rainfall depth, to identify large events where rainfall might override the initial conditions.

We define strong threshold behaviour as (1) Runoff ratio is constant below the threshold and (2) Runoff ratio increases rapidly with soil moisture above the threshold. To quantify this, we fitted each data set with two intersecting lines (a ‘broken stick’ fit), using a least-squares measure to optimise the slopes and intersect. We tested two null hypotheses which relate to the two definitions of strong threshold behaviour above: (1) The slope of the first line is zero (2) The two lines have equal slopes. These tests return z-statistics which quantify the strength of evidence for each hypothesis: where the absolute value exceeds 1.96, the null hypothesis can be rejected at the 5% level.

**Rainfall thresholds.** We also analysed threshold response of flow to rainfall depth, at each flow gauge catchment. We plotted event rainfall against runoff depths, as calculated in Section 4.1.1. We also colour-coded events by season, as seasonally-varying thresholds were previously found in Satellite subcatchment by McMillan et al (2011). Using the same line-fitting technique as the previous section, a threshold relationship was fitted at each site, for all storms combined and for summer and winter seasons separately. We also noted the threshold location (i.e. precipitation depth at threshold) as an indicator of catchment rainfall storage capacity.

### 4.2 Spatial variability in diagnostic signatures and conceptualisations

#### 4.2.1 Spatial variability of process descriptions

Having calculated values of diagnostic signatures across a range of response types, we then combine the analyses to build a picture of spatial variability of signatures, and interpret these in terms of catchment function. We ask: What are the spatial patterns in inferred process descriptions? Are the patterns of different signatures related? Where possible, we compare the range of signatures values in the Mahurangi with national or literature ranges, to determine the relative importance of catchment scale variability.

#### 4.2.2 Spatial variability in conceptual model structure

We use the findings of spatial variability in diagnostic signatures to test our null hypothesis that the whole Mahurangi can be represented with a single process description or model structure. We do this by considering which process differences could be represented using varying parameter values, versus those which might require a different model. In some ways this separation is arbitrary, as many model structure decisions could be redefined as parameter choices. Here we draw on previous work in Satellite subcatchment by Clark et al. (2011) using the FUSE multi-model framework which allows modular combinations of popular hydrological model components. That work explored dependencies between model and parameter choices and corresponding diagnostic signatures.
Using these results, we report on the scales over which recommended model structures change in the Mahurangi.

4.2.3 Relationships between process descriptions and catchment characteristics
We test relationships between process and catchment indices by using visual comparisons and Spearman’s rank scores for nonparametric correlation. A range of catchment indices are calculated, guided by previous studies in the Mahurangi (Atkinson et al., 2003b; Woods, 2004) and elsewhere (Post and Jakeman, 1996; Berger and Entekhabi, 2001; Pena-Arancibia et al., 2010; Krakauer and Temimi, 2011; Price, 2011). The indices are: percentage of 1st order streams, percentage forest, percentage unweathered sandstone geology, percentage soils classified as high saturated conductivity, area, percentage North aspect, mean slope, standard deviation of slope, drainage density, and elongation ratio. Example maps of a selection of indices are given in Figure 3.

5 Results: Diagnostic analyses

5.1 Runoff Ratio
We calculated event runoff ratios for each subcatchment, as described in Section 2.1, and took the mean over all events; total runoff ratios were also calculated (Figure 4). Subcatchments are coloured by runoff ratio, with smaller nested subcatchments overlying the parent catchments. Spatial organisation is similar for event and total runoff ratios. Total runoff ratios are generally lower than 0.5 (24/28 catchments). The range of total runoff ratios (0.25 – 0.64) suggest differences in evapotranspiration characteristics and/or losses or redistribution by groundwater which bypasses the flow gauges. Values for event runoff ratios are lower than for total runoff ratios by 1-16% (mean 7%) of annual rainfall depth, which demonstrates the importance of slow runoff processes throughout the Mahurangi, as a significant proportional of rainfall reaches the stream outside the 5-day event window.

The highest total runoff ratios occur in steeper, forested catchments in the North. The lowest occur in the South-East, and particularly in the two small catchments of Marine Road East and Grimmers. Small catchments thus have more variability in runoff ratios, and therefore more variability in evapotranspiration (ET) and groundwater fluxes as a proportion of rainfall, while larger catchments take mid-range values.

5.2 Hydrograph Timing
The mean event timings show a moderate range, from 14 to 21 hours (Figure 5). The inter-catchment differences are minor when compared to the intra-catchment standard deviations, which have a mean of 15 hours. The wide range in timings is partly caused by extended, intermittent rainfall events. All the timings are relatively long given the small catchment sizes (e.g. see McGlynn et al., 2004 for a comparison), suggesting the existence of slower, deeper flow pathways consistent with low event runoff ratios. Although some of the smallest catchments (e.g. in the North-East and East) have the fastest median runoff timing, there are also small catchments (e.g. in the South West) that have relatively slow median runoff timing.

5.3 Recession characteristics
Figure 6 shows $b$ values for each catchment, using all data, or as median and quartiles when calculated per month or per recession. The three methods can produce different $b$ values. The values calculated per month usually lie between those calculated with all the data or by individual recession, showing that seasonality explains a part of the variability. The $b$ values were plotted as a map (Figure 7). The median monthly values were used as these reflect seasonality without the high variability of individual recession values. The $b$ values follow a trend, increasing from North to South. Exceptions occur in the two small catchments of Waterfall Right and Grimmers. The Mahurangi displays a wide range of $b$ values (1.8 - 3.6) compared to typical ranges quoted elsewhere of 1 – 3 (e.g. Brutsaert and Nieber, 1977; Figure 9 in Harman et al. 2009).

Recession seasonality is characterised by the interquartile range of $T_0$ (Figure 7c). Seasonal variation in $T_0$ typically took the form of higher $T_0$ (i.e. longer recession timescale) during winter months (not shown). Figure 7 shows similar trends in both $T_0$ and $T_0$ interquartile range as in $b$. In other words, catchments with more nonlinear recessions also have shallower recessions at median flow (higher $T_0$), and greater seasonal variation. The latter result is consistent with catchments which have greater internal variation in hillslope response time, and therefore have greater potential for both seasonal change and change of dominant store within a single recession. Rupp et al. (2009) noted that where $T_0$ characteristic times were orders of magnitude greater than inter-storm times, accuracy of $b$ and $T_0$ estimates was reduced. In the Mahurangi, this is not a concern as $T_0$ values are of the same order of magnitude as inter-storm times, which have a mean of 5.5 days.

5.4 Hydrological thresholds

5.4.1 Soil Moisture Thresholds

Figure 8 shows threshold responses between soil moisture and runoff ratio, demonstrating variation in threshold strength between sites. In particular, Marine Road sites appear to have a weaker threshold. The z-statistics for the tests [1] constant runoff ratio below the threshold and [2] no change of slope at the threshold, are shown on each figure as zstat1 and zstat12 respectively. In most subcatchments both null hypotheses are rejected, i.e. runoff ratio increases with soil moisture even at low values, and a distinct change of slope (i.e. threshold) exists. However, for 7 of the 18 sites there is a constant runoff ratio below the threshold. Only the two Lower Marine Road sites have weak thresholds, i.e. the difference in slope of the two lines is not statistically significant. Thresholds are less clear (i.e. lower absolute z statistic) in all the Marine Road sites. Satellite Station sites have the strongest thresholds (highest absolute z statistic). The difference may be due to land cover (forested at Marine Road) or other co-occurring differences such as steeper topography. We return to these explanations in Section 6.

Event rainfall depth is an additional control on runoff ratio. At the Claydens sites, events with rainfall greater than 50 mm typically lie well above the two fitted lines, and could be fitted with a single line with intercept close to zero. The same is true to a lesser extent at Carrans, but the runoff ratios at other sites are less sensitive to rainfall depth. This analysis is consistent with independent data from the soil moisture probe installation, which recorded thinner soils and higher clay contents at the two Northern soil moisture sites (Carrans and Claydens).

5.4.2 Rainfall Thresholds

Figure 9 shows threshold responses between rainfall depth and flow. The gradient of the fitted line segments is consistently lower for summer than for winter, giving stronger thresholds in summer.
when runoff ratios for small rainfall events are low. The threshold location (i.e. precipitation depth at threshold) is usually consistent between seasons. In fact, the threshold location is consistent throughout the Mahurangi, varying only between 51 and 67 mm, with the exception of Grimmers which is an outlier at 99mm (Figure 10). Grimmers has the lowest runoff ratio, giving a less distinct threshold, which may account for the anomaly. It also displays an unusually low recession b value, so we conjecture that a lack of fast flow pathways in this small, forested catchment gives a simpler, slow-flow dominated response.

6 Results: Spatial variability in conceptualisations

In Section 6.1, we combine the diagnostic analyses to build a picture of spatial variability in processes. In 6.2 we consider the implications of spatially variable processes for model structure and parameter choices, and test the hypothesis that ‘a single process description, and hence conceptual model structure, would be suitable for use over all subcatchments of the Mahurangi’. In 6.3, we test whether process conceptualisations are related to physical catchment characteristics.

6.1 Spatial variability of process descriptions

Total and event runoff ratios were higher in the Northern subcatchments, and lower in the South East. As previously noted, the range of total runoff ratios (0.25 – 0.64) suggests high variability in water partitioning and possible redistribution by groundwater. Runoff timing is not correlated to runoff ratio, with faster timing in both the South East (low runoff ratio) and the North East (high runoff ratio). The variation in timing is small, from 14 – 21.5 hours between midpoints of rainfall and flow, and is minor compared to the large within-subcatchment variation. These results suggest that throughout the Mahurangi, vertical drainage is an important flow pathway, driving slower runoff timing and lower runoff ratios than might be expected for small catchments. However, the North East area shows the highest runoff ratios and the fastest runoff timing, suggesting that there a higher proportion of the flow follows shallower, more rapid pathways.

Recession characteristics follow a different pattern, with a North West – South East gradient. Moving South East, recessions become more nonlinear (higher b value), and show a slower recession at median flow (higher T₀) and greater seasonality (larger range of T₀). These diagnostics point to more complex behaviour in the South East, which may represent higher within-subcatchment spatial variability in water storage and release. The interquartile range of b values in the Mahurangi, 1.8 – 3.5 for the monthly means, is large given the catchment size. For comparison, the interquartile range of b values for all major rivers in New Zealand is 1.75 – 3 (R. Woods, pers comm). This result shows that large variability in recession shapes, and hence storage-discharge relationships, can occur even within a small domain.

The threshold precipitation depth (50 - 60 mm) for significant runoff generation was the only diagnostic which showed consistent behaviour over the Mahurangi. It was also consistent across seasons, showing a link between temporal and spatial variability emphasised by Sivapalan et al. (2011). The threshold response of runoff ratio to antecedent soil moisture showed greater variation in value and strength. The threshold was strongest at Satellite catchment (South East), weakest at Marine Road (South West), moderate at Carrans and Claydens in the North. This pattern is similar to that of runoff timing, so we can empirically link a strong threshold response to antecedent soil
moisture to faster runoff timing. The findings from all diagnostic analyses are summarised in Figure 11.

6.2 Modelling implications of process variability

We considered the extent to which spatial variation in hydrological processes would require differentiation of model structures and parameters. Our findings are given in Table 1, which lists the spatial variation in each diagnostic and gives a commentary on implications for model building.

Based on Table 1 and Figure 11, we reject the hypothesis that a single process description could be used across the whole catchment; instead, key aspects of hydrological response would most appropriately be treated as spatially variable.

In some cases, process variation can be directly linked to the components of a simple conceptual model, e.g. recession behaviour is predominantly controlled by lower zone reservoirs. In other cases, the correspondence between processes and model component is more nuanced, for example runoff ratio is affected most obviously by model schemes for evapotranspiration and deep groundwater losses, but is also affected by any model components which change the soil water dynamics (refer to Table 1). In such cases, the implementation of inter-catchment variability will necessarily be model-specific, and will also depend on information obtained from other diagnostics to constrain interacting processes and model components. We provide a graphical summary in Figure 12 which depicts how model structures and parameters might vary over the Mahurangi catchment.

We therefore tentatively also reject the null hypothesis that the whole Mahurangi could be represented using a single model structure of the simple lumped conceptual type. Our diagnostic analyses suggest strong process variations over the landscape, which would require careful model treatment. Model implementations may take several forms, including spatially variable model structures, spatially variable members of model ensembles, or careful choices of suitable, more complex models with the potential for tuning multiple, interacting components and the flexibility to represent variability in signatures through parameter variation. The development of single- or multi-structure modelling approaches which are able to accommodate the wide heterogeneity in processes over small catchment areas presents a significant challenge. We would welcome future collaboration with others in the modeling community who would like to test the behaviour of their model(s) against multiple spatially variable signatures of hydrologic behaviour in the Mahurangi subcatchments, and evaluate the extent to which a single model structure can represent the spatial variability in processes that we document here.

The spatial scales of process variation in the Mahurangi are of the order of 10 km; that is, the patterns could typically be characterised as variation along gradients rather than scatter (Figures 4, 5, 7), but we would not expect variation to increase significantly for larger catchments as the Mahurangi already shows a spread of diagnostic values approaching the national range (as discussed in Section 5). This length scale was relatively consistent across diagnostic types in the Mahurangi, however we recognise that in other landscapes, abrupt landscape changes (e.g. in geology), may result in discontinuities in process patterns.

The finding of short scales of process variation has implications for model building; especially in moderate or large size catchments. Where multiple flow gauges or other hydrological data sources are available within a catchment, we would suggest that these data should be used to select
appropriate model structures as well as model parameters. We have also shown that different
modelling decisions (i.e. different parts of the model) may have different spatial patterns, and
therefore should be considered individually. In our case where diagnostic values tended to vary
smoothly over scales of the order of 10 km, this variation would need to be reconciled with discrete
changes from one model structure to another. Smooth variation might be achieved by using a
combination of structure and parameter changes, e.g. changes to the number of lower zone
reservoirs and their storage discharge behaviours, or potentially by using an ensemble of model
structures where the selection of structures in the ensemble is gradually changed.

6.3 Relationship of process descriptions to catchment characteristics

The typical pattern of physical characteristics in the Mahurangi is for the North and South
eextremities to be similar to each other, but to contrast with the central catchment. This is true for
mean slope, slope standard deviation, percent forest, and mean annual precipitation (Figure 3)
which all tend to increase with distance from the outlet (located centrally). Such correlations in
predictor variables are common (Krakauer and Temimi, 2011). The geology varies little over the
Mahurangi: all subcatchments lie on Waitemata Sandstones (typically having alternating layers of
sandstones and mudstones) overlying a basement of greywacke. There is some variation in the
extent of sandstone weathering; this also tends to follow the pattern described above. Variables that
do not conform to the pattern include percent north aspect (higher for Southern subcatchments)
and elongation ratio (higher for North and East catchments). Given the propensity for physical
characteristics to follow the first pattern, it is unexpected that none of the diagnostic analyses are
similarly distributed.

The North-South gradient of runoff ratios is most similar to patterns of percent North aspect or
percent soil with high hydraulic conductivity (although the latter is somewhat subjective due to high
variation of soil types over small scales; Western and Seyfried, 2005). Both variables could affect
runoff ratios, as south-facing slopes have lower potential evaporation, and highly conductive soils
drain quickly, both of which act to reduce actual evapotranspiration. Runoff timing, which is lower in
the North and East, is similar in pattern to both percent forest and elongation ratio, with faster
timing corresponding to low forest cover and more compact catchments. Recession parameters
have a North-West to South-East gradient, which is not similar to any physical gradient, except
perhaps the percent of high hydraulic conductivity soil, with higher conductivities linked loosely to
recessions with lower \( b \) and lower seasonality. Soil moisture threshold strength is highest for Eastern
Satellite catchments and lowest for South-West Marine Road catchments, a similar pattern to mean
slope, with lower slopes indicating sharper thresholds.

Following the visual identification of relationships between diagnostic indices and catchment
characteristics, we calculated the Spearman's rank correlation between each pair. For each
diagnostic index, the two characteristics with strongest correlation are shown in Table 2. These
results largely back up the visual results. The correlations are weak: only runoff timing has predictor
variables (% forest, % unweathered sandstone geology) with correlation greater than 0.5.

It is important to note that uncertainties in the diagnostic indices make the fitting of relationships to
catchment characteristics more questionable, especially given the weak correlations found.
Uncertainty is present both in the observed data (McMillan et al., 2012) and in the subjective or
methodological decisions needed to implement the diagnostics (e.g. the fitting method for recession

http://mc.manuscriptcentral.com/hyp
For example, we plotted recession analysis $b$ values against catchment area (Figure 13). Since the $b$ values were fitted to each month separately, and the median taken, we estimate uncertainty magnitude by displaying the interquartile range as an error bar. This example has a Spearman’s rank correlation of 0.41, typical of the correlations found. A linear regression is fitted as an example. It is clear that the low correlation and high uncertainties mean that the fitted relationship should be treated with caution.

7 Discussion

It is worthwhile to compare process descriptions derived in this study with previous work in the Mahurangi. Low runoff ratios in Satellite subcatchment are consistent with previous work (McMillan et al., 2011), and suggest that a significant proportion of rainfall becomes recharge to deeper stores. Complex recession characteristics ($b = 2.6$ at the catchment outlet) are consistent with Atkinson et al. (2003a; 2003b) who found that multiple buckets were required to represent lower zone storage. Findings by the same authors that explicit representation of rainfall uncertainty improved model predictions also hint at the importance of spatially varied processes in the Mahurangi. Seasonal variation in slow flow processes, which we analysed using the annual range of the recession timescale parameter $T_0$ was found by Chirico (2003) to be important in Satellite catchment. Our results showed that while seasonality in $T_0$ was observed at Satellite, it was even more pronounced in the South West of the Mahurangi. Spatial differences in the strength of the threshold response of runoff to antecedent soil moisture, add to findings of temporal differences in the emergent threshold behaviour (McMillan, 2012) and demonstrate links between temporal and spatial variability. The consistency with previous findings increases confidence in our diagnostic results, despite uncertainties in the data or diagnostic methods.

We found that diagnostic descriptors of process variability are not strongly correlated to physical catchment characteristics (the best predictor variables had Spearman’s rank correlations of 0.4 - 0.63). Although most of the diagnostics have not previously been calculated over extended areas in order to assess model structure, the recession parameter $b$ has been the subject of many previous studies, so provides an opportunity for comparison. Reviews of recession analysis by Hall (1986) and Tallaksen (1995) both found little success in comparisons between catchment characteristics and recession parameters.

Some successes have been reported: for example Tague and Grant (2004) related recession and timing characteristics to the percentage of highly permeable young volcanic bedrock, in an area with two strongly contrasting geological types. Peña-Arancibia et al. (2010) found reasonable correlations of $T_0$ with climate indices (annual precipitation, aridity) in a dataset of tropical catchments spanning the globe. In an indication of spatial organisation outside of the physical characteristics used in the studies, both Peña-Arancibia et al. (2010) and van Dijk (2010) found spatially correlated residuals, with van Dijk (2010) attributing correlations at scales of 100-150 km to “substrate characteristics not captured by the available soil and geology data”. It remains a challenge for hydrologists to develop physical catchment descriptors which characterise the substrate and soil structures, organisation and variability which control runoff generation. For example, Harman et al. (2009) suggest that the recession $b$ parameter may represent the heterogeneity of catchment hydraulic conductivities, but we do not yet have a method to quantify this property.
8 Conclusion

The contribution of this paper has been to develop a suite of diagnostic tests, which facilitate
detailed analysis of the spatial variability of hydrologic processes and help hydrologists to identify
model structures which are consistent with dominant processes in catchments where data is
available.

We tested the method by applying it in the 50 km² Mahurangi catchment, using flow data from 28
nested small- to meso-scale catchments, alongside 13 rain gauges and 18 soil moisture
measurement sites. We used a range of diagnostic signatures to evaluate runoff ratio, runoff timing,
storage-discharge relationships and threshold responses to rainfall and soil moisture. Our results
showed that there is tremendous heterogeneity in hydrologic signatures over this small geographical
area; for example the range of recession shapes was similar to that for all New Zealand. The
signatures showed a range of spatial patterns, which varied between diagnostic types, suggesting a
high number of degrees of freedom in process variation. Diagnostic indices tended to vary smoothly
across the Mahurangi: spatial scales of process changes were in the order of 10 km. We used visual
comparison of maps and Spearman’s rank correlation to test the predictive power of physical
catchment characteristics to explain the spatial variability in diagnostic indices, and found only weak
relationships.

We used the variation in diagnostic signatures to recommend how the structures and parameters of
a range of model components could change across the subcatchments of the Mahurangi. Diverse
diagnostic patterns led to diverse model structure/parameter patterns, and led us to reject the initial
hypothesis of a single process description and single model structure for the Mahurangi. In
particular, spatial variations in total runoff ratio and recession seasonality were linked to model
structural changes in the context of simple lumped conceptual models. Designing generalisable
model-building methods which represent variability in multiple interacting processes, with
appropriate levels of complexity, remains an ongoing challenge for the hydrological community.

Acknowledgements

H. McMillan was funded by NZ Ministry for Business, Innovation and Employment, Grants C01X1006 and
C01X0812.
References:


Kirchner JW. 2006. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42: W03s04 DOI: 10.1029/2005wr004362.


**Table 1: Summary of diagnostic variability and implications for model structure in the Mahurangi**

<table>
<thead>
<tr>
<th>Diagnostic Analysis</th>
<th>Spatial Variability</th>
<th>Spatially varying model component</th>
<th>Spatially varying parameters</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runoff Ratio</td>
<td>High (0.24 – 0.64)</td>
<td>ET Scheme (+ infiltration, drainage schemes)</td>
<td>-</td>
<td>Total Runoff Ratio is controlled by water losses to ET and deep groundwater. In a lumped, conceptual model, simulated ET depends on the ET scheme (e.g. lower runoff ratios where ET demand is preferentially satisfied from wetter surface soils; Clark et al, 2011) and on soil water dynamics which depend on infiltration and drainage schemes, soil depth and field capacity. Losses to deep groundwater are commonly assumed to be negligible. Some of these components may be determined independently by other diagnostics (e.g. soil depth by model thresholds; see below). Depending on these other factors, spatially variable or more complex model components for ET and deep groundwater may be needed to simulate high variations in total runoff ratio.</td>
</tr>
<tr>
<td>Runoff Timing</td>
<td>Low (14 – 21.5 hrs between the points of rainfall and flow). Not correlated to catchment size or runoff ratio.</td>
<td>-</td>
<td>Surface Runoff</td>
<td></td>
</tr>
<tr>
<td>Reccession nonlinearity (b value)</td>
<td>Very high (1.8 – 3.5 interquartile range); comparable with national variability</td>
<td>-</td>
<td>Storage-Discharge relationship</td>
<td></td>
</tr>
<tr>
<td>Reccession T₀ seasonality</td>
<td>High (5 – 50 days) Correlated with recession b value</td>
<td>Number of lower zone reservoirs</td>
<td>-</td>
<td>High seasonality in T₀ requires multiple lower zone reservoirs which are unnecessary in catchments with weakly seasonal T₀.</td>
</tr>
<tr>
<td>Threshold response to precipitation</td>
<td>Low: consistent threshold precipitation depth (51 – 67 mm)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold response to antecedent soil moisture</td>
<td>Moderate: threshold strength varies from significant to not significant. Pattern is similar to that of runoff timing</td>
<td>-</td>
<td>Drainage exponent</td>
<td></td>
</tr>
</tbody>
</table>

Threshold response is controlled by model relationship between soil moisture and drainage. Previous work showed that parameterisation of drainage as a power function of soil moisture was suitable for the Mahurangi (Clark et al, 2011; McMillan, 2012). The exponent could be modified to change the threshold strength.
Table 2: Diagnostic Indices with the two physical characteristics that have the highest Spearman’s rank correlation coefficient

<table>
<thead>
<tr>
<th>Diagnostic Index</th>
<th>Characteristic with highest Spearman Rho</th>
<th>Spearman Rho</th>
<th>Characteristic with second highest Spearman Rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>% High K Soil</td>
<td>-0.45</td>
<td>Area</td>
</tr>
<tr>
<td>$T_0$</td>
<td>% Forest</td>
<td>0.45</td>
<td>% High K Soil</td>
</tr>
<tr>
<td>$T_0$ range</td>
<td>% High K Soil</td>
<td>-0.45</td>
<td>% High K Soil</td>
</tr>
<tr>
<td>Total Runoff Ratio</td>
<td>% N aspect</td>
<td>-0.40</td>
<td>Area</td>
</tr>
<tr>
<td>Event Runoff Ratio</td>
<td>% N aspect</td>
<td>-0.41</td>
<td>Area</td>
</tr>
<tr>
<td>Runoff Timing</td>
<td>% Forest</td>
<td>0.63</td>
<td>% Sandstone</td>
</tr>
</tbody>
</table>

| Spearman Rho     | 0.41                                     | 0.40         | 0.31                                          |
| Slope SD         | -0.42                                    | 0.29         | 0.51                                          |
Figure 1: (A) Elevation, and (B) Land Use of the Mahurangi catchment
Figure 2: Instrumentation of the Mahurangi catchment: (A) Rain and Flow gauges (B) Soil moisture probes
Figure 3: Examples of catchment characteristic indices used in this study, (A) Mean Slope (°) (B) % Forest (C) % High Hydraulic Conductivity Soil (D) % North Aspect (E) Annual precipitation (mm)
Figure 4: Runoff ratios of the Mahurangi catchment, using (A) all data and (B) mean runoff ratio calculated for individual storm events.
Figure 5: Mean runoff timing for each subcatchment of the Mahurangi
Figure 6: b values for each catchment, ordered by median monthly b
Figure 7: Maps of (A) Recession nonlinearity parameter: $b$ (B) Recession characteristic time at median flow: $T_0$ (days) (C) Recession seasonality parameter: $T_0$ interquartile range (days)
Figure 8: Event runoff ratio as a function of antecedent soil moisture at each soil moisture measurement site. Events are colour coded by rainfall depth. Two line segments are fitted to the storms with rainfall depth less than 50mm.
Figure 9: Relationships between event precipitation depth and event runoff depth, for each gauged subcatchment of the Mahurangi, during summer (Nov-Apr; filled circles) and winter (May-Oct; open circles). A threshold relationship (two line segments) is fitted to the points by season and combined.
Figure 10: Threshold precipitation depth by subcatchment, calculated using combined (summer and winter) storm events.
Figure 11: Simplified graphic of process variability over the Mahurangi

[Diagram of process variability over the Mahurangi with labels for fast runoff timing, high runoff ratios, simple recessions, nonlinear recessions, strong thresholds, fast runoff timing, low runoff ratios, weak thresholds, and slow runoff timing.]
Figure 12. Simplified graphics of suggested model structure and parameter variability over the Mahurangi
Figure 13: Plot of b value as a function of log(area), with linear regression line.