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Abstract 10 

This review and commentary sets out the need for authoritative and concise 11 
information on the expected error distributions and magnitudes in observational data. 12 
We discuss the necessary components of a benchmark of dominant data uncertainties, 13 
and the recent developments in hydrology which increase the need for such guidance. 14 
We initiate the creation of a catalogue of accessible information on characteristics of 15 
data uncertainty for the key hydrological variables of rainfall, river discharge and 16 
water quality (suspended solids, phosphorus, nitrogen). This includes demonstration 17 
of how uncertainties can be quantified, summarising current knowledge and the 18 
standard quantitative results available. In particular, synthesis of results from multiple 19 
studies allows conclusions to be drawn on factors which control the magnitude of data 20 
uncertainty, and hence improves provision of prior guidance on those uncertainties. 21 
Rainfall uncertainties were found to be driven by spatial scale, while river discharge 22 
uncertainty was dominated by flow condition and gauging method. Water quality 23 
variables presented a more complex picture with many component errors. For all 24 
variables it was easy to find examples where relative error magnitudes exceeded 40%. 25 
We consider how data uncertainties impact on the interpretation of catchment 26 
dynamics, model regionalisation and model evaluation. In closing the review, we 27 
make recommendations for future research priorities in quantifying data uncertainty, 28 
and highlight the need for an improved ‘culture of engagement’ with observational 29 
uncertainties. 30 
 31 

1 Introduction 32 

Considerable attention has been given in recent literature to the challenges of the 33 
hydrological modelling process. A key question is how our community should move 34 
forward to improve understanding of hydrological systems and simulation models, in 35 
the light of uncertain observed data. Notable opinion papers that tackle these issues 36 
have been published regarding general approaches to uncertainty (Pappenberger and 37 
Beven, 2006); uncertainty frameworks (Refsgaard et al., 2007); equifinality (Beven, 38 
2006); model diagnostics (Gupta et al., 2008); uncertainty frameworks for ungauged 39 
basins (Wagener et al., 2006); and uncertainty assessments in water quality modelling 40 
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 2 

(Beck, 1987). The modelling community has also engaged in substantial discussion 1 
and counter discussion about the merits for making strong and weak judgements about 2 
the nature of data, parameter and structural errors (Beven et al., 2007; Beven, 2009; 3 
Beven et al., 2008; Beven et al., 2011; Mantovan and Todini, 2006; Mantovan et al., 4 
2007; Montanari, 2005; Schoups and Vrugt, 2010; Stedinger et al., 2008; Vrugt et al., 5 
2009a; 2009b). Quantifying the expected data errors, or at least developing an 6 
informed and rational framework for approximating them, is arguably prerequisite for 7 
understanding the other error sources. Yet, despite extensive discussions, there 8 
remains a lack of authoritative and concise information on the expected error 9 
distributions and magnitudes in observational data. 10 

We suggest in this review and commentary that we must improve our benchmarking 11 
of the dominant uncertainties in observational data. This is necessary for the 12 
hydrological community to develop effective guidance on uncertainty frameworks for 13 
modelling objectives and hence credible measures of model performance. 14 
Benchmarking, expressed in these terms, necessarily includes understanding the 15 
effectiveness of data to characterise hydrological processes under spatial and temporal 16 
heterogeneity, before any modelling is conducted. This is a holistic view of the 17 
information content of data, recognising that different monitoring technologies 18 
characterise to a greater or lesser extent the quantity of interest irrespective of the 19 
implied precision and accuracy of instrumentation. Some observed responses may be 20 
subject to commensurability error; i.e. they are not well represented at the relevant 21 
temporal and spatial resolution. This may over-emphasise a belief of process 22 
characterisation at a point or quasi-point scale that is not appropriate to the actual 23 
variability of the process occurring over the conceptualised control volume and/or 24 
period. Ultimately, these issues could misguide inferences in space and time and may 25 
impact on our ability to develop appropriate theory and conceptualisations. 26 
Benchmarking of course also includes understanding the precision of instruments and 27 
calibrations and inadequacies in transforming measurements (e.g. stage to discharge, 28 
concentration to load). A suggested benchmark may necessarily be crude initially, due 29 
to limitations of current measurement technologies to quantify all error sources 30 
precisely, but we strongly feel that some guidance is required to bridge the current 31 
disconnect between how we use data to evaluate models and what the possible errors 32 
and information content might be in such data. 33 

We argue that several recent developments in hydrology and water quality research 34 
increase the need for guidance and a framework for understanding the potential for 35 
data errors. There is a growing need to interrogate a diversity of data sources that 36 
elucidate different processes and states in catchment behaviour across multiple time 37 
and space scales. This need is driven by the multidisciplinary nature of the scientific 38 
problems we are asked to solve, e.g. understanding environmental change impacts on 39 
the ecological status of river systems, understanding effectiveness of policy 40 
interventions; however, data uncertainties can propagate into such environmental 41 
management investigations (Mahmoud et al., 2009). Diverse data types are also 42 
increasingly co-interrogated to test coherence of internal catchment states and 43 
evaluate simulated flow dynamics on the quest for models which produce “the right 44 
answers for the right reasons” (Kirchner, 2006) and hence provide more robust 45 
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 3 

predictions under changes in climate, land use or land management. The hydrological 1 
community is embracing the potential of additional data to improve model structure; 2 
but we must recognise that diverse data types introduce diverse error characteristics 3 
and respect those when developing evaluation methods (see Section 6.1 for further 4 
discussion). Another development is in recognition of the value of comparative 5 
hydrology and new approaches to catchment similarity and regionalisation, both of 6 
which will suffer inevitable bias if place-specific observational uncertainty is not 7 
properly included. Finally, we recognise the creation of ‘virtual observatories’ which 8 
are improving scientists’ ability to discover and capture cross-nation data sources (e.g. 9 
http://www.evo-uk.org). Virtual observatories are driving the development of various 10 
data standards (e.g. Tarboton et al., 2008) which need to further evolve to increase the 11 
awareness of data quality in the metadata. We revisit the effects of uncertainty on 12 
studies incorporating multi-response data and on regionalisation studies in Sections 13 
6.1 and 6.2, respectively. 14 

There is no doubt that there is already a considerable wealth of information to start the 15 
process of providing ‘frames of reference’ to possible errors in hydrologically 16 
important information. Much is to be gained from a catalogue of this information in 17 
accessible form, which we aim to provide here. We set out the important 18 
characteristics of data uncertainty for key hydrological variables and how they can be 19 
quantified, summarising current knowledge and the standard quantitative results 20 
available to the practitioner. We hope to provide guidance which encourages and 21 
facilitates the important step of including estimates of measurement error and its 22 
effects within hydrological studies. At the very least we aim to start a dialogue that 23 
considers how the community can improve our quantification of data errors and how 24 
current accepted practice may sometimes bias our ability to understand observed or 25 
simulated catchment behaviour. This paper fully accepts that some aspects of data 26 
error may be problematic or impossible to define (e.g. one cannot estimate the spatial 27 
variability of a particular rainfall field from a single rain gauge), but this must not 28 
absolve inaction. We also identify future research priorities for improving the data 29 
uncertainty estimates listed herein. In closing the review, we discuss our 30 
recommendations and highlight the need for an improved ‘culture of engagement’ 31 
with observational uncertainties. 32 

The scope of the paper is necessarily bounded. We focus our attention on uncertainty 33 
in measurements of rainfall (Section 3), river discharge (Section 4) and suspended 34 
solids, phosphorus and nitrogen concentrations (Section 5). However, the discussions 35 
are equally relevant to many other types of hydrological measurement uncertainty, 36 
such as in measurements of evapotranspiration (Llasat and Snyder, 1998), snow 37 
(Goodison et al., 1998), hydrogeological quantities including hydraulic conductivity 38 
(Nilsson et al., 2007), water table depth (Freer et al., 2004), soil physical and chemical 39 
properties (Owens et al., 2008; van der Keur and Iversen, 2006), topography 40 
(Wechsler, 2007), and land use (Castilla and Hay, 2007, in a remote sensing context). 41 
Our focus is to benchmark and explore uncertainties in data, not to consider how 42 
methods might be deployed for reducing uncertainty. There is also a large body of 43 
literature on impact studies, analysing the effects of uncertainty on simulation models, 44 
which we do not review here, but for which a clear inventory of uncertainty 45 
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magnitudes is critical. Finally, we accept that we may have missed additional papers 1 
that have explored data uncertainty issues, therefore in Section 7.2 we encourage 2 
authors to report such oversights through the Experimental Hydrology Wiki to further 3 
improve our collective understanding of observational uncertainties 4 

2 Uncertainty characterisation 5 

Uncertainty in hydrological systems comes in many guises and there is a need to use 6 
clear terminology (Montanari, 2007). Di Baldassarre and Montanari (2009) 7 
summarise three primary sources in the context of hydrological modelling: (a) 8 
uncertainty in observations, (b) parameter uncertainty, and (c) model structural 9 
uncertainty. Our review clearly considers the first of these sources as a precursor to 10 
understanding the remaining two. Bogardi and Kundzewicz (1996) distinguish pre-11 
hydrological (e.g. meteorology) and post-hydrological (e.g. social, psychological and 12 
institutional) sources of uncertainty. Klemeš (1996) provides a typically robust view 13 
that the types of uncertainty considered may be governed by social or political factors, 14 
and draws attention to the ‘unknown unknowns’: uncertainty sources which are 15 
unidentified until a hydrological event or disaster brings them to our attention. This 16 
echoes the division between Natural Uncertainty (also termed aleatory uncertainty, 17 
inherent variability, type-A uncertainty) and Epistemic Uncertainty (also lack-of-18 
knowledge uncertainty, ignorance, type-B uncertainty) (Merz and Thieken, 2005).  19 

Natural uncertainties can be treated formally by statistical probabilistic methods, 20 
although it can be difficult to identify an appropriate statistical model. Epistemic 21 
uncertainties imply that the nature of the uncertainty is not known precisely, and 22 
formal statistical methods can provide only an approximation to these uncertainties by 23 
treating them as if they were aleatory. In a hydrological data context, epistemic 24 
uncertainties may relate to spatial heterogeneity (e.g. in rainfall or 25 
evapotranspiration), transformation of variables (e.g. snow water equivalent, 26 
discharge rating curves) or lack of knowledge regarding boundary conditions (e.g. 27 
losses to deep groundwater) (Beven et al., 2011). They may be non-stationary, e.g. 28 
vegetation growth at rain or flow gauge sites. Other sources can include 29 
malfunctioning measurement equipment and human-induced measurement errors 30 
(Viney and Bates, 2004; ‘spurious errors’: Herschy, 1998). Epistemic errors can occur 31 
during data management, storage or post-processing which may be largely 32 
undocumented. Recent work has emphasised that epistemic uncertainty can change 33 
the information content of observed data to the extent that some observations may be 34 
regarded as ‘disinformation’ where they contradict physical laws such as the water 35 
balance (Beven and Westerberg, 2011; Beven et al., 2011). We do however note that 36 
such hydrological outliers are often indicative of unmodelled processes, variability or 37 
boundary conditions (Andréassian et al., 2010). Although epistemic uncertainty is 38 
inherently difficult to quantify, it is important to avoid the tendency to ignore sources 39 
of uncertainty which are hard to measure. 40 

The metrics by which observational uncertainty is quantified will depend on the types 41 
and sources of uncertainty, how well they are understood, and the estimation and 42 
reporting techniques being used. Uncertainties may be modelled as, in the order of 43 
increasing information content: mean relative/absolute error (which may include 44 
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 5 

components of systematic bias and random error), upper and lower bounds, fuzzy 1 
membership functions or full probability distributions; or errors may simply be 2 
divided as acceptable/unacceptable (Bulygina et al., 2009). Error models may 3 
additionally contain information on the autocorrelation and heteroscedastic properties 4 
of the uncertainty. In our tabulation of uncertainty estimates we have made clear the 5 
metrics being used as far as this information was available from the original studies, 6 
as knowledge of these is needed to allow collation and comparison. 7 

A thoughtful choice of uncertainty model is essential. Care should be taken that the 8 
choice is not biased by the availability of models in uncertainty propagation tools (e.g. 9 
Data Uncertainty Engine (DUE), Brown and Heuvelink, 2007). Assuming a 10 
probability distribution based on insufficient evidence will give a false sense of 11 
certainty of 2nd order (‘certainty about uncertainty’; Brown, 2004). Conversely, 12 
reporting uncertainty via confidence bounds may miss later opportunities, e.g. for 13 
results to be incorporated into decision theoretic frameworks which require full 14 
uncertainty distributions. Evidence theory provides a compelling overarching 15 
framework (Hall, 2003). In some cases a sensitivity analysis exploring various 16 
hypothetical levels of uncertainty (e.g. Info-Gap theory, Ben-Haim, 2006) may be all 17 
that is justifiable, and indeed required. Brown (2004) suggests that the choice of 18 
complexity of uncertainty analysis may also be influenced by the level of risk 19 
associated with poor decisions and the resources availability for making those 20 
decisions (time, money, expertise). 21 

In most applications there are many contributing sources of observational uncertainty: 22 
the method by which they are combined is therefore also important. Previous authors 23 
have typically used the root-mean-square (RMS) approach (e.g. Harmel et al., 2006; 24 
Sauer and Meyer, 1992) which assumes errors are non-additive; or may have varied 25 
the error structure according to uncertainty type (e.g. additive, absolute additive, 26 
RMS; Di Baldassarre and Montanari, 2009). It is also common for total uncertainty to 27 
be estimated by numerical simulation (e.g. Di Baldassarre and Montanari, 2009; 28 
McMillan et al., 2010). These methods all imply a reductionist approach; i.e. treating 29 
observational uncertainty as the result of its constituent parts. Alternatively, 30 
comparisons between methods provide an estimate of total uncertainty without 31 
needing to specify the components. This is especially common when using new 32 
technology such as ADCP or LSPIV for discharge (Table 2c) or satellite products for 33 
rainfall (Table 1c). Similar comparisons between data sources can be made via water 34 
balance analysis to estimate possible rainfall uncertainty (e.g. Heistermann and Kneis, 35 
2011; Kuczera et al., 2010). 36 

The temporal and spatial scales over which uncertainty is calculated are also variable: 37 
for example in well-instrumented catchments, instantaneous estimates of uncertainty 38 
may be required. However, for a substantial proportion of the globe, access is difficult 39 
and irregular, or measurements are only possible by remote sensing techniques. Here, 40 
uncertainty estimates integrated over longer time or space scales may be acceptable, 41 
e.g. uncertainty in mean annual discharge (Clarke, 1999; Clarke et al., 2000). Even so, 42 
without the ability to repeat observations or compare measurement techniques, the 43 
challenge of uncertainty estimation and quality control is substantial; for example 44 

Page 5 of 67

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 6 

refer to the discussion by Widen-Nilsson et al. (2007) on data problems when 1 
attempting to apply a global water-balance model. Given the recent increase and 2 
interest in large-scale hydrological applications, improvements in the knowledge of 3 
uncertainty will be of great benefit to improve inter-comparison of data from a wealth 4 
of international sources. 5 

 6 

3 Rainfall Uncertainty 7 

PERSPECTIVES Uncertainty in rainfall data measured by a gauge network is 8 
dominated by (1) point measurement error and (2) spatial variability when 9 
interpolating and extrapolating. Lesser uncertainty sources may also be present, and 10 
high-resolution temporal variability may exist which is not captured by typical 11 
raingauge readings (e.g. every 15 minutes). The literature relating to rainfall 12 
uncertainty is well developed, particularly in the case of point measurement error, and 13 
includes extensive guidance on quality control of data (e.g. WMO, 1994; WMO, 14 
2008b). Optimal gauge network design to minimise areal mean errors has also been 15 
well studied. Increasingly, direct areal measurements are available through radar, 16 
leading to different uncertainties (see review by Villarini and Krajewski, 2010). 17 
Rainfall measurement uncertainties propagate to cause uncertainty in derived rainfall 18 
statistics such as depth-duration-frequency curves (e.g. Molini et al., 2005a; 2005b). 19 

Significant scale differences exist between catchment-based studies and applications 20 
for which precipitation estimates are required over scales of thousands of square 21 
kilometres, with often sparse and unreliable point estimates available (Steiner, 1996) 22 
or relying on alternative data sources such as satellites (Astin, 1997; Stephens and 23 
Kummerow, 2007). Global precipitation datasets are in demand for earth system 24 
studies but may show significant discrepancies (Fekete et al., 2004). The problem is 25 
particularly severe in mountainous areas where steep precipitation gradients exist 26 
(Legates and Willmott, 1990) and a large percentage of precipitation falls as snow. 27 
The larger uncertainty in mountain precipitation is in conflict with the hydrological 28 
significance of mountains as ‘water towers’ providing freshwater to downstream 29 
populations (Viviroli et al., 2003). Meteorological processes are also relevant: 30 
uncertainty is large under convective storm cells which can produce large rainfall 31 
volumes with very limited spatial and temporal extent. Such events are significant for 32 
hazards such as flash flooding, but may be missed altogether from point gauge records 33 
and cause difficulties for gauge-radar comparisons (e.g. Rossa et al., 2010; Vasiloff et 34 
al., 2009). 35 

Effects of rainfall uncertainty on model calibration and simulation have been studied 36 
by means of stochastic simulation (e.g. Andreassian et al., 2001; Bárdossy and Das, 37 
2008; Pappenberger et al., 2005; Younger et al., 2009), or by incorporating rainfall 38 
error models into the total error models of uncertainty frameworks (Goetzinger and 39 
Bárdossy, 2008; and see Section 6.3 for further references). Conversely, rainfall-40 
runoff models may be used in conjunction with discharge measurements to 41 
benchmark the quality of rainfall estimates (Heistermann and Kneis, 2011). 42 
Theoretical analysis of rainfall uncertainty requires a prescribed error model, 43 
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 7 

validation of which is relatively rare (Kavetski et al., 2003; 2006b; McMillan et al., 1 
2011b; Moulin et al., 2009; Villarini and Krajewski, 2008; Willems, 2001). Where 2 
error model parameters are estimated simultaneously with model parameters, 3 
compensational effects between error sources are increased: to avoid this, independent 4 
inference of error structures is needed. 5 

In all, recent studies have shown that errors in runoff predictions are often dominated 6 
by rainfall bias (Wagener et al., 2007; Yatheendradas et al., 2008) and where 7 
uncertainties in rainfall data are recognised, accuracy in hydrological model 8 
predictions can be improved (Reichert and Mieleitner, 2009). 9 

TYPICAL RESULTS Refer to Table 1a-1c for quantitative examples. 10 

POINT MEASUREMENT ERRORS 11 

Point measurement errors are dependent on the type of raingauge used, for example: 12 
storage, weighing, tipping bucket, drop counting, impact sensor, optical; of these, the 13 
tipping bucket gauge is the most widely used. There is a great deal of literature on the 14 
causes, effects and corrective procedures for point measurement error, starting from 15 
the observations of Heberden (1769). Since then, Sevruk (e.g. 1982; 1996) and Yang 16 
(e.g. Yang et al., 1998), amongst many others, have written extensively on systematic 17 
errors in precipitation measurements according to gauge type, and correction of the 18 
same, although Sieck et al. (2007) showed that common correction techniques fail to 19 
account fully for wind-related undercatch.  20 

The figures in Table 1a demonstrate a consensus that systematic undercatch errors are 21 
typically in the range 5-16% (Figure 1a). Perhaps the key point, as lamented by 22 
Sevruk (1987), is that corrections are rarely made despite this consensus, highlighting 23 
the challenge ahead in more poorly understood cases. There may be potential to learn 24 
from other disciplines where treatment of bias is better developed (e.g. Magnusson 25 
and Ellison, 2008). More recent publications (Ciach, 2003; Krajewski et al., 2003) 26 
have analysed random rather than systematic error components, e.g. using data from 27 
clusters of raingauges, leading to estimates of mean uncertainty typically around 5% 28 
(Figure 1b), and hence of lower magnitude than systematic errors at this point scale 29 
(Figure 1a). 30 

SAMPLING ERRORS/INTERPOLATION 31 

For applications using raingauge data in hydrological modelling, estimates of 32 
precipitation over entire catchments are required, necessitating interpolation and/or 33 
extrapolation from a limited number of point-scale gauges. This process introduces 34 
uncertainty into the areal mean rainfall depth calculated at the catchment, sub-35 
catchment or model grid scale. Even in the case of dense gauge networks, variability 36 
at small scales of (102 – 103 m) has been shown to be significant (Goodrich et al., 37 
1995; Wood et al., 2000). Although the metrics used are not always directly 38 
comparable, these studies show a rapid increase in rainfall uncertainty with scale, 39 
from 4-14 % variation at 102 m scale to standard errors of 33-45 % at the 103 m scale 40 
and 65 % at the 104 m scale (Figure 1b). Such figures quickly outstrip the point 41 
measurement errors noted in the previous paragraph at all but the smallest scales. 42 
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Network design is an important factor which controls interpolation uncertainty (Bras 1 
and Rodriguez-Iturbe, 1976; Morrissey et al., 1995; Rodríguez-Iturbe and Mejía, 2 
1974). Estimation of areal mean errors via sub-sampling of a network was used by 3 
Horton (1923) and many other since: lists of examples are available in Melching 4 
(1995, p79) and Moulin et al. (2009, p100). Geostatistical methods such as kriging 5 
also provide estimates of error in mean areal rainfall (Moulin et al., 2009; Storm et al., 6 
1989). More complex approaches to modelling spatial rainfall fields and the 7 
associated errors include conditional simulation, i.e. generating ensemble rainfall 8 
fields conditioned on the mean and error of spatial rainfall interpolations (Clark and 9 
Slater, 2006); note that conditional simulation has also been used for radar and 10 
satellite rainfall fields (e.g. Hossain and Anagnostou, 2006; Villarini et al., 2009). 11 

QUANTITATIVE PRECIPITATION ESTIMATION (QPE) FROM RADAR  12 

Weather radar coverage continues to increase in populated areas, and offers the 13 
opportunity to sample rainfall rates at high temporal and spatial resolutions, avoiding 14 
the interpolation errors discussed above. Instead, radar brings a different set of 15 
uncertainties, principally regarding the Z-R (reflectivity – rainrate) relationship, the 16 
difficulties in distinguishing solid precipitation, and the effects of terrain blocking. 17 
These uncertainties, recently reviewed by Villarini and Krajewski (2010), are 18 
currently such that radar is considered most useful as an addition to a gauge network 19 
rather than an alternative. Error quantification currently available is usually given as 20 
standard deviation of the error as a proportion of rain rate, with typical figures of 0.3 – 21 
0.5 (Table 1c). Errors are shown to be highly dependent on the scale over which areal 22 
mean rainfall is required (i.e. larger averaging area reduces the uncertainty); scales of 23 
~1 km can produce standard deviations of 100 % of rain rate (Seo and Krajewski, 24 
2010). Perhaps due to the more obvious uncertainties associated with precipitation 25 
estimates from radar, the hydro-meteorology community has quickly established 26 
programmes to address the issue (Rossa et al., 2010; Zappa et al., 2010). Progress is 27 
being made towards definition of an error model for precipitation estimates from 28 
radar, including error model dependency on rain rate, accumulation time, distance 29 
from radar and rainfall type (e.g. Ciach et al., 2007; Gebremichael et al., 2011; 30 
Kirstetter et al., 2010; Seo and Krajewski, 2010) and error spatial covariance 31 
(Berenguer and Zawadzki, 2008; Mandapaka et al., 2009). 32 

 33 

4 River Discharge Uncertainty 34 

PERSPECTIVES Recognition of river discharge uncertainty was founded in the 35 
hydrometric sciences, where quantification of uncertainty ensured the quality of work. 36 
ISO standards provide guidelines for acceptable errors in individual hydrometric 37 
measurements (e.g. in velocity-area methods; ISO, 1997) and enable the estimation of 38 
combined discharge uncertainty (e.g. Herschy, 1978). A recent, thoughtful review by 39 
Hamilton and Moore (2012) describes how uncertainty in published streamflow 40 
records changes due to technical and methodological advances, and examines the 41 
implications for uncertainty reporting. When hydrologists make use of hydrometric 42 
data for modelling applications, discharge uncertainty is always present, and becomes 43 
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influential during calibration and validation. Recent studies comprise several in which 1 
error models for discharge have been justified and included (Huard and Mailhot, 2 
2008; Krueger et al., 2010a; Liu et al., 2009; McMillan et al., 2010; Pappenberger et 3 
al., 2006; Westerberg et al., 2011). Discharge uncertainty has also important 4 
implications for interpreting hydrometric data to describe and understand catchment 5 
dynamics, and this is discussed more fully in Section 6.1.  6 

TYPICAL RESULTS The characteristics of uncertainty in river discharge are 7 
entirely dependent on the technique used to measure and/or compute the discharge. 8 
The technique chosen naturally depends on a range of factors including the flow 9 
volume, channel characteristics, ease of access to the channel and application-specific 10 
considerations such as funding availability and length and accuracy of the 11 
measurement series required. The most common method for discharge calculation 12 
remains the use of a rating curve to convert measured stage to a discharge value (refer 13 
to Schmidt (2002) for a historical background). The resulting discharge uncertainty 14 
can be decomposed into several distinct error sources. A significant body of work is 15 
available to quantify the individual and combined uncertainties and provides an 16 
excellent reference against which to frame any application. The components are 17 
introduced next; refer to Table a-2c for quantitative results. 18 

STAGE/DISCHARGE MEASUREMENTS (AREA, VELOCITY, STAGE) 19 

Each point on a rating curve is composed of a stage measurement at the recording 20 
gauge, and a discharge measurement at a nearby cross-section. The uncertainty in the 21 
stage measurement is generally considered to be small (e.g. Dymond and Christian, 22 
1982). Van der Made (1982) and Petersen-Øverleir and Reitan (2005) provide a 23 
summary of the components of this uncertainty, and estimates relating to specific 24 
measurement techniques (e.g. stilling well floats) are also available. Instrument 25 
precision values are usually given as a range in mm, and rarely exceed ±10 mm 26 
(Figure 2a). The discharge measurement is naturally more uncertain and can be prone 27 
to errors associated with both instrumentation and quality control (especially in more 28 
remote sites) potentially leading to outliers (Sefe, 1996). Historically, the most 29 
common procedure involves calculation of the mean velocity at a cross-section using 30 
discrete current meter measurements across the width and depth profile of the river. 31 
Pelletier (1988) provides a comprehensive literature review of the uncertainties 32 
arising from this calculation, depending on factors such as velocity, time of exposure 33 
and number of verticals used. Total uncertainties at the 95% confidence level were 34 
found to lie in the range 4-17% for 5-35 verticals. More recently, Herschy (2002) uses 35 
figures from the ISO standard 748 to reach an estimate of the combined uncertainty at 36 
6% (Figure 2b). 37 

INTERPOLATION/EXTRAPOLATION OF RATING CURVE 38 

Uncertainty as to the true form of the stage-discharge relationship leading to its 39 
approximation by fitting a rating curve using interpolation or a functional type (e.g. 40 
power law) is a major source of uncertainty in discharge estimation. Errors increase if 41 
the rating curve is extrapolated beyond the observed stage-discharge measurements 42 
(Kuczera, 1996; Mosley and McKerchar, 1993). Clearly, the approach taken to 43 
extrapolate should consider the cross-section stability (i.e. fixed structure vs. rated 44 
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section), geometry and control for high flows. In controlled cases extrapolation may 1 
be simplified, e.g. by the use of Manning’s equation where Manning’s roughness is 2 
not expected to vary significantly. Venetis (1970) was among the first to recommend 3 
that rating curve uncertainties should be treated within a statistical framework. The 4 
classical statistical approach has been rigorously updated by Moyeed and Clarke 5 
(2005), Petersen-Øverleir and Reitan (2009) and Reitan and Petersen-Øverleir (2006; 6 
2008; 2009) using a variety of techniques including multi-segment fitting and 7 
Bayesian estimation. Fuzzy methods have been favoured by other authors using, for 8 
example, ‘limits of acceptability’ approaches (Liu et al., 2009), envelope curves 9 
(Krueger et al., 2010a; Pappenberger et al., 2006) and fuzzy set theory (Shrestha et al., 10 
2007; Shrestha and Simonovic, 2010a; b). Empirical methods such as multipliers for 11 
the rating curve have been used as well (Aronica et al., 2006). The rating curve 12 
approach has also been extended to account for uncertainties due to unsteady flow, 13 
e.g. by including longitudinal variation in water surface slope using simultaneous 14 
stage measurements at two adjacent cross sections (Dottori et al., 2009; Dottori and 15 
Todini, 2010; Koussis, 2010; Leonard et al., 2000; Schmidt and Yen, 2008). In large 16 
river systems especially, extrapolations may be needed in both directions (high and 17 
low flows) from gauged relationships for effective resource management (Sefe, 1996).  18 

CHANNEL CROSS-SECTION CHANGE 19 

Changes in morphology and channel cross-section introduce further uncertainties into 20 
discharge measurements. Multiple causes exist, including seasonal ice cover at the 21 
gauging site (e.g. Shiklomanov et al., 2006; and a review by Pelletier (1990)), or 22 
seasonal vegetation growth. Jalbert et al. (2011) used variographic analysis to model 23 
the resulting increase in discharge uncertainty with time. Rating changes due to 24 
channel morphology are particularly pronounced in alluvial rivers (Burkham and 25 
Dawdy, 1970). Under unsteady flow, a coupled relationship between the evolution of 26 
river bed forms and the stage-discharge relationship can occur (Shimizu et al., 2009). 27 
In many of the world’s large and dynamic rivers, complex changes in river 28 
morphology are common (Ashworth et al., 2000; Goswami et al., 1999; Sarma, 2005). 29 
For example in a study of the large Brahmaputra river at Bahadurabad in Bangladesh 30 
it was estimated that the combination of changing bed forms and inaccurate 31 
measurements of velocities and current meter depths could cause up to 20 % 32 
uncertainty in discharge measurements (Mirza, 2003). Reitan and Petersen-Øverleir 33 
(2011) modelled unstable rating curves by evolving the parameters of the standard 34 
power-law stochastically over time as part of a hierarchical Bayesian error model. 35 

COMBINED 36 

In many cases the total discharge uncertainty will relate to a combination of all the 37 
sources cited above. Some authors have undertaken studies which aim to quantify this 38 
combined uncertainty. Di Baldassarre and Montanari (2009) considered uncertainties 39 
resulting from point measurement error, hysteresis (see also Perumal et al., 2004), 40 
roughness change due to vegetation growth, and extrapolation; all calculated as 41 
percentage errors and then combined for total discharge uncertainty. McMillan et al. 42 
(2010) combined uncertainties including point measurement, rating curve form, and 43 
cross-section change in a gravel-bed river to derive a complete probability distribution 44 
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function of discharge for any measured stage value. Westerberg et al. (2011) also 1 
considered the instability of rating curves, in conjunction with gauging measurement 2 
error and rating curve extrapolation. Authors usually cite confidence bounds for the 3 
relative discharge error, making comparison between sites possible, with typical 4 
values being ±50-100% for low flows, ±10-20% for medium or high (in-bank) flows, 5 
and a single estimate of ±40% for out of bank flows (Figure 2b). 6 

REPRESENTATIONAL UNCERTAINTIES 7 

Insufficient temporal sampling of stage in calculation of mean discharge, e.g. daily, is 8 
an additional source of uncertainty, especially where peak flows have short duration 9 
(Petersen-Øverleir et al., 2009; Westerberg et al., 2011). An extreme example of 10 
restricted temporal coverage occurs where subjective interpolation methods are used 11 
to estimate winter discharge under ice, with results highly dependent on incorporating 12 
process knowledge such as flow reduction during ice formation periods (Hamilton 13 
and Moore, 2012). In addition to measurement error, discharge data may have a 14 
systematic bias due to unknown water losses circumventing the gauge. This bias is 15 
likely to have greater significance at low flows. Further representational uncertainties 16 
may be induced by uncertainty in and dynamics of the catchment area of a gauge 17 
(Krueger et al., 2010b) as well as unknown gain or loss fluxes when calculating water 18 
balances for modelling or field studies (Genereux et al., 2002; Graham et al., 2010). 19 
Importantly, there are almost no studies or information about the potential for such 20 
errors in different catchments. 21 

ALTERNATIVE TECHNIQUES 22 

New instruments and techniques continue to be developed to measure discharge more 23 
directly rather than using a rating curve, for example velocity measurement using 24 
acoustic Doppler velocimetry (ADV), acoustic Doppler current profiling (ADCP) or 25 
Large Scale Particle Image Velocimetry (LSPIV). These techniques have their own 26 
individual uncertainty characteristics, and methods to quantify the uncertainty are still 27 
under development in many cases. The World Meteorological Organization currently 28 
leads a research programme to design and collate appropriate uncertainty estimation 29 
methods (WMO, 2008a; 2010). Some studies have derived uncertainty estimates by 30 
comparison with impellor or other standard measurements (which are themselves 31 
subject to uncertainty); e.g. McIntyre and Marshall (2008) for ADV, Oberg and 32 
Mueller (2007) for ADCP, Costa et al. (2006) for radar. The corresponding 33 
uncertainties found, given as relative error, were ±20 % (range; ADV), ±3-7 % 34 
(standard deviation; ADCP) and larger values of 2-47 % (range; LSPIV) (Figure 2b). 35 
A current review of PIV techniques and uncertainties is provided by Muste et al. 36 
(2008). 37 

In many parts of the world, rivers are not accessible for direct gauging even where 38 
estimates of discharge are required, and remote sensing techniques are used. They 39 
may include measurement of channel width, water elevation and velocity from 40 
satellites (Bjerklie et al., 2003; Birkinshaw, 2010; Negrel et al., 2011) or aerial 41 
photography (Bjerklie, 2007; Bjerklie et al., 2005). These methods have great 42 
potential for use in global discharge estimates but are naturally highly uncertain and 43 
so it will be important to understand the potential for accompanying errors. 44 
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5 Water Quality Uncertainty 1 

PERSPECTIVES Water quality data typically subsumes concentrations of solutes 2 
and solids such as industrial and agricultural pollutants and derived quantities thereof 3 
(e.g. loads). In order to make the scope of the paper manageable, we do not deal with 4 
microbial concentrations and biological indicators here, but these are equally affected 5 
by uncertainties (Rode and Suhr, 2007; Schmidt and Emelko, 2010). We further limit 6 
our focus to suspended solids (SS), phosphorus (P) and nitrogen (N), which are the 7 
most documented water quality determinants. 8 

The explicit consideration of data uncertainty in water quality research is a more 9 
recent endeavour than the consideration of rainfall and discharge uncertainty 10 
discussed so far, although early quantitative research on sampling uncertainty 11 
appeared in the fluvial sediment transport literature (Horowitz et al., 1990; Walling 12 
and Teed, 1971). Ward (1984) added an analytical perspective by describing vertical 13 
sediment sampling uncertainty in a cross-section using hydraulic theory, albeit 14 
assuming ideal conditions. In P research an early discussion of data uncertainty 15 
appeared in Reckhow and Chapra (1979), while Haan (1995) was among the first to 16 
call explicitly for quantitative uncertainty assessment in both collection and reporting 17 
of data. Two comprehensive quantitative reviews of uncertainties in selected water 18 
quality data have appeared since (Harmel et al., 2006; Rode and Suhr, 2007), with the 19 
Harmel et al. data and error propagation method available as a software tool (Harmel 20 
et al., 2009). However, including uncertainty analysis in field and modelling studies is 21 
still far from common practice. This deficit compromises the determination of 22 
margins of safety for water quality protection (Harmel et al., 2006), the identification 23 
of trends, and the proper driving and evaluation of models (Johnes, 2007; Krueger et 24 
al., 2007; Radcliffe et al., 2009; Rode and Suhr, 2007). 25 

Many models used in water quality research are statistical models (e.g. Plate, 1995) 26 
and thus rely explicitly on the quality of the data. Export coefficient type models are 27 
equally common, and require calibration against loads which are derived data 28 
products particularly affected by the representational uncertainties discussed below. 29 
Mechanistic models, too, rely on the quality of the calibration data. However, only a 30 
few studies have addressed the issue of data uncertainty in modelling explicitly. 31 
McIntyre et al. (2002) and McIntyre and Wheater (2004) explored the effect of water 32 
quality data uncertainty and sampling frequency on calibration and prediction of 33 
mechanistic models in numerical experiments assuming idealised synthetic errors. 34 
McIntyre and Wheater (2004) in particular showed differences in calibration and 35 
predictive performance of a river transport model for different P load data scenarios 36 
and the limited value of routine low frequency P sampling for driving and calibrating 37 
the model. While both studies relied on idealised errors, estimating actual error 38 
structures from typically available data has rarely been possible in water quality 39 
modelling to date (McIntyre et al., 2003), hence subjective assumptions have been 40 
inevitable. McIntyre et al. approximated the uncertainty in daily averages of a number 41 
of water quality variables as a uniform distribution between the minimum and 42 
maximum of three daily samples. These data were then used as part of an uncertainty 43 
analysis of a river water quality model. Beven et al. (2006) also defined P 44 
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concentration data uncertainty subjectively and used these as limits of acceptability 1 
for rejecting competing parameterisations of a P leaching model within the extended 2 
Generalised Likelihood Uncertainty Estimation (GLUE) methodology. Krueger et al. 3 
(in press) followed the same methodology in a comparison of empirical SS and P 4 
transport models, but were able to relate their data uncertainty estimates to the number 5 
of sub-samples per timestep for at least a few timesteps where these data were 6 
available. Harmel and Smith (2007) incorporated data uncertainty estimated based on 7 
the quantitative review of Harmel et al. (2006, summarised in Table 3b) into 8 
performance metrics of a P transfer model. 9 

TYPICAL RESULTS Concentrations are the basis of most derived data products, 10 
and are typically determined by analysing water samples (in the lab or in the field) 11 
which are taken manually or automatically. Some determinants can now be measured 12 
by in-situ probes either directly or indirectly (e.g. SS via turbidity). The levels of 13 
uncertainty are discussed next and Tables 3a-3c list typical quantitative results for SS, 14 
P and N. 15 

MEASUREMENT UNCERTAINTIES 16 

Data based on sampling are affected by errors in capturing a volume of flow without 17 
altering its composition of dissolved and suspended substances (Wass and Leeks, 18 
1999). The errors associated with automatic sampling systems may be greater in this 19 
respect compared to manual samples, as these rely on sufficient suction and prior 20 
flushing and are confounded by clogging, biofouling and, for particles and particulate-21 
bound substances, preferential sampling effects (Evans et al., 1997; Jordan et al., 22 
2005). For SS concentrations, for example, sampler effects may introduce a relative 23 
error as large as 36 % (Figure 3a). For storm loads, relative sampling error can be 14-24 
33 % for SS and 0-17 % for total P, but around zero for total N which is mostly un-25 
affected by preferential sampling effects (Figure 3). For manual sampling, relative 26 
error contributions to SS storm load of 15-50 % have been reported (Figure 3a). 27 

If samples are not analysed directly on-site (via bank-side analysers; Jordan et al., 28 
2005) then biogeochemical transformation processes may further alter their 29 
composition during transport and storage (Kotlash and Chessman, 1998; Robards et 30 
al., 1994; Worsfold et al., 2005). These effects are particularly prominent when 31 
sampling P, and can introduce a relative error of 64-92 % into total P storm loads 32 
(Figure 3b). Additional errors may be introduced by sub-sampling for laboratory 33 
analysis (Donohue and Irvine, 2008) and other sample preparation steps (e.g. 34 
Magnusson et al., 2004). Sub-sampling may introduce a relative error of 6-8 % into 35 
total P and of 10-11 % into total N concentration measurements (Figure 3b, c). 36 

Finally, both water samples and in-situ probes are affected by the precision of the 37 
analytical instruments used (Meyer, 2007), which is generally quoted by 38 
manufacturers as below 5 % (see Figure 3b, c for total P and total N concentrations). 39 
Individual error components combine to produce analytical uncertainty typically in 40 
the order of 5 % (see Figure 3b, c for total P and total N concentrations). 41 

REPRESENTATIONAL UNCERTAINTIES 42 
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Measurement uncertainties describe the uncertainty in a determinant concentration at 1 
one point in a stream, river or lake. If this point concentration is being related to the 2 
larger spatial and temporal scales which are typically of interest, e.g. the determinant 3 
load of a stream over the scales of events up to multiple years, then representational 4 
uncertainties may be dominant, although in some cases lab analysis can contribute 5 
most to the overall uncertainty (Harmel et al., 2006), e.g. up to 9.8 % in SS storm 6 
loads (Figure 3a). Representational uncertainties are induced by determinant 7 
concentrations varying within a flow cross-section (Horowitz et al., 1990; Lovell et 8 
al., 2001; Rode and Suhr, 2007; Wass and Leeks, 1999) and across a lake – scales that 9 
are misrepresented to some extent by point measurements (in-situ or via sampling). 10 
For SS concentrations, for example, variations in the river cross-section may 11 
introduce a relative sampling error as large as 26 %; for instantaneous loads the 12 
relative error may be up to 14 % (Figure 3a). In addition, determinant concentrations 13 
vary over short time periods (Horowitz et al., 1990; Rode and Suhr, 2007), and the 14 
measurement frequency determines the accuracy and precision with which certain 15 
temporal dynamics can be resolved (Jordan et al., 2005; Lazzarotto et al., 2005), 16 
including the effectiveness of pollution mitigation measures (Jordan and Cassidy, 17 
2011). For example, the uncertainty of SS and total P hourly flow-weighted mean 18 
concentration as a function of temporal sampling resolution can range from 10 to 50 19 
% (Figure 3a, b). The variability of particulate substances is generally much larger 20 
than that of dissolved ones (Lovell et al., 2001; Rode and Suhr, 2007). 21 

Unrepresentative temporal sampling affects annual frequency distributions of 22 
determinants, particularly the loss of right skewness and tails (Johnes, 2007), and 23 
associated percentiles for comparison to water quality targets (van Buren et al., 1997). 24 
It also affects determinant loads; and the accuracy and precision of various temporal 25 
sampling and load estimation strategies have long been researched in the fluvial 26 
sediment transport literature and recently in water quality research more widely. The 27 
early studies used turbidity-generated high-resolution concentration time series paired 28 
with flow time series to construct benchmark loads against which low-resolution 29 
sampling and estimation strategies were compared by sub-sampling the time series. 30 
Walling and Webb (1981) and Phillips et al. (1999) provide comprehensive 31 
summaries. Here we focus on studies that used actual high-resolution concentration 32 
data for benchmarking. Temporal resolution is obviously relative to the concentration 33 
dynamics of interest. For large rivers daily sampling may be classed as high-34 
resolution (e.g. Al-Ansari et al., 1988; Asselman, 2000; Dolan et al., 1981; Horowitz, 35 
2003), whereas for small rivers and streams high-resolution means sub-daily (e.g. 36 
Bowes et al., 2009; Kronvang and Bruhn, 1996; Salles et al., 2008; Stevens and 37 
Smith, 1978) or even sub-hourly sampling (e.g. Jordan and Cassidy, 2011).  38 

Inadequate temporal sampling can result in a relative bias of up to 65 % in storm 39 
loads (Figure 3). For annual SS loads a bias of up to 30 % has been reported (Figure 40 
3a), for annual total P loads up to 150 % (Figure 3b). Moatar et al. (2006) correlated 41 
SS load uncertainty positively with the importance of extreme events for mass 42 
transfers, which in turn decreased with increasing basin size. Johnes (2007) correlated 43 
total P load uncertainty negatively with base flow index (i.e. uncertainty increased 44 
with the importance of extreme events as with SS) and positively with population 45 
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 15 

density (as an index for point sources). Load estimation methods diverge too (Figure 1 
3), yielding biases of up to 52 % in SS storm loads, up to 38 % in total P storm loads, 2 
and up to 22 % in total N storm loads, for example. Component uncertainties can 3 
compensate each other and generally average out over longer aggregation times, but 4 
combined uncertainties are still highly variable (Figure 3): 0-33 % for SS 5 
concentrations, 15-35 % for SS storm loads, 16-104 % for total P concentrations, 17-6 
105 % for total P storm loads, 0-10 % for daily total P loads, 14-104 % for total N 7 
concentrations, 15-105 % for total N storm loads. 8 

PROXY MEASUREMENTS 9 

For indirect methods, proxy measurements have to be related to the quantity of 10 
interest by calibration or a model. This introduces uncertainties associated with this 11 
relationship on top of the measurement and representational uncertainties (Foster et 12 
al., 1992; Gippel, 1995; Teixeira and Caliari, 2005; Wass and Leeks, 1999; Wass et 13 
al., 1997; Eder et al., 2010, for the case of turbidity-suspended solids relationships). 14 

6 Data Uncertainty: Implications 15 

The process of identification, summary and comparison of uncertainties in rainfall, 16 
river discharge and water quality variables that we have followed above, has left no 17 
doubt that data uncertainties are widespread and of significant magnitude. Therefore it 18 
is important to consider how those uncertainties impact on the interpretation of the 19 
data in order to draw scientific conclusions. In this section we discuss the impacts on 20 
three areas: interpretation of catchment dynamics, model regionalisation and model 21 
evaluation. 22 

6.1 Interpretation of Catchment Dynamics 23 

Improvement in the understanding and characterisation of hydrological systems is at 24 
the heart of all catchment monitoring programmes. Some programmes are purely 25 
field-based, but increasingly modelling is used alongside field campaigns to 26 
synthesise and develop new insights into catchment responses (Dunn et al., 2008; 27 
Tetzlaff et al., 2008), and inform future data collection (Dunn et al., 2007; McGuire et 28 
al., 2007). Uncertainty in field data, therefore, clouds the potential to interpret 29 
catchment dynamics in two ways: through direct contamination of observed 30 
responses, and indirectly through biasing model predictions and hence compromising 31 
the iterative modelling-measuring cycle of improved understanding. 32 

In recent years, developments in measurement technology have allowed an increasing 33 
number of alternative data sources to augment rainfall and flow time series in the 34 
characterisation of catchment behaviour. Soil moisture content and water table level 35 
are now routinely measured, and the latest advances include the use of tracers such as 36 
stable isotopes (Birks and Gibson, 2009; Soulsby et al., 2000), chloride (Page et al., 37 
2007), Gran alkalinity (Birkel et al., 2010) and diatoms (Pfister et al., 2009). These 38 
new data sources not only bring their own individual measurement uncertainty 39 
characteristics; but also typically rely on co-measurement of rainfall and flow data 40 
(e.g. flow-concentration curves) for their interpretation, which are affected by the 41 
many sources of uncertainty raised in this paper. When multiple data sources are used, 42 
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data errors may cause incompatibility of process interpretations at the scale of interest 1 
(Lischeid, 2008). Soft data (Seibert and McDonnell, 2002) adds additional challenges 2 
to uncertainty quantification, although after consideration of the data uncertainty 3 
identified in this review the distinction between hard and soft data may become less 4 
clear. 5 

The use of models in combination with field data to identify catchment dynamics is 6 
particularly susceptible to data uncertainty in regard to fast response processes where 7 
errors may be increased due to high flows and flashy behaviour. Examples include 8 
identification of variable source areas (Beven and Freer, 2001; Dunne and Black, 9 
1970) or model confirmation of groundwater ridging behaviour (Cloke et al., 2006). 10 
Proper representation of processes such as infiltration excess runoff or activation of 11 
transient stream channels is dependent on the accuracy of high resolution rainfall data 12 
under high intensity conditions, when input uncertainties are likely to peak. When 13 
reliable high resolution measurements become available, improved process 14 
understanding can be gained, as has been shown for hyporheic process dynamics 15 
(Malcolm et al., 2006) and estimates of P load, sources and dynamics (Johnes, 2007; 16 
Jordan et al., 2005; Jordan and Cassidy, 2011; Lazzarotto et al., 2005; Radcliffe et al., 17 
2009). 18 

Recently, the opportunity to use multi-response field data to build an integrated view 19 
of dominant processes in a catchment has also been harnessed to guide model 20 
structure (Clark et al., 2011; Fenicia et al., 2008a; McMillan et al., 2011a). It is a 21 
priority to include data uncertainty in such analyses as the diagnostics employed have 22 
the potential to be altered by data errors. For example in the context of eutrophication 23 
studies, Hanafi et al. (2007) demonstrated that the uncertainty propagated from 24 
nutrient concentration measurements through to nutrient uptake length and velocity 25 
was too large to distinguish between high and low uptake conditions. Similarly in the 26 
study by Kennard et al. (2010), large uncertainties in flow metrics clouded ecological 27 
impact assessment. The problem is especially severe when diagnostics rely on 28 
relationships between two data streams, for example: water balance analysis (Graham 29 
et al., 2010), threshold response in the ratio of precipitation to runoff, recession 30 
analysis of the relationship between flow and its derivative. We therefore stress the 31 
importance of data uncertainty analysis for robust interpretation of catchment 32 
dynamics. 33 

6.2 Model Regionalisation 34 

The effect of uncertainties in observed data will propagate from process identification 35 
and model structural choice into wider fields such as model regionalisation and 36 
predictions in ungauged basins. Bai et al. (2009) noted the role of data uncertainty in 37 
addition to parameter uncertainty in top-down watershed model evaluation. Wagener 38 
and Wheater (2006) highlighted the path by which model structural uncertainty could 39 
lead to non-identifiability of catchment model parameters, and hence uncertainty in 40 
the regionalisation method. Attempts have been made to address some of the 41 
uncertainty sources, e.g. Yadav et al. (2007) included uncertainty estimation within 42 
the regression equations of their regionalisation approach, and McIntyre et al. (2005) 43 
used multiple models within the regionalisation to account for structural uncertainty. 44 
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However, these methods currently lack a full analysis of observational uncertainties, 1 
which are instead implicitly mapped onto parameter uncertainties with the attendant 2 
risk of bias in parameter estimates and model forecasts. Regionalisation of 3 
hydrological models also implicitly assumes the comparability of measurements 4 
between basins; which will not be the case as data uncertainties vary spatially. For 5 
example, discharge data may be used to evaluate spatial patterns of model parameters 6 
or flow recession characteristics, while their uncertainties depend strongly on the 7 
range of channel types and the data collection method, e.g. via natural rated sections 8 
or gauging structures. 9 

6.3 Model Evaluation 10 

The potential of incorrect uncertainty assumptions to cause bias in model calibration 11 
and predictions (as discussed by Beven et al., 2007; 2011; Ibbitt, 1972; Kavetski et 12 
al., 2006a; 2006b; Sorooshian, 1981; Thyer et al., 2009; Troutman, 1982; 1983; Vrugt 13 
et al., 2008) has led to calls for more thoughtful approaches to uncertainty estimation. 14 
While there is an increased acceptance of data uncertainty in the modelling 15 
community, hydrological modellers are often reliant on the analysis and provision of 16 
error structures and magnitudes alongside field data sets (Graham et al., 2010).  17 

Model calibration schemes which treat model input and/or output uncertainty 18 
explicitly demonstrate an ability to incorporate, and a growing requirement for, sound 19 
advice on measurement uncertainty magnitude and form. Such schemes include 20 
BATEA (Kavetski et al., 2003; 2006a; 2006b), DREAM (Schoups and Vrugt, 2010; 21 
Vrugt et al., 2008), IBUNE (Ajami et al., 2007) and extended GLUE (Beven et al., 22 
2006; Beven, 2006; Krueger et al., 2010a; in press; Liu et al., 2009; Pappenberger et 23 
al., 2006; Quinton et al., 2011 ). Accordingly, an increased number of studies specify 24 
at least one measurement error model (Huard and Mailhot, 2006; 2008; Kennedy and 25 
O'Hagan, 2001; McMillan et al., 2010; Reichert and Mieleitner, 2009; Vrugt et al., 26 
2003; 2005; Vrugt and Robinson, 2007). Harmel and Smith (2007) modified 27 
traditional model performance metrics with data uncertainty information, while 28 
Khadam and Kaluarachchi (2004) incorporated qualitative information on the 29 
reliability of data. The expected improvement of model performance metrics when 30 
data uncertainties are included explicitly is balanced with increased equifinality 31 
(Krueger et al., 2009). However, without including data uncertainties the performance 32 
metrics may be intrinsically compromised, and unsuitable for their fundamental 33 
purpose of making comparisons across dimensions of model structure, 34 
parameterisation, time and space.  35 

Estimation of the complexity of dominant processes and hence appropriate models is 36 
also subject to interference from data errors; whether this is achieved through analysis 37 
of time series (Sivakumar, 2004) or a top-down modelling approach (Fenicia et al., 38 
2008b; Klemeš, 1983). Singh and Woolhiser (1976) found that large input errors 39 
could overwhelm the non-linear surface runoff responses of their model and so a 40 
simpler linear model became the preferred choice. In the context of model 41 
identification, an additional source of uncertainty lies in the information content of 42 
observed data: is the series consistent with the overall observed responses, and are the 43 
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conditions observed sufficient to excite the full range of model responses (Gupta and 1 
Sorooshian, 1985; Sorooshian et al., 1983; Young, 2003). 2 

7 Towards a Culture of Working with Data Uncertainty 3 

7.1 Summary of Findings 4 

The information that we have reviewed, contextually and in Tables 1-3, has allowed a 5 
comparative study of different observational uncertainty sources. In particular, we 6 
have been able to identify dominant uncertainties in raw measurements and in derived 7 
quantities relevant to different scales, processes, scientific questions and disciplines. 8 

In the case of rainfall, we saw an overarching narrative in which uncertainty 9 
magnitudes and our ability to characterise them were driven by scale. At the point 10 
scale, uncertainties were comprised of systematic, usually undercatch, errors of 11 
average magnitudes 5-16 % which could in theory be subject to correction (Figure 12 
1a), plus random errors of magnitude around 5 %. However, as the need for estimates 13 
of areal mean rainfall was scaled up, interpolation errors came into play which could 14 
vary from 4-14 % variation at the 102 m scale to standard errors of 33-45 % at the 103 15 
m scale and 65 % at the 104 m scale. At larger scales of 103 to 105 m, radar or satellite 16 
estimates of rainfall could have uncertainties of 9-150 % of rainfall rate, whose 17 
magnitudes were however reduced by averaging over larger areas. Timescales also 18 
affect uncertainties which are reduced with longer averaging times, although the 19 
gradient may not always be consistent when comparisons are made across different 20 
studies. These findings are summarised in Figure 1b. 21 

For discharge uncertainty, scale was less important due the integrated nature of the 22 
measurement. Instead, the gauging method used together with the relative flow (low 23 
flow up to flood) was key to understanding uncertainty (Figure 2). Individual 24 
measurements of discharge have uncertainties in the range 2-19 % using velocity-area 25 
methods, with similar ranges for the newer methods of ADV and ADCP, and 2-47 % 26 
range for LSPIV measurements. However, once extrapolation must be made outside 27 
of the stage range or channel conditions used for gauging, rating curves are typically 28 
used for discharge estimation. This method brings much larger uncertainties and is the 29 
main contributor to estimates of total discharge uncertainty with confidence bounds of 30 
typically ±50-100 % for low flows, ±10-20 % for medium or high (in-bank) flows, 31 
and ±40 % for out of bank flows. The last figure is based on only one reference and 32 
for more extreme floods larger uncertainties can be expected, though currently not 33 
quantified. 34 

Water quality data uncertainty is highly variable as it results from a combination of a 35 
larger number of component errors compared to rainfall and discharge, which 36 
combine differently for different environments, methods, types of equipment and 37 
seasons. Uncertainty also aggregates differently for average concentrations and loads 38 
over different timescales due to the fundamental representational limitations imposed 39 
by the need for spatial and temporal sampling of constituents, with a tendency for 40 
component errors to average out with aggregation time (Figure 3). Combined 41 
analytical uncertainty can generally be considered smallest, in the order of 5 %, 42 
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though with exceptions, e.g. for SS. Sample timing effects are typically greater than 1 
effects of the actual sampling method and conduct. For example  up to 65 % for storm 2 
loads; compared to 14-33 % for SS, 0-17 % for total P and around zero for total N, 3 
also highlighting the greater susceptibility of particulate/particulate-bound substances 4 
(such as SS and total P) to preferential sampling effects and cross-sectional variation. 5 

7.2 Guidance 6 

Based on the evidence presented in this paper, we venture to make a number of 7 
recommendations for research into observational uncertainty. These highlight some 8 
important issues that have been raised in relation to existing gaps in our understanding 9 
and treatment of observational uncertainty. We advocate a culture of explicitly 10 
acknowledging and working with uncertainty, not least to eventually demonstrate 11 
appreciable uncertainty reduction.  12 

1. Community sharing of information. Combine our knowledge of error 13 
characteristics and magnitudes for different data sources relevant to hydrology, while 14 
recognising and describing the place-dependency of some error types. Also catalogue 15 
the potential for as-yet unmeasured uncertainties in those data sources. 16 

2. Uncertainty as metadata. Develop metadata standards that fully characterise data 17 
uncertainty. For example, the hydrological data standard proposed by Tarboton et al. 18 
(2008) allows the association of a single ‘Value Accuracy’ with each data point, but 19 
does not differentiate between different causes or types of uncertainty, such as bias vs. 20 
precision. The HarmoniRiB project designed a database for river basins in the context 21 
of delivering the EU Water Framework Directive with scope to associate a 22 
comprehensive probability model with each uncertain data item (Refsgaard et al., 23 
2005). An additional semi-qualitative description of the ‘pedigree’ of data, describing 24 
the limits of the state-of-the-art in producing these data, could be based on the 25 
NUSAP notational system (Constanza et al., 1992). 26 

3. Characterisation of uncertainty. Improve knowledge of error distributions, often 27 
lacking in existing data. This applies to both raw measurements and to integrated or 28 
derived quantities (e.g. point vs. areal mean rainfall), and should include explicit 29 
recognition of commensurability errors when comparing models to data. Uncertainty 30 
information may be needed at a sub-data series level (e.g. different discharge ranges 31 
may relate to different measurement techniques: wading, cable, ADCP). 32 

4. Training in observational uncertainty. Include exposure to concepts of data 33 
uncertainty within hydrological sciences training programmes, helping to develop 34 
good practice in working with and reporting data uncertainty. 35 

5. Learning through dialogue. Improve the dialogue with the statistical community 36 
when developing guidance about appropriate uncertainty analysis techniques. Improve 37 
the dialogue between experimentalists and modellers to encourage consideration of 38 
the effect of experimental design on uncertainty in the required derived quantities. 39 
Improve the dialogue with the water management community to understand and foster 40 
user demand for uncertainty information alongside hydrological data.  41 
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6. Learning through experimentation. Greater emphasis on observational 1 
uncertainty experiments in project proposals will enable us to assess how different 2 
uncertainty characterisation methods affect model predictions, uncertainty bounds and 3 
performance. Such experiments will be needed to understand the value of new and 4 
diverse hydrological data sources, their specific information content, and the level of 5 
complexity in our methods needed to provide error estimates. 6 

7. Design of diagnostics. Where observations are used as diagnostics, e.g. for model 7 
evaluation or in decision frameworks, those diagnostics should be robust to some 8 
level of observational uncertainty. This might imply greater use of integrated 9 
diagnostics (e.g. the annual rainfall-runoff ratio) over timestep-based measures such 10 
as those based on the sum of squared errors, which are sensitive to time-varying 11 
random errors. Alternatively, comparative or change-based diagnostics may allow 12 
defensible decision-making under uncertainty.  13 

More broadly, this review has highlighted how knowledge of data uncertainties is 14 
important in the calculation of hydrological indices, summary statistics, process 15 
interpretation and model predictive capability. Quantitative uncertainty estimates are 16 
needed for communication of data uncertainty across disciplinary boundaries, to data 17 
users, policy makers and to the general public. Uncertainty quantification is 18 
prerequisite to understanding how much information in needed to characterise system 19 
behaviour before catchment response and hydrological change signals can be 20 
separated from natural variability and measurement uncertainty (Kennard et al., 2010; 21 
Burt et al., 2010). Good quality data is essential: high-resolution monitoring is 22 
valuable to quantify representational uncertainties that are critical to understand 23 
before we can regionalise process knowledge and models. Similarly, good quality, 24 
long term data sets facilitate emerging tools which identify previously uncharacterised 25 
data errors by analysis of ‘unusual events’ (e.g. regression tree analysis, Ali et al., 26 
2010; data depth functions, Singh and Bardossy, 2012). As described by Hamilton 27 
and Moore (2012), routine uncertainty reporting enables the value of high-quality data 28 
and post-processing to be recognised by data users, and encourages best practice by 29 
data providers to reduce data uncertainties. 30 

However, it is unreasonable to expect every study to allow the funds and time 31 
required for in-depth study of individual observational data types, especially at scales 32 
relevant for policy and management which are notoriously difficult to cover. 33 
Therefore a key requirement is for a wider analysis and synthesis of data errors to 34 
provide a priori guidance. We have started the process in this review, but recognise 35 
that currently some of the conclusions we can draw about the distribution of error 36 
characteristics are weak; for example we may only be able to provide plausible upper 37 
bounds for an uncertainty type, or a summary of uncertainties encountered in previous 38 
experiments. In particular, the number of ‘replicate’ studies we were able to 39 
summarise here was very low. 40 

To address these limitations it is essential to encourage good practice in reporting data 41 
uncertainty: we found that it was not always possible to extract the exact uncertainty 42 
metrics used in published studies. The ability to share, synthesise and re-use 43 
information will be greatly enhanced if published uncertainty estimates are more 44 

Page 20 of 67

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 21 

precise. For example, when uncertainty ranges, standard deviations or confidence 1 
intervals are reported, these should be accompanied by a description of the method 2 
used for calculation including the underlying distribution assumption where 3 
appropriate. Standardised reporting would start the process of attribution of data error 4 
characteristics and dominant uncertainties. Factors which control the uncertainties 5 
will depend on data type (refer to Figures 1-3) and will in some cases be place-6 
dependent. Understanding these factors will help to constrain errors where there is no 7 
local information. 8 

This type of synthesis will become more important as we increasingly rely on large 9 
shared data information systems (e.g. the CUAHSI Hydrologic Information System; 10 
Tarboton et al., 2010), and modellers may retreat further from field data collection. 11 
According to one reviewer, neither of the two hydrological observatories HOBE 12 
(Denmark) and TERENO (Germany), which aim to produce high quality data for 13 
scientific purposes, systematically store data with uncertainty information. In the UK, 14 
due to our involvement in the Demonstration Test Catchments programme, some 15 
uncertainty data has been recorded for future inclusion in the project database, but 16 
again is not a funding priority and is made more difficult by the lack of a common 17 
standard for uncertainty in hydrological data. This point can be further emphasised by 18 
the increasing interest in large scale hydrology and model comparison with global 19 
discharge products such as those obtained from the Global Runoff Data Centre 20 
(http://grdc.bafg.de) and Composite Global Runoff Fields (e.g. Fekete et al., 2002). 21 
Albeit such observations and data products are very welcome to quantify hydrological 22 
simulations over diverse environments, the quality and validity of such information 23 
(including metadata such as station co-ordinates) varies significantly and is relatively 24 
unreported and unknown (Pappenberger et al., 2010). We therefore risk becoming 25 
disconnected from the interpretation of data quality unless it is properly embedded in 26 
any metadata information abstracted from such data information systems, or methods 27 
are available to estimate uncertainties where they are not available directly. 28 

A community discussion on data uncertainty has the potential to lead to clearer 29 
mechanisms for sharing knowledge and impacts, and build consensus for the reporting 30 
and propagation of data uncertainties. More effective sharing of existing data and 31 
collaborative reflection on uncertainty estimation methods will reduce the danger of 32 
propagating artificial levels of confidence (Brown, 2004). We have started this 33 
process by posting the tables of this paper on the Experimental Hydrology Wiki1 and 34 
encourage readers to contribute their own findings. This resource and tools like those 35 
of Brown and Heuvelink (2007) and Harmel et al. (2009) provide a starting point for 36 
scoping data uncertainties, and the reference to common sources and tools will lend 37 
transparency and repeatability to uncertainty quantification. However, it is important 38 
to stress that such a priori information should be augmented with independent 39 
quantitative evidence as this becomes available on site. Such a learning process sits 40 
comfortably with the Bayesian mode of inference that has been gaining acceptance in 41 
hydrology. We explicitly discourage a ‘job done’ mentality in cases where reference 42 
to existing sources and tools on data uncertainty is made. 43 

 44 
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Table 1a: Typical quantitative results of rainfall uncertainty studies: Point Measurements. Bold values were used in Figure 1. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Systematic Errors 

Wind loss curves 
dependent on wind speed 
& raindrop size  

Theoretical calculation 
using wind velocity field 
from wind tunnel 
experiments 

1 mm drops: -10 % (6 m s-1), -40 % (9 m s-1), -80 
% (12 m s-1) 
2 mm drops: -10 % (9 m s-1), -20 % (12 m s-1) 
3-5 mm drops: no effect up to 15 m s-1 

 Mueller & Kidder (1972) 

Wind loss curves Comparison with shielded 
gauge 

Approx. linear 1 % under-catch per 1 mph wind 
speed 

Danville, Vermont, USA Larson & Peck (1974); also 
wind loss curves for snow 

Undercatch for gauge 
mounted at 1 m height 

Comparison with pit gauge 5-16 % average undercatch (over 53-321 

events), 0-75 % per storm 

USA: Reynolds Creek, 
Idaho; Pullman, 
Washington; Sidney, 
Montana; Ekalaka, Montana 

Neff (1977) 

Loss due to wind field 
deformation 

WMO literature survey & 
pit gauge comparisons 

2-10 % (rain), 10-50 % (snow)  Sevruk (1982); extensive 
literature survey is still 
widely quoted; correction 
equations are given 
dependent on gauge type & 
meteorological conditions 

Wetting loss 2-15 % (summer), 1-8 % (winter) 

Evaporation loss from 
open container 

0-4 % 

Splash-in/out 1-2 % 

Undercatch for shielded 
gauge at 12 inches height 
& turf wall gauge 

Comparison with pit gauge 5 % (unshielded), 2 % (turf wall) annual 

undercatch 

County Londonderry, 
Ireland. Lowland, coastal, 
rainfall 900-1100 mm yr-1. 

Essery & Wilcock (1991); 
1976-1988 

Wind-induced error 
depending on wind speed, 
rain drop size distribution 
& gauge design 

Comparison between 
exposed & pit gauges 

2–10 % (hourly data; even after popular 

correction algorithms) 

ARS Goodwin Creek 
experimental watershed, 
Mississippi, USA. 21.4 km2, 
rainfall 1400 mm yr-1, 71-
128 m a.s.l. 

Sieck et al. (2007) 

Tipping error per 1 mm 
rain 

Field calibration with 
known water delivery rate 

Up to 10 % dependent on gauge type & rain 

rate 

Random Errors 

Coefficient of variation of 
random errors 

12 co-located standard rain 
gauges 

Approx. 5 % for single storm, independent of 
total storm rainfall 

Mount Cargill, Dunedin, 
New Zealand. Exposed site 

Hutchinson (1969) 
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at 560 m a.s.l. 
Coefficient of variation of 
non-recording gauges 

9 co-located recording & 
non-recording gauges 

4-5 % for storms >15 mm (monsoon season 

thunderstorms) 

USDA Walnut Gulch 
Experimental Watershed, 
Arizona, USA. 4.4 ha, semi-
arid, 1250-1585 m a.s.l.  

Goodrich et al. (1995) 

Total error of recording 
gauge 
 

Standard error between 
single gauges & average of 
15 co-located tipping 
buckets 

Decreases with rain rate & accumulation time, 

e.g. 4.9 % (5 min) & 2.9 % (15 min) at rain 

rate of 10 mm h-1 

USDA field station in 
Chickasha, Oklahoma, USA 

Ciach (2003) 

 
Table 1b: Typical quantitative results of rainfall uncertainty studies: Interpolation. Bold values were used in Figure 1. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Rainfall variability in 
convective events 

48 non-recording gauges 
on 30 m grid over 4.4 ha 
catchment 

4-14 % variation of mean storm rainfall over 

100 m distance; -5.6 % greatest difference 

between areal mean & 4 co-located central 

gauges 

USDA Walnut Gulch 
Experimental Watershed, 
Arizona, USA. 4.4 ha, semi-
arid, 1250-1585 m a.s.l. 

Goodrich et al. (1995) 

Standard error in single 
gauge measurement vs. 
gauge network 

8 rain gauges within a 2 
km2 area 

33 % (low relief), 45 % (high relief) at 4 

mm/15 min rain rate; 90% confidence bounds 

on the standard error, dependent on rain rate, 

are also given graphically 

Brue catchment, UK 
(135 km2). 20-250 m a.s.l., 
temperate climate, 
orographic rainfall. 

Wood et al. (2000) 

49 rain gauges in 135 km2 
area 

65 % at 4 mm/15 min rain rate; presented 

graphically for rain rates 0.2-8 mm/15 min and 

for three different gauges 

SD of rainfall rates within 
5 km2 area for 
accumulation periods 
between 5 min and 1 hour 

5 clusters, each of 12-40 
rain gauges 

12.2, 12.0, 16.1, 7.7 & 9.8 mm h-1 for 5 min totals 
over 57-515 days, conditioned on rain rates 
greater than 0.5 mm h-1 

Gauge clusters in Guam, 
Brazil, Florida, Oklahoma, 
Iowa 

Krajewski et al. (2003); 
also looked at correlation 
statistics up to 8 km 
distance with significant 
reductions 

Multiplier from 3-gauge 
average to areal mean 
rainfall 

Conditional simulation 
using 13 raingauges to 
generate ensemble of 
spatial rainfall fields 

Rainfall multipliers have mean 1.15 ± 0.03, 
standard deviation 0.27 ± 0.02 when accounting 
separately for rainfall, runoff and structural 
uncertainty. 

Yzeron catchment (129 
km2), Rhone-Alpes region, 
France. 400-917 m a.s.l.. 
Rainfall 845 mm yr-1, runoff 

Renard et al. (2011) 

Page 43 of 67

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 44

150 mm yr-1.  

 
Table 1c: Typical quantitative results of rainfall uncertainty studies: Radar and Satellite. Bold values were used in Figure 1. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Radar 

Error between radar 
estimate and gauge 
network 

Radar RMSE with respect 
to 30 raingauges 

10 % for storms >30 mm after radar bias 
correction using high quality rain gauge data; 
when all gauges were used for bias correction 
without prior quality control RMSE was 10-40 % 

ARS Goodwin Creek 
experimental watershed, 
Mississippi, USA 

Steiner et al. (1999) 

Error between radar 
estimate and gauge 
network 

Standard error of residuals 
compared with 8 rain 
gauges in 2 km2 area 

50% (low relief) at 4 mm/15 min rain rate; 

presented graphically for rain rates 0.4-10 

mm/15 min 

Brue catchment, UK 
(135 km2). 20-250 m a.s.l., 
temperate climate, 
orographic rainfall. 

Wood et al. (2000) 

Standard error of residuals 
compared with 49 rain 
gauges in 135 km2 area 

55 % at 2km resolution, 60 % at 5 km 

resolution, for rain rate 4 mm/15 min; 

presented graphically for rain rates 0.2-8 

mm/15 min 

Error between radar 
(WSR-88D) estimate and 
gauge network 

SD of the stochastic 
component of 
multiplicative error 

Conditioned on distance from radar, timescale 

of observation & season; asymptotic SD at 

high rainfall rates in the range 0.1-0.7, 

typically 0.5 for hourly data 

Oklahoma, USA. Rainfall 
800 mm yr-1, dominated by 
midlatitude convective 
systems. 

Ciach et al. (2007) 

Error between radar (S-
band) estimate and gauge 
network 

SD of residuals Approx. 0.3 (proportion of mean rain rate) for 

hourly data over 0-100 km distance from 

radar; values also given for 1, 2, 6, 12 hours & 

0-50, 50-100, 0-100 km distances 

Cévennes-Vivarais region, 
France. 200 km *160 km 
convective and frontal 
rainfall. 

Kirstetter et al. (2010) 

Error between radar 
(WSR-88D) estimate and 
gauge network 

SD of residuals (2 research 
gauge networks) 

0.48 (hourly, 8 km resolution), 1.07 (hourly, 1 

km resolution), proportion of mean rain rate; 

values also given for 15 min, 1 hour at scales 

0.5, 1, 2, 4, 8 km 

Iowa, USA Seo & Krajewski (2010); 
raingauge networks used 
paired gauges at all sites 

Error between radar (X-
band) estimate and gauge 
network 

Mean and SD of bias for 
pixel-based comparison 
between 2 radars and 20 
gauges. 

Using a Z-R relationship to estimate rainfall, the 
mean bias for the 2 radars was -0.24, -0.27; with 
SD of the relative error 0.46, 0.48. 

Southwest Oklahoma, USA. 
Raingauges – radar distance 
up to 35 km. Study used 4 
storm events of heavy/ 

Vieux and Imgarten (2011) 
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broken squall lines with 
embedded convective cells.  

Satellite 

Bias in estimates of 
surface rain rate from 
TRMM (Tropical Rainfall 
Measuring Mission) 

Bayesian modelling 
approach to estimate SD of 
each parameter in 
algorithm used to calculate 
surface rain rate 

SD of combined multiplicative bias in rain rate 

presented graphically as a function of rain 

rate: 40-60% at rates up to 18 mm h
-1

, 150 % 

at 25 mm h
-1

, 

All oceanic pixels for 10 
TRMM orbits 

L’Ecuyer and Stephens 
(2002) 

Bias of two NASA 
satellite products (infrared 
& passive microwave) 

Mean & variance in 
multiplicative bias at 
hourly timesteps & 0.25º 
resolution compared with 
ground radar 

Mean multiplicative hourly bias 0.35-1.09 

(with SD of 0.73-0.84) over 4-month study 

period. 

Oklahoma, USA. Southern 
Plains, 95-100°W, 34-37°N. 

Hossain & Anagnostou 
(2006) 

RMSE = root mean square error; SD = standard deviation 
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Table 2a: Typical quantitative results of discharge uncertainty studies: Stage Uncertainty. Bold values were used in Figure 2. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Stage uncertainty Comparison with 
neighbouring stations 

SD of 25 mm Netherlands gauging network Van der Made (1982) 

Effect of unstable bed Expert knowledge; 
uncertainty for individual 
measurement 

±10 % Estimate for locations with shifting 
sand or moving dunes 

Sauer & Meyer (1992) 

Instrument precision Review of previous studies; 
uncertainty for individual 
measurement 

±3-10.8 mm or ±0.1-2 %  Quoted in Harmel et al. (2006) 

Instrument precision Expert knowledge Range ±10 mm; local 

oscillations of water surface 

can add additional 

uncertainty of ±20 mm 

Typical example of natural rivers Dottori et al. (2009) 

Instrument precision: Float in 
stilling well 

 6 mm  Quoted in Herschy (1998): 
Ackers et al. (1978) 

Instrument precision: Pressure 
transducer  

 1.4-40 mm  Herschy (1998) 

Stage uncertainty Expert knowledge of typical 
uncertainties 

4 mm (high accuracy) to 15 

mm (low accuracy) 

Norwegian Water Resources & 
Energy Directorate 

Petersen-Øverleir & Reitan 
(2005) 

Stage uncertainty Observed fluctuation 2-5 mm Rowden Experimental Research 
Platform (1 ha fields), Devon, UK. 
250 x 37 cm weir box, stainless 
steel 45° V-Notch, float (Model 
6541, Unidata), stilling well, ave. 
annual precipitation 1055 mm. 

Krueger et al. (2010a) 

Instrument precision Manufacturer cited random 
uncertainty 

2.5 mm (Trutrack, Model 

PLUT-HR Water level 

recorder) 

Hillslope (172 m2), WS10 
catchment, HJA Experimental 
Forest, Oregon, USA 

Graham et al. (2010) 

0.3 mm (Model 2 Stevens 

Instruments Position Analog 

Transmitter) 

WS10 catchment (10.2 ha), HJA 
Experimental Forest, Oregon, USA. 
Mediterranean climate, rainfall 
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2200 mm yr-1, slopes 30-45 °. 
Stage uncertainty Nominal uncertainty 3 mm  Hamilton & Moore (2012) 

 
Table 2b: Typical quantitative results of discharge uncertainty studies: Discharge Uncertainty. Bold values were used in Figure 2. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Instantaneous Discharge Uncertainty 

Single discharge measurement 
uncertainty when using 
method of verticals with 
current meter 

SD of relative discharge error 
calculated from individual 
uncertainty components 

2.3 % using 30 verticals with 

measurements at 0.2 & 0.8 

depth points; other 

combinations also given 

Columbia River, USA (5 sites) Carter & Anderson  (1963) 

Single discharge measurement 
uncertainty using velocity-area 
method 

95 % confidence bounds on 
relative uncertainty, from 
literature review 

4-17% for 35-5 verticals at 0.25 
m s-1 
5-40 % for velocities 0.5-0.05 m 
s-1.  

Various Pelletier (1988) 

Single discharge measurement 
uncertainty under ice 

Difference between USGS & 
Water Survey of Canada 
instantaneous flow 
measurements attributed to 
different setup of current 
meter on rod or in suspension 

2-17 % Red river at Emerson, Manitoba, 
Canada (104000 km2). Slope 0.04-
0.25 m km-1, mean discharge 94.2 
m3 s-1, when under ice 20 m3 s-1, 
drains glacial plain with moraines. 

Pelletier (1989) 

Combination of stage error & 
components of discharge error 
for wading or cable methods 

Standard error computed by 
root-mean-square of 
component uncertainties: 
those derived from previous 
studies, manufacturer 
citations and expert 
knowledge. 

2.4 % (Good Cable) 

4.0 % (Good Wading) 

19 % (Poorest measurements) 

 Sauer & Meyer (1992) 

Single discharge measurement 
uncertainty: effect of reducing 
number of verticals 

Halving number of verticals Approx. 5 % (given as graph 

relating to % reduction in 

verticals) 

23 sites in UK North-East Whalley (2001) 

Epistemic single discharge 
measurement uncertainty using 

Combined uncertainty values 
from expert opinion & 

6 % Typical example Herschy (2002) 
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current meter for velocity-area 
method 

previous studies 

Single discharge measurement 
uncertainty: Salt dilution 
gauging  

SD of instantaneous discharge 
measured using salt dilution, 
deviation from rating curve 
developed using both salt 
dilution and current metering. 

5 % Stephanie Creek, Vancouver 
Island, BC, Canada (8.6 km2). 
Steep rocky creek. 

Hudson & Fraser (2002) 

7.1% Flume Creek, Sunshine Coast, BC, 
Canada (118 ha). Steep creek. 

±42-84 % South Fork catchment (780 km2), 
Iowa, USA 

Single discharge measurement 
uncertainty 

Typical bias determined from 
replicates 

<-4 %  Hamilton & Moore (2012) 

Rating Curve and Combined Uncertainty 

Random errors associated with 
power law rating curves 

RMSE of component 
uncertainties 

1.9 % in instantaneous or 
average daily discharge, 0.5 % 
in average monthly discharge 

Mangawhero at Ore Ore, New 
Zealand. Mean discharge 13m3 s-1 

Dymond & Christian (1982) 

Deviation between theoretical 
& measured rating curve (with 
current meter) 

 20 % at low flows (0.2 m above 
station datum), 10 % at higher 
flows 

Sprint, UK. Flat-vee crump profile 
weir structure. 

Whalley (2001) 

Deviation between theoretical 
rating curve accounting for 
non-steady flow & measured 
discharge (also given for 
empirical rating curve) 

Coefficient of variation 
calculated from 55 discharge 
measurements 

10 % (in-bank flows) 
36% (including out-of-bank 
flows) 
 

Illinois River, USA. Low gradient 
river, discharge 38-3480 m3 s-1, two 
gauge (slop-stage-discharge) rating 
station. 

Schmidt & Yen (2008) 

Total instantaneous discharge 
uncertainty caused by 
interpolation / extrapolation of 
rating curve, unsteady flow 
conditions & seasonal changes 
in roughness 

95 % uncertainty bounds for 
relative error calculated 
through combination of three 
error components 

6.2 % at 1000 m
3 

s
-1

 to 42.8 % 

at 12000 m
3 

s
-1

, average 25.6 

% 

Po River, Italy (70000 km2). 
Channel width 200-500 m, depth 
10-15 m, slope 0.02, floodplain 
width 1000-3000 m. 

Di Baldassarre & Montanari 
(2009) 

Total instantaneous discharge 
uncertainty caused by rating 
curve uncertainty 

Relative error compared to 
manual measurements 

1-20 % (average 8.76 %), 
negatively related to stage 

Hillslope (172 m2), WS10 
catchment, HJA Experimental 
Forest, Oregon, USA. Stilling well 

Graham et al. (2010) ; values 
calculated from original figures 
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with 30° V-Notch Weir. 
Average 3.6 %, not related to 
stage 

WS10 catchment (10.2 ha), HJA 
Experimental Forest, Oregon, USA. 
90° V-Notch Weir 

Total instantaneous discharge 
uncertainty caused by gauging 
errors & rating curve form / 
extrapolation 

Estimate of upper & lower 
discharge bounds for any 
given stage through 
combination of component 
errors 

Relative error from 100 % 

(low flows) to 10 % (low-mid 

flows) to 20 % (high flows) 

Rowden Experimental Research 
Platform (1 ha fields), Devon, UK. 
250 x 37 cm weir box, stainless 
steel 45° V-Notch, bucket method 
& electromagnetic flowmeter 
(Magflo Mag 5100, Siemens), ave. 
annual precipitation 1055 mm. 

Krueger et al. (2010a) 

Total instantaneous discharge 
uncertainty caused by gauging 
error, rating curve form / 
extrapolation & instability of 
rating curve 

Estimate of complete 
instantaneous discharge PDF 
for any given stage 

Relative error from 46 % (low 

flows) to 10 % (mid-high 

flows) to 15 % (flood flows), 

average 22 % 

Wairau River, New Zealand (3825 
km2). Elevation 0-2309 m a.s.l., 
braided reach, 100 m width. 

McMillan et al. (2010) 

Total instantaneous discharge 
uncertainty caused by gauging 
error & instability of rating 
curve 

Estimates of upper & lower 
instantaneous discharge 
bounds for any given stage 
using uncertain time-varying 
rating curve 

Difference from constant 

rating curve ranged from -60 

to 90 % (low flows) to ±20 % 

(mid-high flows); total relative 

discharge error -43 % to +73 

%. Effect of using only 3 stage 

measurements / day to 

calculate daily discharge: ±17 

% 

Choluteca River, Honduras (1766 
km2). Mountainous, 660 – 2320 m 
a.s.l., precipitation mainly 
convective. 

Westerberg et al. (2011) 

Time-averaged Discharge Uncertainty 

Total uncertainty of daily 
discharge 

PDF, mean, SD  Normal, 0, 10 % Odense basin (1190 km2), 
Denmark. Low rolling hills, 
elevation 0-100 m a.s.l. 

Refsgaard et al. (2006) 

Relative uncertainty of daily & 
annual discharge estimates in 
rivers subject to icing 

Statistical analysis of 
uncertainty in the parameters 
of the fitted quadratic rating 

Where cross sections assumed 
stable: 8-25 % for low flows, 2-
5 % for high flows (variation for 

6 largest Eurasian Arctic Rivers 
(248000-2950000 km2). 
Mean discharge 2200-18400 m3 s-1. 

Shiklomanov et al. (2006) 
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curves & ice correction 
coefficients 

different rivers); where cross 
section not stable (e.g. with ice): 
10-21 % with high frequency 
gaugings, 15-45 % under the 
worst conditions in the record 

Monthly discharge uncertainty Probable error range ±42 % Small watershed near Riesel, 
Texas, USA 

Harmel & Smith (2007) based 
on Harmel et al. (2006) 

Daily discharge uncertainty ±42 %; ±100-200 % for low 
flows; ±100 % for high flows 

Reynolds Creek catchment (239 
km2), Idaho, USA 

Storm discharge uncertainty Total probable error based on 
RMSE propagation method 

2-19 % Various in USA (2.2-5506 ha) Harmel et al. (2009) based on 
Harmel et al. (2006) 

Deep seepage uncertainty in 
steady state (as residual water 
balance component) 

Relative uncertainty based on 
propagation of component 
uncertainties 

57 % (under steady state); 32 % 
(during irrigation); 34 % (during 
irrigation + 5 days); 35 % 
(during irrigation + 10 days) 

Hillslope (172 m2), WS10 
catchment, HJA Experimental 
Forest, Oregon, USA. Stilling well 
with 30° V-Notch Weir. 

Graham et al. (2010) ; values 
calculated from original figures 

84 % (under steady state); 62 % 
(during irrigation); 93 % (during 
irrigation + 5 days); 155 % 
(during irrigation + 10 days) 

WS10 catchment (10.2 ha), HJA 
Experimental Forest, Oregon, USA. 
90° V-Notch Weir 

Daily discharge; effect of 
manual stage reading 

Manually minus automatically 
derived discharge 

Up to ±10-50 % Lillooet River near Pemberton, 
British Columbia, Canada. Nivo-
glacial. 

Hamilton & Moore (2012) 

Monthly discharge; effect of 
manual stage reading 

Up to 5-10 % 

 

Table 2c: Typical quantitative results of discharge uncertainty studies: New Measurement Techniques. Bold values were used in Figure 2. 

Uncertainty Type Estimation Method Magnitude Location Reference 

ADCP discharge measurement 
uncertainty 

Relative error of discharge 
calculated using ADCP vs. 
current meter and/or rating 
curve 

Mean relative error from 

multiple transects was -3 to 5 

% (from meter) or -7 to 5 % 

(from rating)  dependent on 

site 

USA (5 sites on Illinois, Kankakee, 
Mississippi and Missouri rivers). 
Depths 1.1-3.8 m, widths 33-527 
m, velocities 0.4-1.3 m s-1. 

Mueller (2003) 

Relative error of discharge SD of relative error 5.8 %; Multi-location field sites (including Oberg & Mueller (2007) 
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calculated using ADCP vs. 
multiple concurrent current 
meters 

distributions given from large 
set of test cases, plus results for 
alternative measurement set-ups 

USA, Canada, Sweden, 
Netherlands) plus laboratory testing 

ADV velocity measurement 
uncertainty, with & without 
calibration 

Relative error of discharge 
calculated using ADV 
velocity (20 min average) vs. 
impellor velocity (60 s period 
per sample) 

Flow estimates were within 20 

% of the current-metered flow 

for 93 % of samples after 

calibration (68 % before 

calibration) 

Pontbren, Wales, UK, 5 concrete-
lined sections.  
3 circular: diameter 0.6-1.6 m, 
depth 0-0.71 m, velocity 0-3.0 m s-

1. 
2 rectangular: width 3.17, 4.17 m; 
depth 0-0.67 m, velocity 0-3.9 m s-

1. 

McIntyre & Marshall (2008) 

Mobile LSPIV instantaneous 
velocity & discharge 
measurement uncertainty 

Relative error from theoretical 
velocity field based on 27 
error sources; case study 
comparison with rating curve 
& ADCP methods 

Theoretical errors in velocity 

from 10-35 % at 95 % 

confidence level; case study 

gave discharge error at 2 % 

compared to rating curve & 

5.5 % compared to ADCP 

Analysis of typical conditions. 
Case study at Clear Creek near 
Coralville, Iowa, USA. 20 m wide, 
0.7 m deep, stage 1.2 and velocity 
5.2 m s-1 during study. 

Kim et al. (2008) 

Simulated LSPIV 
measurements against 
theoretical true values 

Error variance obtained via 
linear regression of simulated 
vs. true values 

5 % under normal conditions, 

increasing to 17 % with a high 

tilt angle (70º) 

Numerical simulation Hauet et al. (2008) 

LSPIV instantaneous 
discharge measurements 
during high flows compared 
with rating curve & current 
meter reference values 

Relative error at a number of 
observation times 

47 % at low flows, 13-23 % on 

rising limb, 2 % during stable 

high flow period 

River Arc, France, during dam 
release operation. Discharge range 
10-150 m3 s-1, width 60-70 m, 
gravel-bed river. 

Jodeau et al. (2008) 

Microwave & UHF Doppler 
Radars uncertainty in 
instantaneous discharge 
measurement 

Correlation coefficients 
between radar measurements 
& conventional rating curve 
methods over 16-week period 

0.883, 0.969, 0.992 dependent 
on Doppler radar system 

Cowlitz River, Washington, 
USA(5800 km2). Width 92 m, 
depth 2-7 m. 

Costa et al. (2006) 

ADV = acoustic Doppler velocimetry; ADCP = acoustic Doppler current profiling; LSPIV = Large Scale Particle Image Velocimetry; PDF = probability density function; 
RMSE = root mean square error; SD = standard deviation 
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Table 3a: Typical quantitative results of water quality uncertainty studies: Suspended solids. Bold values were used in Figure 3. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Instantaneous concentration Relative difference between auto & 
manual dublicates 

Auto sample within 10 % of manual 

sample 

Devon, UK Walling & Teed (1971) 

8-year load; effect of 
estimation method 

Bias relative to reference load from 
daily data (1974/75-1981/82); 12 
methods tested; 6 sampling 
frequencies simulated via sub-
sampling 

-22 to 10 % Euphrates (444000 km2) 
at Haditha, Iraq. Ave. 
annual precipitation 
<100 mm (South) – 800 
mm (north), ave. annual 
discharge 776 m3 s-1, 
ave. annual sediment 
load 1.4 107 t. 

Al-Ansari et al. (1988); 
values calculated from 
original absolute values 8-year load; effect of sampling 

frequency 
-4 to 6 % 

Instantaneous concentration; 
effect of cross-section 
sampling method 

Average coefficient of variation 
with respect to depth- & width-
integrated reference concentration 

25 % Various in USA Horowitz et al. (1990); 
values calculated from 
original table 

Instantaneous concentration; 
horizontal cross-section 
variation 

Average coefficient of variation 
with respect to 5-point average 

26 % 

Instantaneous concentration; 
sampler effect 

Difference between two samplers 
(EPIC – USGS) 

36 % initially, then -1 to -15 % Humber catchment, UK Evans et al. (1997); values 
gleaned from original graph 

Concentration exceedance 
frequency; effect of 
distribution assumption given 
censored data 

Absolute difference between 
lognormal & normal models 

0-3%, increasing with censoring Little Cataraqui Creek 
(45 km2), Kingston 
Township, Ontario, 
Canada. Half urban, half 
forested, flat, ave. 
annual precipitation 900 
mm (~22% snow). 

van Buren et al. (1997) 

Load; effect of distribution 
assumption given censored 
data 

Relative difference between 
lognormal & normal models, 
relative to lognormal model 

25-37 % (calculated from original table) 

Instantaneous load; horizontal 
& vertical cross-section 
variation 

Error of point turbidity 
measurement compared to width- & 
depth- integrated sample 

-2.18 to -14.3 % Humber catchment, UK, 
8 sites (484.3-8231 
km2). Wide range of 
geology, climate, soils 
and land cover, ave. 

Wass & Leeks (1999); 
values from original table 
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annual precipitation 600 
(east) – 1600 (Pennine 
Hills) mm. 

5-year load; effect of rating 
curve choice and sampling 
frequency 

Bias relative to reference load from 
daily data (1979-1983); 4 rating 
curves tested; 4 sampling 
frequencies simulated via sub-
sampling 

-56 to 10 % Rhine catchment above 
Rees, Germany (165000 
km2), 5 locations. 
Temperate climate, 600 
(lower Rhine) – 2500 
(Alpes) mm 
precipitation, ave. 
annual discharge 2300 
m3 s-1, ave. annual 
sediment load 3.14 106 t. 

Asselman (2000) 

Annual & 5-year load; effect 
of rating curve choice and 
sampling frequency 

Bias relative to reference load from 
daily data; 4 rating curves tested; 12 
subsets of data used to construct 
rating curves; various sampling 
frequencies simulated via sub-
sampling 

WY 1996-2000: -7 to 6 % at 50 d 

down to -3 % at 1 d 

WY 1989 (low flow year): -10 to 3 % 

at 30 d down to -6 % at 1 d 

WY 1995 (median flow year): -11 to 7 

% at 30 d down to -1 % at 1 d 

WY1982 (high flow year): -11 to 8 % 

at 30 d down to 3 % at 1 d 

Mississippi at Thebes, 
Illinois, USA (1847188 
km2), 01/10/1980-
30/09/2000 

Horowitz (2003); values 
gleaned from original 
graphs 

WY 1989-1993: -7 to 13 % at 50 d 

down to 2 % at 1 d 

WY 1976 (low flow year): -11 to 10 % 

at 50 d down to 0 % at 1 d 

WY 1980 (median flow year): -15 to 5 

% at 30 d down to -3 % at 1 d 

WY1987 (high flow year): -15 to 10 % 

at 30 d down to -5 % at 1 d 

Rhine at Maxau, 
Germany (50200 km2), 
31/10/1973-30/10/1993 

Annual load; effect of 
temporal sampling method 

Relative error with respect to 
reference method (composite 
sampling) 

-9.1 to 2.7 % USDA-ARS Grassland 
Soil & Water Research 
Laboratory (4.6-125.1 

Harmel & King (2005) 
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ha), Texas, USA. 
Vertisol soil, 2-4 % 
slope, mixed land cover. 

Storm load; effect of minimum 
flow threshold for sampling 

Professional judgement based on 
Harmel et al. (2002) 

±1-81 %  Harmel et al. (2006) 

Storm load; uncertainty due to 
manual sampling 

 ±15-50 % & more  Quoted in Harmel et al. 
(2006): Slade (2004) 

Storm load; uncertainty due to 
automatic sampling (intake) 

 14-33 %  Quoted in Harmel et al. 
(2006): Martin et al. (1992) 

Storm load; uncertainty due to 
automatic sampling (timing) 

 -65 to 51 %  Quoted in Harmel et al. 
(2006) 

Storm load; analytical 
uncertainty 

95 % confidence interval -9.8 to 5.1 % (sandy); -5.3 to 4.4 % 

(fine) 

 Quoted in Harmel et al. 
(2006): Gordon et al. (2000) 

Annual load; effect of 
sampling frequency 

Bias relative to reference load from 
daily data (1961-1988); 28 
sampling frequencies (2-30 d) 
simulated via sub-sampling (50 
repeats, multiple years) 

±30 % at 30 d (central 80 % from 

repeats & multiple years); decreasing 

with increasing sampling frequency 

Mississippi at St Louis, 
Missouri, USA (251121 
km2). Ave. annual 
discharge 20.1 l s-1 km-2, 
ave. annual sediment 
load 447 t yr-1 km-2. 

Moatar et al. (2006); values 
gleaned from original 
graph; results from 35 more 
stations in USA and EU 
reported as well 

Instantaneous concentration Coefficient of variation between 
dublicates 

33 % (at 15 mg l-1); 10 % (at 242 mg l-

1
); 0.76 % (at 1707 mg l

-1
) 

 Rode & Suhr (2007) 

Analytical errors PDF, coefficient of variation Lognormal, 13 %  Quoted in Rode & Suhr 
(2007) 

Storm load; effect of 
estimation method 

Bias relative to reference load from 
1-6 h data (2 events in Sep 1994 & 
Nov 1999); 6 estimation methods 
tested; continuous thinning of data 
down to 1 sample per event 

-52 to 19 % Vène catchment, France 
(67 km2). Karst geology 
overlain by clay, mixed 
fruit/vegetables and 
urban land cover. 

Salles et al. (2008); values 
gleaned from original 
graphs Storm load; effect of sampling 

frequency 
-25 to 30 % at 1 sample per event; 

decreasing exponentially with 

increasing sampling frequency 

Instantaneous concentration Absolute difference between auto & 
manual dublicates 

0-100 mg l-1; decreasing with flow Rowden Experimental 
Research Platform (1 ha 
fields), Devon, UK. 
Dystric Gleysol soil, 7-9 

Krueger et al. (2009) 
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% slope, grassland, ave. 
annual precipitation 
1055 mm, 250 x 37 cm 
weir box. 

Storm concentrations & load Total probable error (median in 
parentheses) based on RMSE 
propagation method 

12-26(18) % (concentrations) 

15-35(20) % (load) 
Various in USA 
(2.2-5506 ha) 

Harmel et al. (2009) based 
on Harmel et al. (2006) 

Concentration exceedance 
frequency 

Uncertainty range based on 
bootstrapping low resolution data 

Approx.10 % Den Brook catchment 
(48 ha), Devon, UK. 
Dystric Gleysol soil, 
intensive grazing, ave. 
annual precipitation 
1050 mm, flashy 
response, underdrained. 

Bilotta et al. (2010); values 
gleaned from original graph 

Flow-weighted mean 
concentration (hourly) 

Trapezoidal fuzzy number based on 
analysis of bulk uncertainty as 
function of number of sub-samples 
for three timesteps 

±10 % core (5-6 samples per hour) 

±50 % support (1 sample per hour) 
Krueger et al. (in press) 

 
Table 3b: Typical quantitative results of water quality uncertainty studies: Phosphorus. Bold values were used in Figure 3. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Annual load; effect of 
sampling frequency 

8 d routine sampling compared to 2 
h composite (8 15 min sub-samples; 
Nov 1974 – May 1975); all via 
rating curve 

Bias -43 % (TP); 12 % (SRP) River Main at Andraid, 
Co. Antrim, Northern 
Ireland (709 km2). 
Basaltic glacial till 
geology, 10% arable, 
53% grassland, 24% 
rough grazing, 
population 54549 (65% 
connected to sewer), 
ave. annual precipitation 
1181 mm, flashy 
response. 

Stevens & Smith (1978) 

Annual load; effect of 
estimation method & sampling 
frequency 

Bias relative to reference load from 
daily data (Mar 1976 to 28 Feb 
1977); 3 sampling frequencies 

Average bias, biweekly: -2 to 20 % 

Average bias, bi-weekly biased to high 

flows: 0-2 % 

Grand River at 
Eastmanville, Michigan, 
USA (13550 km2). 

Dolan et al. (1981); values 
calculated from original 
absolute values 
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simulated via sub-sampling (222-
680 repeats); 3-11 estimation 
methods tested 

Average bias, bi-weekly biased to low 

flows: -1 to 2 % 
Cropland; ave. discharge 
101 m3 s-1; ave. annual 
TP load 1730 kg P d-1. 

Annual load (TP); effect of 
estimation method & sampling 
frequency 

Bias relative to interpolated stage-
triggered instantaneous load 
timeseries (2-15 min during rising 
stage, 1-4 h during falling stage, 4-
24 h during baseflow); 13 
estimation methods tested; 7 
sampling frequencies simulated via 
sub-sampling 

-50 to 150 % at 12 samples per year 

down to -30 to 40 % at 104 samples 

per year; high-flow biased stratified 

sampling more biased and less precise 

Gelbæk catchment (8.5 
km2), Eastern Jutland, 
Denmark. Lowland, low 
baseflow, high event-
responsiveness, ave. 
discharge 232 mm. 

Kronvang & Bruhn (1996); 
results gleaned from 
original graphs 

-30 to 110 % at 12 samples per year 

down to -10 to 10 % at 104 samples 

per year; high-flow biased stratified 

sampling more biased and less precise 

Gjern Å catchment (103 
km2), Eastern Jutland, 
Denmark. Lowland, 
high baseflow, low 
event-responsiveness, 
ave. discharge 361 mm. 

Instantaneous concentration; 
analytical uncertainty 

Standard uncertainty (square root of 
variance) 

0.25 µg l-1 (FRP(0.2 µm)) 
0.32 µg l-1 (TP) 

Latrobe River 
catchment, Victoria, 
Australia 

Lovell et al. (2001) 

Instantaneous concentration; 
spot sampling uncertainty 

Standard uncertainty (square root of 
variance) based on 3 repeats 

2.09 µg l-1 (FRP(0.2 µm)) 
1.05 µg l-1 (TP) 

Instantaneous concentration; 
effect of spatial variation 
within 100 m reach 

Standard uncertainty (square root of 
variance) based on 6 sampling spots 

20.8 µg l-1 (FRP(0.2 µm)) 
18.6 µg l-1 (TP) 

Annual load; effect of 
temporal sampling method 

Relative error with respect to 
reference method (composite 
sampling) 

-9.2 to 2 % (PO4-P) USDA-ARS Grassland 
Soil & Water Research 
Laboratory (4.6-125.1 
ha), Texas, USA. 
Vertisol soil, 2-4 % 
slope, mixed land cover. 

Harmel & King (2005) 

Storm load; effect of minimum 
flow threshold for sampling 

Professional judgement based on 
Harmel et al. (2002) 

±1-81 %  Harmel et al. (2006) 

Storm load; uncertainty due to 
manual sampling 

 ±5-25 % (dissolved); ±15-50 % & more 
(suspended) 

 Quoted in Harmel et al. 
(2006): Slade (2004) 
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Storm load; uncertainty due to 
automatic sampling (intake) 

 0-17 % (TP); 0 % (DP)  Quoted in Harmel et al. 
(2006): Martin et al. (1992) 

Storm load; uncertainty due to 
automatic sampling (timing) 

 -65 to 51 %  Quoted in Harmel et al. 
(2006) 

Storm load; effect of sample 
preservation & storage 

-64 to 92 % (TP); -52 to 600 % (DP) 

Storm load; analytical 
uncertainty 

Up to ±400 % (DP); -2 to 16 % (PP) 

Flow-weighted mean 
concentration (TIP, weekly) 

Triangular fuzzy number ±40 % support Crighton Royal Farm 
(0.5 ha fields), 
Dumfries, Scotland, UK. 
Silty clay loam soil, 
grassland, macropore 
flow, ave. annual 
precipitation 1054 mm. 

Beven et al. (2006) 

Total uncertainty PDF, mean, SD Normal, 0, 12 % (TP) Odense basin 
(1190 km2), Denmark. 
Glacial/interglacial 
sediment geology, low 
rolling hills, ave. annual 
precipitation/evapotrans
piration 900/600 mm. 

Refsgaard et al. (2006) 

Total analytical uncertainty SD based on lab standards 5-15 % (PO4-P), decreasing with 
concentration 

2 streams in Victoria, 
Australia, 1 forested, 1 
urbanised. 

Hanafi et al. (2007) 

Instantaneous concentration; 
horizontal cross-section 
variation 

Coefficient of variation with respect 
to 10-point cross-section average 

7 % (SRP) Elbe river at Dom 
Muehlenholz, Germany 

Rode & Suhr (2007) 

Analytical errors PDF, coefficient of variation Normal, 6 % (TP, SRP)  Quoted in Rode & Suhr 
(2007): Clesceri et al. 
(1998) 

Daily load Total probable error based on <10 % (TP) Various in Illinois, Gentry et al. (2007) based 
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RMSE propagation method USA. Glacial moraine 
geology, Mollisol soil, 
flat, mainly corn & 
soybean land cover, 
underdrained. 

on Harmel et al. (2006) 

Instantaneous concentration; 
analytical uncertainty 

Difference to quality control 
standard 

±5 % Lough Mask catchment, 
Ireland 

Donohue & Irvine (2008) 

Instantaneous concentration; 
effect of lab sub-sampling 

Coefficient of variation with respect 
to 3-sub-sample average (95 % 
confidence interval) 

6.4-8 % (TP); 6.1-7.5 % (SRP) (both 
almost 100 % attributable to sub-sample 
variability) 

Instantaneous concentration; 
effect of lab sub-sampling 

Mean minimum detectable 
difference between mean 
concentrations of two sets of 10 
replicate sub-samples from same 
sample 

2 µg l-1 (TP); 0.4 µg l-1 (SRP); gleaned 
from original graphs 

Storm load (TP); effect of 
estimation method 

Bias relative to reference load from 
1-6 h data (2 events in Sep 1994 & 
Nov 1999); 6 estimation methods 
tested; continuous thinning of data 
down to 1 sample per event 

-38 to 36 % Vène catchment, France 
(67 km2). Karst geology 
overlain by clay, mixed 
fruit/vegetables and 
urban land cover. 

Salles et al. (2008); values 
gleaned from original 
graphs Storm load; effect of sampling 

frequency 
-25 to 30 % (TP, PP), -25 to 65 % 
(SRP) at 1 sample per event; decreasing 
exponentially with increasing sampling 
frequency 

Storm concentrations & load Total probable error (median in 
parentheses) based on RMSE 
propagation method 

13-103(19) % (PO4-P concentrations); 
14-104(23) % (PO4-P load); 16-104(24) 

% (TP concentrations); 17-105(27) % 

(TP load) 

Various in USA 
(2.2-5506 ha) 

Harmel et al. (2009) based 
on Harmel et al. (2006) 

Concentrations & load Total probable error based on 
RMSE propagation method 

27 % (PO4-P concentrations); 28 % 
(PO4-P load) 

 Quoted in Harmel et al. 
(2009): Keener et al. (2007) 

Instantaneous concentration 
(TP) 

Absolute difference between auto & 
manual dublicates 

0-400 µg l-1; decreasing with flow Rowden Experimental 
Research Platform (1 ha 
fields), Devon, UK. 
Dystric Gleysol soil, 7-9 
% slope, grassland, ave. 

Krueger et al. (2009) 
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annual precipitation 
1055 mm, surface soil P 
~540 mg kg-1, 250 x 37 
cm weir box. 

Annual load; effect of 
sampling frequency 

Bias relative to reference load from 
stratified data (2-4 per d when dry, 
up to 8 per d when wet; Feb 2005 – 
Jan 2006); 5 sampling frequencies 
simulated via sub-sampling 

Monthly: -21.3 to 35.2 % (TP); -10.6 
to 27.9 % (SRP) 
Fortnightly: -17.5 to 28.1 % (TP); -11 
to 15.3 % (SRP) 
Weekly: -11.6 to 15.4 % (TP); -4.9 to 
6.5 % (SRP) 
Daily: 0 to 4 % (TP); -2.1 to 2.5 % 
(SRP) 
12h: -1.9 to 0.7 % (TP); -0.9 to 1.1 % 
(SRP) 

Frome at East Stoke, 
UK (414 km2), Mainly 
chalk geology, mainly 
grassland & cereals land 
cover, one town, ave. 
annual precipitation 
1020 mm, ave. annual 
discharge 6.38 m3 s-1, 
BFI 0.84. 

Bowes et al. (2009) 

     
Precision of various high 
frequency nutrient analysers 

As stated by manufacturer ±2 % of range (PO4-P, GreenspanTM 
Aqualab; PO4-P, EcotechTM FIA 
NUT1000; PO4-P, FIALabTM SIA) 
±3 % of range (TP & PO4-P, Systea

TM
 

Micromac C; PO4-P, EnvirotechTM 

AutoLAB/MicroLAB) 

 Bende-Michl & Hairsine 
(2010) 

Annual load (TP); effect of 
temporal sampling method 

Bias relative to interpolated 20 min 
instantaneous load timeseries 

Median bias of various methods -50 to 

+30 % 

Co. Monaghan, Ireland 
(5 km2). Drumlin soils, 
grassland, flashy, point 
sources. 

Jordan & Cassidy (2011) 

Flow-weighted mean 
concentration (TP, hourly) 

Trapezoidal fuzzy number based on 
analysis of bulk uncertainty as 
function of number of sub-samples 
for three timesteps 

±10 % core (5-6 samples per hour) 

±50 % support (1 sample per hour) 
Den Brook catchment 
(48 ha), Devon, UK. 
Dystric Gleysol soil, 
intensive grazing, ave. 
annual precipitation 
1050 mm, flashy 
response, underdrained. 

Krueger et al. (in press) 
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Table 3c: Typical quantitative results of water quality uncertainty studies: Nitrogen. Bold values were used in Figure 3. 

Uncertainty Type Estimation Method Magnitude Location Reference 

Annual load (NO3-N); effect 
of sampling frequency 

8 d routine sampling compared to 2 
h composite (8 15 min sub-samples; 
Nov 1974 – May 1975); all via 
rating curve 

Bias 18 % River Main at Andraid, 
Co. Antrim, Northern 
Ireland (709 km2). 
Basaltic glacial till 
geology, 10% arable, 
53% grassland, 24% 
rough grazing, 
population 54549 (65% 
connected to sewer), 
ave. annual precipitation 
1181 mm, flashy 
response. 

Stevens & Smith (1978) 

Annual load (TN); effect of 
estimation method & sampling 
frequency 

Bias relative to interpolated stage-
triggered instantaneous load 
timeseries (2-15 min during rising 
stage, 1-4 h during falling stage, 4-
24 h during baseflow); 13 
estimation methods tested; 7 
sampling frequencies simulated via 
sub-sampling 

-20 to 30 % at 12 samples per year 

down to -12 to 10 % at 104 samples 

per year; high-flow biased stratified 

sampling more biased and less precise 

Gelbæk catchment (8.5 
km2), Eastern Jutland, 
Denmark. Lowland, low 
baseflow, high event-
responsiveness, ave. 
discharge 232 mm. 

Kronvang & Bruhn (1996); 
results gleaned from 
original graphs 

-11 to 25 % at 12 samples per year 

down to -2 to 9 % at 104 samples per 

year; high-flow biased stratified 

sampling more biased and less precise 

Gjern Å catchment (103 
km2), Eastern Jutland, 
Denmark. Lowland, 
high baseflow, low 
event-responsiveness, 
ave. discharge 361 mm. 

Annual load (NO3-N); effect 
of temporal sampling method 

Relative error with respect to 
reference method (composite 
sampling) 

-9.2 to 2 % USDA-ARS Grassland 
Soil & Water Research 
Laboratory (4.6-125.1 
ha), Texas, USA. 
Vertisol soil, 2-4 % 

Harmel & King (2005) 
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slope, mixed land cover. 
Storm load; effect of minimum 
flow threshold for sampling 

Professional judgement based on 
Harmel et al. (2002) 

±1-81 %  Harmel et al. (2006) 

Storm load; uncertainty due to 
manual sampling 

 ±5-25 % (dissolved); ±15-50 % & more 
(suspended) 

 Quoted in Harmel et al. 
(2006): Slade (2004) 

Storm load; uncertainty due to 
automatic sampling (intake) 

 0 % (TN); 0-4 % (DN)  Quoted in Harmel et al. 
(2006): Martin et al. (1992) 

Storm load; uncertainty due to 
automatic sampling (timing) 

 -65 to 51 %  Quoted in Harmel et al. 
(2006) 

Storm load; effect of sample 
preservation & storage 

-90 to 83 % (NH3-N); -65 to 71 % (NO3-
N); -84 to 49 % (TKN) 

Storm load; analytical 
uncertainty 

Up to ±400 % (DN); ±4-30 % (PN) 

Total uncertainty (TN) PDF, mean, SD Normal, 0, 10 % Odense basin 
(1190 km2), Denmark. 
Glacial/interglacial 
sediment geology, low 
rolling hills, ave. annual 
precipitation/evapotrans
piration 900/600 mm. 

Refsgaard et al. (2006) 

Total analytical uncertainty 
(NH4-N) 

SD based on lab standards 4-19 %, decreasing with concentration 2 streams in Victoria, 
Australia, 1 forested, 1 
urbanised. 

Hanafi et al. (2007) 

Instantaneous concentration 
(NO3-N); analytical 
uncertainty 

SD 0, 40, 50, 50 µg l-1 at 100, 200, 800, 
2100 µg l-1, respectively 

 Rode & Suhr (2007) 

Instantaneous concentration 
(NH4-N); analytical 
uncertainty 

Mean SD 5-8 %  

Instantaneous concentration 
(NH4-N); horizontal cross-
section variation 

Variation from 10-point cross-
section average 

Up to 50 % & more Elbe river at Dom 
Muehlenholz, Germany 
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Analytical errors PDF, coefficient of variation Normal, 5 % (NO3, Cadmium Reduction 
Method); normal, 2.5 % (NO3, Electrode 
Method); normal, 4 % (NO3, Ion 
Chromatography); normal, 6 % (NO2); 
normal, 11 % (NH4) 

 Quoted in Rode & Suhr 
(2007): Clesceri et al. 
(1998) 

Instantaneous concentration; 
analytical uncertainty 

Difference to quality control 
standard 

±5 % Lough Mask catchment, 
Ireland 

Donohue & Irvine (2008) 

Instantaneous concentration; 
effect of lab sub-sampling 

Coefficient of variation with respect 
to 3-sub-sample average (95 % 
confidence interval) 

9.6-11.2 % (TN), 71.8-82 % (lakes) & 
77-82.2 % (rivers) attributable to sub-
sample variability; 4-6.6 % (DIN), 53.4-
71.2 % (lakes) & 67.7-75.1 % (rivers) 
attributable to sub-sample variability 

Instantaneous concentration; 
effect of lab sub-sampling 

Mean minimum detectable 
difference between mean 
concentrations of two sets of 10 
replicate sub-samples from same 
sample 

0.2 mg l-1 (TN); 0.02 mg l-1 (DIN); 
gleaned from original graphs 

Storm load (TN); effect of 
estimation method 

Bias relative to reference load from 
1-6 h data (2 events in Sep 1994 & 
Nov 1999); 6 estimation methods 
tested; continuous thinning of data 
down to 1 sample per event 

-22 to 11 % Vène catchment, France 
(67 km2). Karst geology 
overlain by clay, mixed 
fruit/vegetables and 
urban land cover. 

Salles et al. (2008); values 
gleaned from original 
graphs Storm load; effect of sampling 

frequency 
-25 to 20 % (TN), -25 to 10 % (NO3-N) 
at 1 sample per event; decreasing 
exponentially with increasing sampling 
frequency 

Storm concentrations & load Total probable error (median in 
parentheses) based on RMSE 
propagation method 

13-102(17) % (NO3-N concentrations); 
14-103(22) % (NO3-N load); 14-104(23) 

% (TN concentrations); 15-105(27) % 

(TN load) 

Various in USA 
(2.2-5506 ha) 

Harmel et al. (2009) based 
on Harmel et al. (2006) 

Annual load (TON); effect of 
sampling frequency 

Bias relative to reference load from 
stratified data (2-4 per d when dry, 
up to 8 per d when wet; Feb 2005 – 
Jan 2006); 5 sampling frequencies 
simulated via sub-sampling 

-4.2 to 11.2 % (monthly); -3.5 to 3.9 % 
(fortnightly); -1.8 to 3.5 % (weekly); -
0.5 to 0.9 % (daily); -0.1 to 0.3 % (12 h) 

Frome at East Stoke, 
UK (414 km2), Mainly 
chalk geology, mainly 
grassland & cereals land 
cover, one town, ave. 

Bowes et al. (2009) 
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annual precipitation 
1020 mm, ave. annual 
discharge 6.38 m3 s-1, 
BFI 0.84. 

Precision of various high 
frequency nutrient analysers 

As stated by manufacturer ±5 % of range (NH4-N & NO3-N, 
WTWTM VARiON; NH4-N & NO3-N, 
GreenspanTM Aqualab; NO3-N, YSITM 
YSI96000) 
±3 % of range (TN, NH4-N, NO3-N & 

NO2-N, Systea
TM

 Micromac C; NO3-N 

& NO2-N, S::can
TM

 Spectroanalyser) 

±2 % of range (NH4-N & NO3-N, 
EnvirotechTM AutoLAB/MicroLAB; 
NH4-N, NO3-N & NO2-N, FIALabTM 
SIA; NO3-N, SatlanticTM ISUS) 

 Bende-Michl & Hairsine 
(2010) 

BFI = base flow index; DIN = dissolved inorganic nitrogen; DN = dissolved nitrogen; DP = dissolved phosphorus; FRP(X µm) = filtered reactive phosphorus (filter size); 
PDF = probability density function; PN = particulate nitrogen; PP = particulate phosphorus; RMSE = root mean square error; SD = standard deviation; SRP = 
soluble reactive phosphorus; TIP = total inorganic phosphorus; TKN = total Kjeldahl nitrogen; TN = total nitrogen; TP = total phosphorus; WY = water year 
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FIGURE CAPTIONS 

Figure 1: (a) Typical ranges of raingauge error components. (b) Typical ranges of 
combined rainfall uncertainty across spatial scales (from gauge to satellite footprint). 
See Table 1a-1c for details. 

Figure 2: (a) Typical ranges of stage measurement uncertainty. (b) Typical ranges of 
combined discharge uncertainty from various methods. See Table 2a-2c for details. 

Figure 3: Typical uncertainty ranges across temporal scales (from instantaneous 
concentration to multi-annual load) for: (a) suspended solids, (b) total phosphorus, (c) 
total nitrogen. See Table 3a-3c for details. 
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