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EXTENDED ABSTRACT 

 
Calibration of rainfall-runoff models is made complicated by uncertainties in data, and by 
the arbitrary emphasis placed on various magnitudes of the model residuals by most 
traditional measures of fit. Current research highlights the importance of driving model 
identification by assimilating information from the data. Information theory can help by 
providing powerful tools to examine the fundamental gaps in relating data to process 
understanding. Information theoretic computations ultimately rely on quantities such as 
entropy, which has been applied in a wide spectrum of areas, including environmental 
and water resources. However, its potential to perform model diagnostics and identify 
fundamental inconsistencies between data, system understanding and hydrological 
models has received little investigation to date.  

In this paper, we evaluate the potential use of entropy-based measures as objective 
functions or as model diagnostics in hydrological modelling, with particular interest in 
providing an appropriate quantitative measure of fit to the flow duration curve (FDC). We 
propose an estimation of entropy metrics capable of characterising the information in the 
flow frequency distribution and thereby driving the model calibration in such a way as to 
learn from information in the data. Four years of hourly data from the 46.6 km2 Mahurangi 
catchment, NZ, are used to calibrate the 6-parameter Probability Distributed Moisture 
model, and results are analysed using three measures: an informational entropy 
measure, the Nash-Sutcliffe (NSE), and the recently proposed Kling-Gupta efficiency 
(KGE). We also examine a conditioned entropy metric that trades-off and re-weights 
different segments of the FDC to drive model calibration in a way that is based on 
modelling objectives. 

Overall, we find that use of the entropy measure for model calibration results in good 
performance in terms of NSE but poor performance in terms of KGE. Entropy is strongly 
sensitive to the shape of the flow distribution and is, from some viewpoints, the single 
best descriptor of the FDC. However, the lack of statistically significant sample at high 
flow ranges has an effect on the estimation of entropy. Further, entropy is completely 
insensitive to the timing of hydrological events, which limits its potential as a stand-alone 
performance measure. Nonetheless, its inclusion in a multi-objective study would provide 
a useful diagnostic to decouple timing and other errors. By conditioning entropy to 
respect multiple segments of the FDC, we can re-weight entropy to respect those parts of 
the flow distribution of most interest to the modelling application. This approach 
constrains the behavioural parameter space so as to better identify parameters that 
represent both the “fast” and “slow” runoff processes.  
 
Keywords: Shannon entropy, Model identification, Diagnostics, Flow duration curve, 
Rainfall-runoff modelling.   
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1. INTRODUCTION 
 
Hydrological model identification is usually driven by measures of fit, which provide an 
objective assessment of the agreement between observed and simulated hydrological 
data (e.g. streamflow). Most traditional measures are a function of the residuals in the 
modelled and measured quantities, and emphasise different systematic and/or dynamic 
behaviours within the hydrological system. As a result, a robust assessment of model 
identification and performance using traditional and/or single measures is difficult (Krause 
et al., 2005). Recent studies urge the need for robust diagnostic model evaluation, which 
aims to: 1) determine the information contained in the data and in the model, 2) examine 
the extent to which a model can be reconciled with observations, and 3) point towards the 
aspects of the model that need improvement (Gupta et al., 2008).  
 
Information theory provides powerful tools, which make no assumptions about the 
underlying system dynamics or relationships among the system variables (e.g. they 
capture any-order correlations among the time series). These tools provide a promising 
avenue to better identify where information is present and/or conflicting, and to better 
diagnose model/data/ hypotheses inconsistencies (Weijs et al., 2010). Information 
theoretic computations ultimately rely on quantities such as entropy, which has drawn the 
scientific community’s attention in a range of problems in hydrology and water resources 
(see, for example, review by Singh (2000)). However the potential of information entropy 
measures to serve as objective functions (OFs), and the uses of entropy in conjunction 
with other measures as diagnostics in hydrological modelling are still unexplored. In this 
paper, we extend the work of Pechlivanidis et al. (2010) presenting an entropy measure 
suited to capturing the static information contained in streamflow signals (as described by 
the probability distribution). 
 
The paper is organised as follows. Entropy-based statistics are introduced in Section 2, 
where we present an approach to estimate entropy for streamflow series. In Section 3, 
the study area and data are introduced. Section 4 describes the rainfall-runoff model and 
the identification method followed. Section 5 presents results consisting of statistical 
analysis based on observed and modelled data, which use entropy as an objective 
function. Finally, Section 6 states the conclusions and discusses on possible ways 
forward. 
 
 

2. USE OF INFORMATIONAL ENTROPY MEASURE AS A MODEL DIAGNOSTIC 
 
Schreiber (2000) stated that information is equivalent to the removal of uncertainty; hence 
uncertainty and informational entropy are in some senses identical. Entropy has been 
variably described; examples include “a measure of the amount of chaos” or “of the lack 
of information about the system” (Koutsoyiannis, 2005).  
 

2.1. Informational Shannon entropy 
 
Treating each streamflow observation as a discrete non-negative random variable X, the 
Shannon entropy can be formulated as (Shannon, 1948): 
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where E[] denotes expected value, p(xi) is the probability of occurrence of outcome xi 
such that the probabilities sum to 1, N is the number of possible outcomes, and base is 
the base of the logarithm used (entropy has a unit of binary digits, bits, when base equals 
2). Shannon (1948) defined entropy as the average number of bits needed to optimally 
encode independent draws of X following a probability distribution p(xi). A low value of 
entropy indicates a high degree of structure and a low uncertainty. It can be easily shown 
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that with complete information entropy equals 0, otherwise it is greater than 0. If no 
information is available then entropy will reach its maximum equal to log2(N). When used 
as a model diagnostic, we suggest normalisation with respect to the maximum entropy 
value, where all states are equally probable, i.e., HX = log2(N). This normalisation 
eliminates differences in entropy caused by the number of possible outcomes. Hence, the 
normalised entropy remains 0 with complete information / maximum order and takes a 
maximum value of 1 with minimal structure / maximum disorder. 
 
Although a continuous analogue to the Shannon entropy is available, we rarely possess 
the analytical form of our variable X’s probability distribution, and so must generally work 
with the discrete form presented earlier. Unless X is ordinal, a number of discrete bins 
must be specified with accompanying ranges. In this case, the estimation of the 
probability distribution and its associated entropy is influenced by the resolution of this 
data, the number of bins, and the locations of divisions between these bins. The 
introduction of arbitrary partitions can result in “edge effects”. According to Ruddell and 
Kumar (2009), with too few/many partitions, “edge effects” become severe and entropy 
estimates are positively biased. Different approaches can be used to discretise the data 
set into probability bins. These include function fitting (Knuth et al., 2005), kernel 
estimation (Nichols, 2006), and binning with fixed mass (e.g. equal probable bins) or fixed 
width (e.g. linear bins) interval partitions (Ruddell and Kumar, 2009). In this paper, we 
use a hybrid fixed-width mass interval approach. The hybrid fixed width/fixed interval 
approach is a result of preliminary analysis suggesting the sampling and error 
characteristics at low flows are most suited to the fixed mass approach, while conversely, 
medium and high flows are better suited to a fixed interval approach. The FDC is split into 
multiple segments- this forces our measures to respect entropy characteristics in each 
segment rather than merely those parts of the FDC that are most sampled. For most high 
temporal resolution applications, this effectively reweights the entropy estimation to 
respect the entire flow range- the more sparsely sampled medium and high flow 
characteristics as well as the highly sampled low flow characteristics.  
 

2.2. Definition of entropy-based metric 
 

Although Shannon entropy is a quantification of the distribution of values within a dataset, 
its static probabilistic nature cannot characterise the temporal structure of information. It 
therefore shows no sensitivity to differences in timing. In addition, this measure is not 
usually discretised to depend on the range of the data, so mass balance errors can be 
introduced. In this study we propose an estimate of entropy suitable for hydrological 
applications, based on trading off the unscaled and scaled Shannon entropy difference, 
SUS-Entropy, defined as: 

)](),(max[ S
obs

S
sim

U
obs

U
sim HHabsHHabsEntropySUS   

where HU is the un-scaled entropy using different bin ranges for simulated and observed 
data based on their individual specific maximum range (this measure respects shape 
conservation irrespective of mass/scaling), and HS is the scaled entropy using identical 
bins for both simulated and observed data (i.e. it attempts to conserve mass and shape).  
 
To re-weight different segments of the flow duration curve (FDC) so as to better 
characterise the information in the FDC we use an importance-weighted (conditioned) 
entropy metric, wherein we partition the curve into four segments: high (<2% probability 
of exceedance), medium (2-20%), intermediate (20-70%) and low (>70%) flow segments 
(Figure 1b); note that these partitions can be changed to accord with the specific 
requirements of an application. Linear binning (in this case 150 bins) was used to 
characterise the information in the high, medium and intermediate flow segments, 
whereas equally-probable binning (in this case 60 bins) was used to characterise 
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information in the low flow segments. The number of bins was selected using the 
algorithm by Knuth et al. (2005). 
 
 

3. STUDY SITE AND DATA DESCRIPTION 
 
The analysis is based on observed data from the experimental Mahurangi River (Figure 
1a) in northern New Zealand, which drains 46.6 km2 of steep hills and gently rolling 
lowlands. The Mahurangi River Variability Experiment, MARVEX, ran from 1997-2001, 
and investigated the space-time variability of the catchment water balance. A network of 
28 flow gauges and 13 rain gauges has been installed, collecting records at 15 minutes 
intervals as part of the MARVEX project (Woods, 2004). The catchment experiences a 
warm humid climate (frosts are rare and snow and ice are unknown), with mean annual 
rainfall and evaporation of 1,600, and 1,310 mm respectively. The catchment elevation 
ranges from sea level to 300 m. Most of the soils in the catchment are clay loams, no 
more than a metre deep, while much of the lowland area is used for grazing. Plantation 
forestry occupies most of the hills in the south, and a mixture of native forest, scrub and 
grazing occurs on the hills in the north. Further details are given in Woods (2004). 
Historical rainfall, streamflow and potential evapotranspiration data at hourly time steps 
were provided by the National Institute of Water and Atmospheric Research, New 
Zealand, for the period 1998-2001. The arithmetic average of the 13 rain gauge records 
was used as the mean areal precipitation and was distributed uniformly over the 
catchment. Only the flow gauge at the outlet of the catchment was considered in the 
present study. Its flow duration curve  is presented in Figure 1b. 
 

  
 

Figure 1: The Mahurangi River catchment. 
 
 

4. MODEL IDENTIFICATION 
 

4.1. Model description 
 
The Probability Distributed Moisture (PDM) model is a conceptual model, which uses a 
distribution of soil moisture storage capacities for soil moisture accounting and, in this 
application and most others, two linear reservoirs in parallel for the routing component 
(Moore, 2007) (Figure 2).  
 
The soil moisture storage capacity, C (mm), is assumed to be described by a Pareto 
distribution having the following function: 

a) b) 
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F(C) = 1 - (1 – C / Cmax)b 
where C is the storage capacity in the catchment, Cmax is the maximum capacity at any 
point in the catchment, and the parameter b (-) controls the spatial variability of storage 
capacity over the catchment. Within each time step, the soil moisture storage is depleted by 
evaporation as a linear function of the potential rate and the volume in storage, and 
augmented by rainfall. Effective rainfall is then equal to the soil moisture excess. 
 
The effective rainfall is split into "quick" and "slow" pathways, which are routed via parallel 
storage components. The parameter q defines the proportion of total effective rainfall going 
to the fast response reservoir. The simulated streamflow is determined by the combination of 
the two pathways. This model component has three parameters: a residence time for each 
reservoir, Kq and Ks (hours) and q (-). The total streamflow is finally delayed by a parameter 
T (hours) to adjust the time to peak response. 
 

 
Figure 2: Structure of the Probability Distributed Moisture model. 

 
4.2. Selection of the measures of fit 

 
A Monte Carlo uniform random search was used to explore the feasible parameter space 
(Table 1) and to investigate parameter identifiability (50,000 samples). The first year (1998) 
was used as a model warm-up period, the next two years for model calibration (1999-2000) 
and the final year for independent performance evaluation (2001). The PDM was calibrated 
using streamflow data at the catchment outlet using three OFs: the proposed SUS-Entropy, 
the Nash-Sutcliffe Efficiency, (NSE: Nash and Sutcliffe, 1970), and the recently proposed 
Kling and Gupta Efficiency (KGE: Gupta et al., 2009).  NSE and KGE are defined as: 


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where Qsim is the calculated flow, Qobs is the observed flow, n is the length of the time 
series, cc is the linear cross-correlation coefficient between Qobs and Qsim, α is a measure 
of variability in the data values (equal to the standard deviation of Qsim over the standard 
deviation of Qobs), and β is equal to the mean of Qsim over the mean of Qobs (see Gupta et 
al. (2009) for further details of the KGE and its components). As explained earlier, the 
entropy measure is insensitive to timing errors and hence the corresponding simulated runoff 
is not sensitive to the final routing delay parameter. To overcome this, the routing parameter 
T was individually adjusted through manual calibration (T is equal to 2 hours). 
 
Table 1: Prior range of PDM model parameters. 
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Identification of behavioural model parameter sets, using the conditioned entropy measure, 
was based on simultaneous satisfaction of a criterion for each segment of the FDC. A 
threshold value was used to condition and identify these sets. . 

5. RESULTS 
 
Overall, good performance of the model in terms of NSE and KGE was achieved for both 
calibration and validation periods (see Table 2a). Calibration using entropy provided 
acceptable values for NSE (higher than 0.7 for both calibration and validation periods), but 
not for KGE (average is 0.68), highlighting the limitation of SUS-Entropy as a stand-alone 
objective function. Table 2b shows that calibrations using NSE and KGE are able to 
represent adequately the high flow range of the FDC, indicating their suitability for flood 
prediction applications; however they introduce significant bias in the other segments of the 
FDC. While SUS-Entropy distributes its weight equally towards all aspects of the FDC, it is 
unable to perform as well as the other 2 OFs in matching the high flow segment. Similar 
conclusions can be drawn from Figure 3, which shows the model fit using the 3 OFs during a 
high and low flow period. Both NSE and KGE tend to better fit the highest flow event (10.7 
mm/hr) than SUS-Entropy; however, they overestimate the other two peaks. In contrast, 
fitting using NSE and KGE during low flow periods is poor; while fitting baseflow is improved 
using SUS-Entropy (see also low flow volume bias in Table 2b).  
 
Table 2. a) Model performance using the 3 objective functions, and b) absolute biases for 
each segment of the FDC. 
 
 
 

 
 
 

 

 
Figure 3: Simulated streamflow using the 3 OFs during: a) high, and b) low flow periods. 

Figure 4 presents the solution space using the conditioned entropy metric (identified 
parameter sets have SUS-Entropy value less than 0.11 for each segment of the FDC) 
against the behavioural sets in terms of NSE (NSE>0.7) for each model parameter. A 
narrower parameter space is achieved when the conditioned entropy is used. Cmax and b 
parameters are poorly identifiable using the conditioned metrics (and also relatively 

a) b) 

a) 

b) 
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insensitive to many other objective functions not reported in this study). High identifiability is 
observed for Kq and q. Conditioning the solution space using the entropy metric and 
threshold value equal to 0.11 for each segment, the average NSE and KGE values are 0.66 
and 0.67 respectively (varying between 0.52 - 0.81 and 0.52 - 0.82 respectively). 

 
Figure 4: The effects of conditioning entropy on parameter identification. 

 
Assigning a different threshold value to each segment of the FDC allows re-weighting the 
entropy measure based on the modelling objectives. For instance, in this study, the model is 
not capable of representing every segment of the FDC adequately; a trade off exists 
between fitting high and low flow values. To address the importance of threshold values, 
Figure 5 presents the simulated runoff for high and low flow periods using 0.15, 0.1, 0.1, and 
0.1 as thresholds for the flow segments (low - high). The range of simulated runoff during the 
high flow period is similar when using the NSE, KGE and conditioned parameter sets. There 
is only a slight overestimation of the peaks when the KGE is used. However, it is interesting 
to note that both NSE and KGE are relatively insensitive to the low flows, with considerable 
overestimates and underestimates in some cases (Figure 5b). The potential of the 
conditioned entropy-based measure to capture detail of the “slow” runoff processes is 
illustrated in Figure 5b, since the envelope of simulated runoff is very close to the baseflow. 

  
Figure 5: Simulated streamflow during high (a) and low (b) flow periods using the 

behavioural parameter sets based on the NSE, KGE and conditioned entropy. 
 

 
6. CONCLUSIONS 

 
In this paper, we have explored the potential use of informational entropy-based 
measures in hydrological modelling with particular interest in extracting the distributional 



 

 

structure of the flow time series, as described by the flow duration curve (FDC). The PDM 
rainfall-runoff model was calibrated using the NSE and KGE objective functions, and our 
new proposed Shannon entropy-based measure. Overall, results support our theoretical 
observations that the probabilistic structure of the Shannon entropy measure is strongly 
related to the FDC, while our proposed estimation of entropy is capable of characterising 
information of interest in the probability distribution of flow. This metric uses equally 
probable bins at the low segment of the FDC and linear bins at the intermediate, medium 
and high segments. In this first application in the Mahurangi catchment, our metric 
outperforms the NSE and KGE at medium, intermediate and low flows; as might be 
expected however, both NSE and KGE achieve better performance at the high flow 
segment of the FDC. This is likely, at least in part, due to entropy’s statistical nature; 
fundamentally the highest flow values will be under-sampled and hence not statistically 
robust; entropy considers this as possessing negligible information.  
 
Bias towards different aspects of the FDC can be overcome, to a certain extent, by using 
an importance-weighted, conditioned entropy measure. This overcomes the tendency of 
entropy to emphasise information within the low (most-sampled) flows by estimating the 
entropy over multiple segments of the FDC and setting criteria for each individual metric 
value to identify acceptable parameter sets. These criteria could be a single threshold or 
a set of entropy thresholds for each segment of the FDC. The latter approach seems 
more generally applicable in applications where data or model structural errors lead to a 
trade-off between, for example, the high and low FDC segment, and where the user is 
more concerned with specific regions of the FDC rather than overall performance.   
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