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Abstract 
 

This thesis aims to establish a contemporary framework for flood risk assessment, using a 

cascade of coupled models which incorporate the best new hydrological data and 

modelling techniques, within a structure which allows uncertainty estimation to be 

integrated into the analysis. The method is tested and validated through an application to 

the Linton catchment of the River Granta in Cambridgeshire, allowing an assessment of 

its suitability for use in a typical small, lowland catchment. 

Several factors provide the motivation to improve on conventional methods of flood risk 

assessment. Recent evidence of non-stationarity in the flood generation process suggests 

that a process-based model of catchment behaviour is required to replace the traditional 

‘curve-fitting’ approach to flood frequency analysis. Further, it is no longer sufficient to 

limit the procedure to prediction of discharge; a distributed model of floodplain 

inundation based on sound hydraulic principles must be integrated into the analysis in 

order to support today’s ‘soft engineering’ solutions to flood risk. Finally, a rigorous 

uncertainty estimation procedure must replace outdated deterministic forecast techniques. 

In order to achieve these aims, three component models were developed: a stochastic 

rainfall model, a rainfall-runoff model and a floodplain inundation model. The process-

based technique of continuous simulation is employed to allow direct analysis of flow 

characteristics, using simulated rainfall series produced by the first model to drive the 

rainfall-runoff model and thereby produce continuous discharge simulation. Direct 

analysis of flow regime is then possible, which in turn provides the boundary conditions 

for the inundation model. This takes the form of a 2d raster storage cell model which 

benefits from airborne laser altimetry (LIDAR) mapping of floodplain topography to 

allow high resolution simulation of floodplain inundation. Improvements in efficiency 

through the use of sub-grid scale information are explored. 

The results of the case study demonstrate that the coupling of the three models to form an 

‘End-to-End’ flood risk assessment structure provides a practical and rigorous flood risk 

assessment tool. A comparison of results with a study using conventional techniques 

suggests that the new method achieves a valuable improvement. 
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Chap t e r  1  

INTRODUCTION 

 

Abstract 

This chapter introduces the thesis by setting the research question in terms of its wider 

context. The thesis is concerned with the design of a process-based, integrated, spatially 

distributed, flood risk assessment structure: this chapter considers the situation which has 

led to deficiencies in current methods and the need for such a framework to be 

established. 

Firstly the nature of flooding itself must be examined. Scientific, political and public 

opinion is agreed that we live in a period of accelerated flood risk; the forcing factors 

which underlie this trend are set out in Section 1.3. This leads on to a consideration of 

societal response to flooding: the perception of an increased threat has led to a period of 

intense research into flood defence and mitigation strategies. Increased understanding of 

the limited ability of structural flood defence measures to protect inappropriately sited 

development, and the possible damage caused by removing the natural role of the 

floodplain, has encouraged catchment-wide flood management strategies which 

emphasise planning controls and floodplain restoration. 

The step change in response to flood risk has not however been reflected in methods of 

flood risk assessment. The standard methods in use today (Section 1.3.3) were designed 

to facilitate ‘hard’ engineering works which aimed to increase channel conveyance 

capacity. Their unsuitability for use in a society concerned with non-stationarity in flood 

frequency and the need for flexible and environmentally sound ‘soft’ engineering 

solutions is documented in Section 1.4.1. These findings provide the stimulus for the 

design of a new flood risk assessment framework (Section 1.4.3).  
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1.1 Introduction 

In recent years, Britain has experienced several major and widespread flood events, 

notably those of Easter 1998 and Autumns 2000 and 2001. In addition to these, more 

recent flood events have had a smaller spatial extent but similarly damaging 

consequences. For example, in January 2005, floods in Carlisle inundated 2000 properties 

and caused 2 fatalities. Flash floods also have the capacity to cause devastation, such as 

those in North Yorkshire in June 2005 which washed away roads and bridges and caused 

£5 million damage, and the destructive flooding of Boscastle in August 2004 by what 

was described as a 3 m ‘wall of water’. Floods in the UK have been mirrored by widely 

reported floods in mainland Europe, such as those of Germany, the Czech Republic, 

Austria, Russia, Romania, Italy and Switzerland in 2002 (79 fatalities), Romania, 

Germany, Switzerland, Bulgaria and Austria in 2005 (42 fatalities), and Hungary, the 

Czech Republic, Serbia, Romania and Bulgaria in 2006. Further afield, the July 2005 

flooding of Mumbai resulted in 1000 deaths, and in August 2005 Hurricane Katrina hit 

New Orleans causing widespread devastation from flooding and over 1200 confirmed 

deaths.  

The causes of these flood events are diverse: from the exotic of monsoon and hurricane, 

to the more mundane of snowmelt, thunderstorm and prolonged rainfall. Those causes 

relating to the UK are discussed in Section 1.2. However, despite their disparate causes, 

all the events resulted in huge economic, social and environmental cost, and in many 

cases prolonged displacement of residents. In response to these events, bolstered by 

speculation in the press as to the possible future impacts of climate change on 

precipitation and flood regime, a high level of public and political awareness of flood 

hazard has been achieved. Authorities have thus been pressurised into being seen to take 

action to prevent repetition of flooding in affected areas, leading to a high demand for 

accurate flood frequency estimates and risk mapping. In some cases, the resulting action 

has taken the form of extensive and expensive engineering work such as the building of 

the Jubilee River to protect areas of Maidenhead and Windsor; in others focus has shifted 

to the restoration of the natural flood attenuation function of the floodplain. In some, the 

difficult process has begun of explaining to residents that a cost-benefit analysis has not 
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justified any further intervention; an outcome only ameliorated in some instances by 

provision of an improved flood warning system. These different responses and the 

philosophies underlying them are discussed in Section 1.3.2. 

In the UK, the extent of public concern, the high numbers of people affected by flooding 

and the large sums of money spent on flood protection measures have served to drive 

scientific research into methods of flood risk assessment and inundation modelling. To a 

certain extent, however, there remains a mismatch between those techniques being 

developed in the research arena, and those being applied in standard flood risk 

assessment applications. By examining the conventional methods being applied in the 

UK (Section 1.3.3) and their limitations in providing a response which enables modern 

solutions to today’s flood risk conditions (Section 1.4), the conception of a contemporary 

flood risk assessment framework, which takes advantage of advances in data collection 

and modelling techniques, is a logical outcome of this chapter. 
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1.2 Research Context: Background to Flood Forecasting in UK 

1.2.1  A Brief History of UK Flooding 

Recent reports and media stories often seem to suggest that flooding in Britain is a 21st 

century phenomenon, never experienced before the effects of climate change began to be 

felt. However a study of the literature soon reveals that flooding has been an integral part 

of our history, documented since records began. An archive of textual information on 

British hydrological events before 1935 is being created by the British Hydrological 

Society (Black and Law, 2004). Some of the earliest floods recorded there are Thames 

floods in AD 9 and AD 48, and a flood in Cheshire in AD 353 in which “5000 persons 

and an innumerable quantity of cattle perished”; however it seems certain that there were 

many floods before these. This section takes a short overview of such historical flood 

events in the context of some of their forcing factors. 

All inland floods originate in meteorological conditions, despite the many other causative 

factors which may exacerbate their effects. They may be broadly classified into Summer 

and Winter storms, of which the former have traditionally been more often recorded; 

however, this may be due to their suddenness and novelty value (Newson, 1975). 

Summer rainstorms may be due to weather fronts becoming stationary over a vulnerable 

area; these conditions have caused several notable floods in Eastern Scotland. 

Alternatively, simple ‘cloudbursts’ giving rainfall totals of up to 150 mm cause localised 

floods. In comparison, winter floods are generally caused by prolonged wet weather 

bringing saturation conditions which curtail the ability of the catchment to attenuate the 

flood peak. These conditions generally give rise to more widespread flood events, often 

affecting the major lowland rivers. The great floods of 1894 on the Thames, Wye, Severn 

and Bristol Avon are one example. A further cause of floods less commonly seen in 

recent years is snowmelt. This was the case in the infamous floods of 1947, which have 

commonly been used to set a benchmark protection level for flood defence works 

(Newson, 1975). A thaw of snow accumulated over 2 months was accompanied by 25 

mm of rainfall to cause major floods on the Lea, Great Ouse, Trent and Medway. 
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Topography is another essential control on flood magnitude. Historically, areas suffering 

particularly severe floods have been the West Country and North-East Scotland, and this 

has been attributed to their typically small, steep catchments (Newson, 1975). The 

similarity of the floods of August 1829 and August 1956 in Moray - those of 1829 

recorded by a plaque marking the 15 m rise of the River Findhorn - has been attributed to 

the control that the area’s topography exerts on the flood regime. One of the floods with 

the most prominent position in the public consciousness, that of Lynmouth in 1952, had 

its dominant cause in the relative position of the rainfall over the topography. The storm 

was centred on several merging streams at the headwaters of the Lyn, around 9 inches of 

rain falling in 24 hours onto saturated ground. This water then flowed down the narrow 

and deeply incised valleys, showing the unusual occurrence of significant overland flow 

(Huxtable, 2005). A very similar mechanism caused the devastating flooding of Boscastle 

in 2004. 

Although the topography of an area is largely beyond the control of its inhabitants, 

human influence is apparent in another major factor in flood development: land-use and 

structures within the catchment. The bare earth left by agricultural activities has been 

stripped of the natural interception qualities of vegetation cover, and heavy rain can cause 

gullying of the soil which greatly reduces the lag time between precipitation and channel 

peak. This was demonstrated in Louth, Lincolnshire in 1920 where such action caused 

the River Ludd to rise 5 m in 15 minutes. Flooding which causes rivers to form in 

otherwise dry valleys may often meet obstacles such as stone walls. In Somerset and the 

Mendips in 1968 such blockages caused damaging flood surges. More recent studies into 

the effects of land use change are described in Section 1.2.2.2. 

1.2.2 Accelerated Flood Risk and its Causes 

The previous section considered some of the postulated causes for historical flood events. 

Today we are in a period of what is widely considered to be ‘accelerated’ flood risk 

caused by human factors. Public and political perception of this process has been 

influenced by floods at home and abroad (Section 1.1); however these opinions have been 

backed up scientific studies which both look for non-stationarity exhibited in the recent 

precipitation and flood record, and aim to predict the occurrence of such behaviour in the 
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future. The causative factors may be broadly divided into those relating to climate change 

and those relating to land-use change. Wheater (2006) presents a useful summary of the 

possible reasons for increased flood hazard in the UK, comparing these two causes. 

Studies which demonstrate existing trends include that of Osborn and Hulme (2002) who 

modelled daily precipitation amounts in the UK between 1961 and 2000 using a gamma 

distribution, and found that winter rainfall had on average become more intense over the 

period. Increasing trends in precipitation volume and intensity have also been found in 

other studies of mid-latitude areas of the Northern Hemisphere, suggesting an 

intensification of the hydrological cycle (Dai et al., 1997; Easterling et al., 2000; 

Groisman et al., 2004; Huntington, 2006). Staeger et al. (2003) extended their analysis to 

test for anthropogenic forcing in precipitation fields and conclude that in some regions of 

Europe, human behaviour has already caused significant changes to the climate. 

However, evidence for trends in rainfall is stronger than that for flood frequency or 

magnitude, and studies choosing to examine trends in UK flood regime have found no 

significant changes (Robson, 2002; Robson et al., 1998). This may in part be due to lack 

of long-term data series and limitation of many recordings to flood peak magnitude rather 

than the full flood hydrograph. 

1.2.2.1 Causes Relating to Climate Change 

Supporting evidence for precipitation increases comes from observations of global 

warming in the recent past, with average global temperature increase since 1900 

estimated to be in the range 0.4 – 0.6 ºC (Folland et al., 2001). By using this change to 

alter the parameters of a numerical climate model, the likely effect of this temperature 

rise in terms of precipitation regime may be examined. The results of such studies in 

general concur with the observed changes in rainfall patterns, suggesting increased 

frequency of heavy precipitation in winter (Hulme and Osborn, 1998).  

As well as predicting past and current consequences of global warming, numerical Global 

Climate Models (GCMs) are also widely used to estimate the possible future effects and 

magnitudes of climate change. A widely-used model is the UK Hadley centre 11-layer 

GCM which gives standardised fields of temperature and rainfall indices on monthly 

basis. The forecast available from this model for 2050 is commonly used as a basis for 
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UK applications. It predicts changes of temperature up to 3.6 ºC in South-East England, 

and rainfall increases from 10% in South-East England to 20% in North-West England 

(Sefton and Boorman, 1997). This forecast is used as a basis for guidance given by the 

government (MAFF, 2001; ODPM, 2004) that an allowance for 20% increase in peak 

river flow due to climate change should be made in any new flood risk applications. The 

estimates of precipitation increase can only be used as a ‘best guess’; there are numerous 

sources of uncertainty in the calculations. For example, the model relies on an emissions 

forecast from IPCC predictions which is an estimate based on possible world 

development scenarios and governmental success in reducing emissions. The model itself 

may also be run using different structures and parameterisations: models using 

equilibrium versus transient scenarios have found annual runoff to increase or decrease 

respectively (Holt and Jones, 1996; Pilling and Jones, 1999).  

The uncertainty of climate change effect on river flows makes it difficult to design flood 

defence strategies to cope with such changes. There are many different ways in which 

climate change may effect catchment behaviour, such as changes in rainfall totals, 

locations, seasonality, and intensity, effects on temperatures and evaporation (Roberts, 

1998), effects on channel morphology and sediment transport (Rumsby and Macklin, 

1994), and effects on drainage density (Moglen et al., 1998). There are indications that 

the frequency of heavy rainfall events is likely to increase (Arnell et al., 2001), and 

studies have shown that variability is expected to increase with changes in monthly totals 

greater than annual change (Arnell and Reynard, 1996). Attempts have been made to 

model this type of response, for example by assuming that all extra rainfall predicted 

occurs as heavy rainfall (Reynard et al., 1998). However in general it is difficult to 

quantify these effects as they occur at higher resolutions in space and time than can be 

predicted by a GCM (Arnell and Reynard, 1996; Sefton and Boorman, 1997).   

1.2.2.2 Causes Relating to Land-Use Change 

Section 1.2.1 highlighted briefly ways in which land-use change was observed to affect 

flow regimes as early as 1920. In more recent years, urban development and intensive 

cultivation of the land have led to widespread consequences in terms of infiltration rates, 

soil structure and drainage patterns, and therefore in the ability of catchments to store 
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flood water and to attenuate flood peaks. The causes of catchment response change may 

be subdivided in various ways: Wheater (2006) draws a distinction between those relating 

to urban development, and those relating to rural land-use changes, providing a 

comprehensive review of reasons behind recent increases in flood hazard. Alternatively, a 

useful distinction might be drawn between those causes which affect the rainfall-runoff 

response of the catchment, and those which relate to the functionality of the floodplain.  

Those causes associated with urbanisation of areas of a catchment, whether affecting 

source or floodplain areas, are relatively well studied and well understood. This is due 

both to the limited scale of such developments, and to the short timescales over which 

they typically occur, leading often to dramatic changes in hydrological regime and easily 

monitored results. Planning regulations also tend to focus on such urban developments. 

Causes in source areas include reduced infiltration rates, reduced evapotranspiration rates 

due to vegetation loss and reduced soil storage capacity. Urbanisation may have 

particularly severe effects on small head-water catchments, where a high percentage of 

the catchment area may undergoes a change in land-use within a short time period. In a 

larger catchment, the effects of land-use change would to a greater extent be damped by 

the remainder of the catchment area (Orr and Carling, 2006; Rosso and Rulli, 2002; 

Tollan, 2002). Measured effects are also more pronounced at smaller flood magnitudes 

and during dry seasons, where previously the catchment had a capacity to attenuate the 

flood peak; during higher return period and winter floods saturation of the soil and 

resulting overland flow gives a natural response closer to that of an urbanised catchment 

and therefore the effects are reduced (Camorani et al., 2005; Liu et al., 2004). Where 

urbanisation occurs on the floodplain itself, the ability of the floodplain to attenuate a 

flood peak by promoting storage, infiltration and alternative flow pathways is reduced. 

This effect is greatly enhanced where flood defences are erected; such structural 

measures may also cause residents to lose their sense of natural river dynamics and 

reduce the perceived risk for further development (van Stokkom et al., 2005). 

The Linton catchment is largely rural, and those land-use factors relating specifically to 

the Granta catchment are discussed in Section 3.2.3. Here, rural areas in general are 

considered, where the effects of land-use change are often less dramatic and more 

difficult to quantify than for urban sites. Where rural areas of the floodplain are used for 
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valuable arable crops and hence protected by flood defences, the effects may be similar to 

that of urbanisation; an understanding of the associated increase in flood peak heights 

was demonstrated by the decision in Romania in April 2006 to deliberately breach 

defences and flood farmland in order to protect towns. Other changes relating to 

vegetation cover, infiltration rates, soil structure and artificial drainage usually take place 

more gradually, meaning that cause-effect relationships are more difficult to establish. 

Sullivan et al. (2004) studied a basin in Cornwall which had seen a significant increase in 

magnitude and frequency of flood flows, but only a weak rising trend in rainfall. 

Although it was suggested that the increased flood risk could be attributed to land-use 

change, it was not found possible to distinguish the effects of climate change, increased 

agricultural activity and urban expansion. Other authors have suggested that this 

interaction of different forcing factors could be exploited, for example by offsetting 

urbanisation with forestation, or climate change by land-use change (De Roo et al., 2003; 

Naef et al., 2002; Reynard et al., 2001). Crooks and Davies (2001) studied the causes and 

effects of land-use change by identification of those periods of UK history producing the 

most dramatic changes in land-use in the Thames catchment. They highlighted significant 

urban expansion during the inter-war years, and rapid rural land-use changes during the 

Second World War as large areas of grasslands were converted to arable land in order to 

increase crop production. In comparison, the years since 1960 had seen only gradual 

land-use change which had a very small effect on flood frequency compared with 

observed changes in precipitation regime.  
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1.3 Flood Forecasting and Assessment of Flood Risk: Standard Methods 

1.3.1 Flood Gauging and Reconstruction 

Essential to both our understanding of causes and impacts of floods, and to our ability to 

plan for future ones, is the capacity to reconstruct past events. Data retrieved from 

previous floods ranges from time series of flow for modern gauges, to estimated 

maximum levels or discharges for earlier events. The standard methods for use of such 

data in the context of flood management are considered further in Section 1.3.3. 

The UK currently has a relatively dense network of river flow gauges, created through a 

programme of instrumentation that was largely initiated by the Water Resources Act of 

1963, and encouraged through incentives provided as part of the United Nations 

Educational, Scientific and Cultural Organization’s (UNESCO) International 

Hydrological Decade 1965-1974. These gauges are currently maintained by the 

Environment Agency (EA) in England and Wales, and the Scottish Environmental 

Protection Agency (SEPA) in Scotland. The records are held in the National River Flow 

Archive, managed by the Centre for Ecology and Hydrology (CEH) at Wallingford. Over 

1300 gauging stations provide daily or better flow data which can be used to reconstruct 

flood hydrographs. Although data form the underpinning of most flood management 

applications, the average length of gauged record in the UK is relatively short. The 

average length of the ‘Annual Maximum Discharge’ series found to be available in the 

Flood Estimation Handbook was 23.4 years (Bayliss, 1999), which without extrapolation 

is often insufficient to predict the levels of protection required by flood defence works.  

Alongside the gauging network, there are numerous alternative sources of data on flood 

events. These may be used either for the reconstruction of historical floods before the 

gauging network was widespread, or as supplementary data when rainfall and flow 

gauges malfunction. They can also serve to refine magnitude-frequency relations to 

reduce the influence of recent outliers (Kidson and Richards, 2005; Kidson et al., 2005; 

Salas et al., 1992). There are many accounts in the literature of the failure of gauges in 

extreme conditions: rain gauges are flooded or buried in landslides, flow gauges are 

unsuitable for accurate monitoring of high flows or simply washed away. Even when 
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gauged data is presented as a complete and accurate record, it must be borne in mind that 

the gauging process includes many possible sources of error, most notably through 

uncertainty in the stage-discharge relationship (especially for extreme flows). The most 

obvious benefits of including alternative data sources is the extension of the flood record, 

however it may also bring greater understanding of flood production mechanisms, 

information on land-use change and flood seasonality, and improved confidence in flood 

frequency estimation results (Archer, 1991; Bayliss and Reed, 2001).  The types of 

supplementary data available are many and varied. The gauging authorities themselves 

may hold historical data previous to formal records. Peak levels are some of the most 

widely available data, in the form of flood stones or other marks. Levels may also be 

remarked upon in journals or newspapers from the time of the flood. These sources may 

also give clues that are less easy to interpret into hard figures, such as the description of 

the River Findhorn during the 1829 floods “passing with the velocity of a swift horse” 

(Newson, 1975).  

The field of paleohydrology provides methods suitable for estimating or creating a lower 

bound for the stage, discharge or velocity of the very largest of floods, even if these have 

occurred many thousands of years ago. Perhaps the most common source of river level 

information is from slack water deposits: depositions of suspended clay, silt or sand from 

stagnated water behind constrictions or in low-velocity eddies present during high flood 

stages, whose age may be determined by carbon-dating methods. Other stage indicators 

may include the study of fluvial landforms or vegetation types (Salas et al., 1992), or 

vegetation debris (‘trashpoint’) evidence (Kidson et al., 2006). Bounds on floodwater 

velocity may be possible to define in some cases by studying the sizes of boulders moved 

by the flood (Huxtable, 2005). While sedimentary and other evidence provides valuable 

information on river stage, transforming this into an estimate for discharge in order to 

create or extend a magnitude – return period relationship for the catchment can be 

extremely challenging. Typically a 1D model such as HEC-RAS is used to generate the 

discharge estimates (Sheffer et al., 2003; Thorndycraft et al., 2005), however the results 

are dependant on the unknown value of the friction coefficient Manning’s n. Uncertainty 

in this parameter, due to a common lack of high-magnitude floods with known discharge 

for calibration, may lead to high uncertainties in the discharge value (Kidson et al., 2006; 
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Wohl, 1998). It is therefore important that such reconstruction evidence should only be 

used with appropriate consideration of its inherent uncertainties (Archer, 1991; Fanok 

and Wohl, 1997).  

1.3.2 Philosophies of Flood Prevention and Mitigation  

In order to put into context the current standard methods of flood forecasting and risk 

assessment, this section considers the type of flood prevention and mitigation measures in 

use today. An understanding of these measures explains the aims behind current risk 

assessment techniques and the information which they are required to provide. 

Considering changing responses to flood risk also highlights the shortfalls of such 

techniques and the areas where they are less able to provide the data required for modern 

flood management strategies. 

1.3.2.1 Historical Perspective on Flood Prevention Measures 

Humans have long attempted to control the effects of flood and tide on their settlements. 

Some of the earliest defences on record in the UK are defence banks built into the Wash 

in Roman times. In more recent history, the Thames Barrier was built at a cost of £535m 

in response to the flood of 1953 which claimed 307 lives (Hart and Hart, 2005). This 

structure typifies the ‘positive’ approach to flood management, which holds that the 

objectives should be to allow exploitation and the use of the natural resources of the 

floodplain wherever possible (Penning-Rowsell and Parker, 1973); the expectation being 

that this will be made possible by expenditure on flood protection works. A similar 

philosophy was in evidence in 1964-1973 when flood protection measures were put in 

place on the Bristol Avon (Newson, 1975). Costing £2m, the works included creation of 

new river walls, installation of new sluices and bridges, the grading of the river bed and 

removal of bends, and channel dredging. This demonstrates the removal of the traditional 

role of the floodplain as a facility for storage and conveyance of flood flows, and instead 

an expectation that the channel conveyance should be expanded such that it is capable of 

accommodating the event water. In the case of the Avon, the channel conveyance was 

increased from 170 cumecs to 340 cumecs. 
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To a large extent, the reliance on structural flood defences was still in evidence when 

MAFF published its flood strategy in 1993, quoting its aim as “To reduce risks to people 

and the developed and natural environment from flooding … by encouraging the 

provision of … defence measures” (MAFF & the Welsh Office, 1993). The document 

specified that the priorities for funding were urban areas where risk to life was greatest; 

the emphasis was on coping with the effects of flooding rather than studying its causes. 

This was reinforced by the lack of central provision or guidance: flood control measures 

were left to local River Authorities to implement, reducing the capacity for a holistic 

view of basin management as these authorities had no legal say in floodplain 

development planning (Davies, 1992). This reflected previous feelings that watershed 

management awaited a ‘coming-of-age’ of scientific hydrology before becoming 

widespread (Newson, 1975). Although the era of structural flood defence solutions is 

now coming to an end, for reasons given in the following two sections, there are still 

instances where such measures continue to be used. Notably the ‘Jubilee River’, an 11.6 

km long diversion channel built to alleviate floods in Maidenhead and Windsor, was 

opened in 2003 at a cost of £100 million.   

1.3.2.2  Drivers for Change 

In recent years, significant changes in scientific, public and government opinion have 

brought about a reappraisal of flood management policy in Britain. Above all, there has 

been an acceptance that nature cannot always be tamed by science, that engineering 

works cannot be used to solve all flooding problems. Indeed public perception now 

commonly holds that science and modernisation are at the root of many of the risks we 

face (Beck, 1992; Giddens, 1998). This is demonstrated in the growing public view that 

the perceived increased flooding in areas of the UK may be caused by both international 

human actions such as global warming, and local ones such as floodplain development. 

In turn, this understanding has led to a decreased trust in authority, and at the same time 

an increased willingness to understand the scientific process behind policy decisions and 

to take a greater part in these processes (Jamieson, 1990; Saraiva et al., 1992; Watts, 

1996).  

 13



The shift in public view has increasingly been recognised and accepted by policy makers. 

The importance of public opinion on flood defence provision has been highlighted by 

studies showing large increases in public approval of flood strategy where 

communication has been made a priority (Parker and Handmer, 1998). This change in 

attitude has had several major impacts on flood planning, notably that the concept of risk 

assessment has been extended from purely economic considerations to cover wider social 

and environmental values. This is demonstrated by the Department of the Environment, 

Food and Rural Affairs (DEFRA) scoring system which is used to decide grant 

allocations for flood and coastal defence capital works, in which a base score is modified 

to account for the vulnerability of the area’s residents and also the impact on valuable 

habitat affected by the proposed scheme (DEFRA, 2002). The idea of vulnerability of a 

population has become an important one, and has been quantified in terms of social and 

economic variables, property and infrastructure variables, flood characteristics, flood 

warning provision variables and official responses variables (Green et al., 1994; Reitano, 

1992). Continuity across communities is another recent concern, to ensure that residents 

living in lower-cost housing do not lose out in traditional benefit-cost analyses 

(Environment Agency, 2001).  

1.3.2.3 Current Government standpoint 

In response to the drivers identified above, the current governmental policies on flood 

prevention and mitigation measures increasingly favour ‘soft’ solutions over ‘hard’ 

engineering solutions. Latest government guidance states that “Continued construction of 

hard-engineered flood defences to protect development in areas exposed to frequent or 

extensive flooding may not be sustainable in the long term” (ODPM, 2004). The fact that 

flood defences cannot reasonably be built to protect against the most extreme floods has 

become apparent through several recent costly failures. For example, the Easter 1998 

floods caused 5 deaths and £440m damage; in Autumn 2000 although flood defences 

protected 280,000 homes, 10,000 homes were still flooded and £1bn damage was caused. 

In 26% of cases this was due to overtopping of defences, in 14% of cases defences were 

outflanked (Environment Agency, 2001). The changing nature of river flow 

characteristics due to climate change, urbanisation and land-use change on floodplains 
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has brought about increasing flood peak magnitudes which were not planned for when 

existing flood defences were designed. Some modern structural schemes have responded 

to similar problems using adaptable flood defences measures, which may be upgraded to 

maintain the required level of protection at reduced additional expenditure. There is also 

government recognition of the problem of existing flood defences encouraging further 

development of protected land, and hence rising costs when such defences are breached.  

Environmental considerations are becoming increasingly integrated into flood 

management policy, as the habitat, amenity and cultural values of floodplains are 

recognised. Studies have shown that some communities would prefer to live with some 

level of flood risk than be subjected to intrusive flood defence works, especially where 

the flood risk is not well understood (Correia et al., 1994; Saraiva et al., 1992), and 

assessment of recreational, environmental and social impacts is therefore becoming an 

important contributing factor in flood management policy decisions (Brouwer and van 

Ek, 2004; Rasid and Haider, 2002). Floodplains form an important habitat, and flood 

management plans must balance the need for flood cycles which sustain biodiversity, 

with protection against extreme events, possibly caused in part by human impacts, which 

damage habitats and soils (Richards et al., 2002). Measures such as biodiversity action 

plans, statutory conservation sites, and environmental impact assessments for flood relief 

works have all contributed to the heightened role of environmental considerations.  

All these considerations have led authorities to seek a ‘step change’ in the role of the 

land-use planning system in the control of flood risks, as demonstrated by the guidance 

put forward in the document PPG25 (ODPM, 2004) and its successor PPS25 (ODPM, 

2005). In efforts to reduce unnecessary expenditure on structural flood defences, 

increasingly strict guidance on planning has been given. Developers are now responsible 

for carrying out Flood Risk Assessments in the planning stage of new developments, and 

for managing and funding any flood management measures necessary as a result of 

construction. This is particularly pertinent as pressure on housing provision forces 

consideration of development on land at risk from flood events, including initiatives such 

as the use of brownfield sites (ODPM, 2000) which are often situated close to waterways. 

Such new planning regulations demonstrate determination to provide centralised 

guidance and policy, and are backed up by an increased emphasis on the Environment 
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Agency as the leading supervisory and regulatory body for all matters relating to flood 

defence. This allows flood management to be considered at a regional scale, with 

planning policies that cross administrative boundaries.  

Basin-wide planning is central to many of the new ‘soft-engineering’ flood defence 

options suggested for consideration. These centre on the restoration, enhancement or 

creation of the natural functions of the floodplain, recognising that the floodplain is a 

“transitional environment between terrestrial and fully aquatic systems” (Brookes et al., 

1996). By reintroduction of natural defences such as flood meadows, wetlands, 

washlands, salt marshes or mud flats, the importance of a ‘functional floodplain’ is 

recognised and flood events can be greatly attenuated. This type of management is used 

to good effect in the Ouse Washes which provide a wide, shallow river in times of flood 

(Pask, 1992). The Environmental Stewardship Scheme offers an option to pay land 

owners to set land aside as ‘inundation grassland’ or to create wet grassland, reed bed or 

swamp habitats, recognising the financial value of dedicated river corridors. It is 

estimated that up to 0.5 million hectares of agricultural land lies behind non-viable flood 

defences and could be returned to its natural state as part of the floodplain. Other 

measures to be considered which require greater intervention include the setting back or 

removal of flood banks, reintroduction of river meanders and restoration of variable bed 

morphology (DEFRA, 2003)  

Complementing strategic regional planning, there is an increased emphasis on individual 

responsibility. There is no statutory duty for the government to provide flood defences; 

the owner is ultimately response for safeguarding property against flooding. Studies have 

shown that in the past, structural flood defences have led to a false feeling of security 

amongst property owners, discouraging flood proofing and emergency preparedness, and 

weakening community resolve to implement land-use regulations (Ericksen, 1986; 

Handmer, 1990). This has then led to unnecessary disruption when defences have been 

overtopped, which could have been prevented by houseowner preparedness. To address 

this issue, there has been a concerted effort by the Environment Agency to raise public 

awareness of flood risk (Environment Agency, 2001). Central to the campaign has been 

the introduction of the new codes ‘Flood Watch’, ‘Flood Warning’, ‘Severe Flood 

Warning’ and ‘All Clear’ which are represented by graphics and have been introduced in 
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collaboration with national television and radio networks. These have been accompanied 

by the telephone advisory service ‘Floodline’, which provides a central point of 

information for concerned members of the public. In order to target flood information 

correctly, a national database of at-risk properties has also been compiled using indicative 

floodplain maps produced by the Environment Agency. These flood risk maps are also 

available online for consultation by the public, to improve awareness of high risk areas. 

In the future this information will have to be included in the Sellers Pack for property 

sales. Improved public awareness has been shown to encourage public feelings of 

efficacy in flood management and an improved uptake of flood prevention measures 

(Waterstone, 1977). Measures promoted to the public include installing removable flood-

proof screens and air-brick covers, stockpiling of sandbags and preparation of an 

emergency plan. In the case of property refurbishment more invasive measures can be 

considered such as raising of floor levels and electrical circuits. 

1.3.3 Standard Methods in Flood Forecasting 

In order to meet the aims of the previous section in the provision of catchment and basin-

wide management strategies, planning of structural and non-structural flood defence 

works, and provision of information to emergency planners and the public, a range of 

flood risk assessment results are required. In order to harmonize these results across 

regional boundaries, standard methods are employed in several different aspects of the 

process. These include methods for the estimation of flood peaks, flood hydrographs, and 

inundated areas. All these variables are typically required in terms of the ‘T-year flood’, 

although other standards that are used include the maximum recorded flood, probable 

maximum flood (if such a thing is deemed to exist) or reconstruction of a particular 

known event such as the 1947 floods. The estimation of peak discharge is perhaps the 

most common; it is used to determine the height and location of flood defences required 

for a certain standard of protection. In some cases however an estimate of the whole flood 

hydrograph is required; this would be the case if the likely flood volume was needed for 

the design of storage reservoir solutions. Finally, flood risk mapping is increasingly in 

demand from insurers, planners and flood warning agencies, both to specify the current 

levels of risk and to allow feasibility assessments of non-structural flood defence 
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measures. These maps may show different variables apart from simply flood frequency 

(Marco, 1992).  

Standardised methods are important in the creation and implementation of national 

‘Standards of Service’ which can be used to compare flood defence provision across the 

country (Birks et al., 1992). The concept of these guidelines dates from 1984 when a 

MAFF working party was set up. This was then followed by a pilot study by the Thames 

Water Authority in 1986 to set up a ‘Levels of Service’ database. Today the standards are 

monitored by DEFRA, which uses them in relation to cost:benefit analyses in order to 

rule on proposed flood defence expenditure. Birks et al. (1992) quote the then current 

target for flood defence provision as being such that 0.5 – 1 houses per km per year (or 

the equivalent value of other assets) may be damaged by flooding, corresponding to 

approximately a 50-100 year return period for flooding in residential areas. Today, 

guidance from DEFRA stresses the more flexible approach taken to flood defence 

standards, while giving indicative standards of protection as a 50-200 year return period 

for flooding in residential areas, 5-50 years for high-grade agricultural land (DEFRA, 

2000). 

1.3.3.1 Estimation of peak discharges using Statistical Methods 

When gauged records of flow are available in a catchment, a statistical analysis of peak 

flows provides a well-established and widely-researched method of estimating frequency 

characteristics of flood discharge. In the UK, this method is widely used in engineering 

applications, and guidance is provided by the Flood Estimation Handbook (Robson and 

Reed, 1999). The method is particularly well-suited to large catchments (> 1000km2) 

which are likely to experience significant differences in precipitation across the 

catchment during a single storm, making the use of flow records more appropriate than 

rainfall records.  

The data required for the statistical analysis is either an annual maximum record (AM) or 

partial duration series (PDS), the latter being more suitable for record lengths less than 13 

years (Reed, 1999). Data series covering the UK are provided by the Institute of 

Hydrology in both forms (Bayliss and Jones, 1992; Robson and Reed, 1999; Spencer, 

2005). In order to interpolate or extrapolate from the recorded data to make an estimate of 
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flood discharge for a particular return period, an extreme value distribution is fitted to the 

data series (Naden, 1992). Distributions used include those of the Log Normal, Gumbel, 

Pearson, Generalised Pareto and Generalised Logistic distributions; a summary is given 

by Kidson (2004). The distribution is fitted using a parameter estimation procedure such 

as the Method of Moments, the L-Moment Method (Hosking, 1990), or Maximum 

Likelihood Estimation. There is, however, often no process-based strategy for choice of 

distribution, leading to different models being officially mandated in different countries, 

often judged purely on goodness-of-fit (Kidson, 2004; Vogel et al., 1993). This may lead 

to varying estimates of extreme flood magnitudes, none of which include a sound 

hydrological justification for the extrapolation procedure chosen. 

In addition to the empirical nature of the extrapolation procedure, the method has 

disadvantages in terms of the length of gauged flow series required for accurate 

estimation of discharges. The Flood Estimation Handbook recommends that a record 

twice the length of the modelled return period should be used, this would usually be 

achieved by flood regionalisation: using data from ‘donor catchments’ close to the site of 

interest, or hydrologically similar ‘analogue catchments’. Although standardised methods 

for choosing these catchments are provided, there is still a lack of consensus as to the 

optimal method (Acreman and Sinclair, 1986; Wiltshire and Beran, 1986). It is especially 

difficult to group ungauged catchments where extreme value behaviour cannot be used as 

a similarity measure (Reed, 1992). There are also particular difficulties in using a Peaks-

Over-Threshold analysis in conjunction with regionalisation methodology (Birikundaugi 

and Rouselle, 1992).  

In order to mitigate some of these problems, historical or paleoflood data may be used in 

addition to the gauged record (see Section 1.3.1). This data has the potential to 

substantially extend the record of extreme floods in the catchment, and is therefore of 

great benefit when estimates of low-frequency events are required, having been shown to 

reduce both uncertainty and bias in the results of a flood risk assessment (O'Connell et 

al., 2002). Paleoflood evidence may be used to improve the parameter estimates for 

standard extreme value distribution models, often using the technique of Maximum 

Likelihood Estimation based on the combined record (Guo and Cunnane, 1991; Martins 

and Stedinger, 2001; Pilon and Adamowski, 1993; Stedinger and Cohn, 1986). More 
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recently, ideas borrowed from multi-parameter validation strategies have popularised the 

use of Bayesian methods to incorporate gauged, historical and paleoflood data 

(O'Connell, 2005; O'Connell et al., 2002; Reis and Stedinger, 2005). Paleoflood data 

analysis has also provided the stimulus for a critique of traditional flood risk assessment, 

as a result of often substantial modifications to flood frequency estimates where 

paleoflood data has been available. In particular, a longer record may identify non-

stationarity in the flood-generating mechanism that was not apparent in a shorter gauged 

record, a finding that would violate the assumptions of the standard statistical analysis 

(Kidson and Richards, 2005; Thorndycraft et al., 2005). This issue is explored in more 

detail in Section 1.4.1.1. 

1.3.3.2 Estimation of flood hydrographs using Rainfall-Runoff Methods 

Using rainfall-runoff methods for the estimation of a design flood discharge or 

hydrograph provides a preferable alternative to statistical methods when the required 

return period is greater than 200 years. Often it is possible and desirable to combine the 

two approaches to achieve an improved estimate. The methodology dates back to work 

by Eagleson (1972) who recognised the importance of, and provided a technique for 

using climatic and catchment data to predict streamflow characteristics when flow 

records were not available. In Britain this is a very useful technique since rainfall records 

are available for more sites and generally for much longer periods than flow data. Since 

its conception, the method has been widely used in flood frequency estimation: a 

summary is provided by Beven (2001b). 

Dependant on the data available and the return period of the estimate required, the 

rainfall-runoff model may be used in different ways. Where the observed rainfall record 

is long, transformation via the model into flow records allows direct estimation of flow 

magnitudes. Eagleson’s initial proposal was that the rainfall record could be characterised 

by probability distributions of storm characteristics, which could then be transformed into 

distributions of flow magnitudes. This technique allows for extrapolation beyond 

observed rainfall extremes. In recent years the increasing computing power available has 

allowed more complex representations of rainfall characteristics and runoff-producing 

mechanisms, as numerical rather than analytical methods can be used to produce the 
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corresponding flow distributions. The rainfall distributions can be used stochastically to 

generate thousands of years of simulated rainfall series, which then drive the rainfall-

runoff model to produce the corresponding flow series in the same way as observed 

rainfall series. 

There are various reasons for uncertainty in results produced by this method. The results 

of any application depend on the rainfall-runoff method used. Hydrologists have 

experimented with a range of different models, from physically-based and distributed 

models e.g. IHDM (Calver, 1993), to hybrid models such as TOPMODEL (Troch et al., 

1994), to lumped models such as IHACRES (Steel et al., 1999). The Flood Estimation 

Handbook suggests a simple estimation of the unit hydrograph from existing rainfall-

runoff records if available, or from physical catchment characteristics as a last resort in 

an ungauged catchment (Houghton-Carr, 1999). As well as uncertainty in model type, 

parameter estimation introduces further challenges as the model is usually calibrated 

from a selected period of observed data, but is required to make predictions of the 

catchment behaviour in more extreme climatic states. Finally, as with statistical methods 

for discharge estimation, when catchment variables such as storm characteristics are 

fitted with frequency distributions there is uncertainty in distribution choice and fitting 

method. Despite these problems, rainfall-runoff modelling is the method of choice for 

many applications involving rare events and may be used for estimates with return 

periods of up to 5000 years (Reed, 1999). 

1.3.3.3 Flood Risk Mapping 

Mapping of expected water levels during a flood is often required in addition to discharge 

predictions. National standards are particularly important when such maps are used for 

purposes such as insurance calculations, when some properties may even be marked out 

as uninsurable. An indicative map of flood risk in the UK was drawn up by Morris and 

Flavin (1996) using a simple hydrological model. This map was used together with 

further modelling and historical records to produce the Environment Agency’s Indicative 

Floodplain Extent map of 1999. This is currently being updated to show two area bands: 

those areas estimated to be flooded in the 1 in 100 year flood, and those at risk in the 

more extreme 1 in 1000 year flood. It will also show the influences of strategic defences.  
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In order to create depth mapping, assumptions must be made as to the nature of flows on 

the floodplain. Usually a rainfall-runoff method such as those outlined in Section 1.3.3.2 

is used, together with a hydraulic model. Typically the model is a one-dimensional 

hydraulic approximation applied to the channel only, such as with the popular computer 

model HEC-RAS (US Army Corps of Engineers, 2005). The model results can then be 

used to map water elevations onto a digital elevation model of the catchment. This 

requires the assumption that the water forms a horizontal surface perpendicular to flow 

direction; however this may not be the case in short duration events, for high velocity 

flows with strong dynamic effects, or for shallow braided flows. These types of effects 

cannot be accounted for without hydraulic modelling of the whole floodplain rather than 

purely the channel. This type of modelling can be computationally expensive but 

provides a more accurate simulation of the conditions found in extreme flood events; it 

also allows the effects of flood defence works to be more easily incorporated. 

By extending modelling of flood extent to other variables, many advantages may be 

gained. Predicted damage from flooding to a particular property can only be 

rudimentarily estimated from a map of flood extent; flood depth is a more important 

control that may usually be easily estimated using the same modelling techniques. Depth 

is typically related to damage by a nonlinear relationship recognising both the relatively 

minor effects of very shallow floods, and the decreased rate of further damage at very 

high levels. Where it is possible to use hydraulic modelling of the floodplain, Marco 

(1992) points to many of the additional benefits to be gained. For example, by mapping 

flow velocity, danger to life during flood evacuation may be estimated. A map of flood 

duration may show accumulative damage, for example over agricultural land where crops 

may be resistant to a short period of inundation, but damaged during a longer flood. 
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1.4 Updating the Approach to Flood Risk Assessment 

Section 1.3 has attempted to summarise the philosophy and aims of flood management 

strategy in the UK, and the methods of flood risk analysis currently used to provide the 

data to meet those aims. However, closer inspection shows several areas in which such 

conventional methods make unwarranted assumptions with regard to catchment 

behaviour, or fail to provide the flexibility or scope required for modern ‘soft’ 

engineering applications. This section presents further detail on some of those 

shortcomings, and makes the case for a new, process-based modelling strategy. This 

strategy would use the established principles of continuous simulation as the basis for a 

coupled model cascade, providing ‘End-to-End’ modelling of the complete flood 

generation process. 

1.4.1 Non-Stationarity of the Flood Generation Process 

1.4.1.1 Changes in Flood Frequency 

Section 1.2.2 identified a variety of causes behind the modern experience of accelerated 

flood risk, grouped into those that reflected climate change (i.e. change in precipitation 

regime) and those that reflected land-use change (i.e. change in catchment response to 

precipitation). However, if non-stationarity exists in the flood generation process, this 

violates a critical assumption of conventional, statistical flood risk assessment; namely 

that floods occur as independent, identically distributed, random events from a single, 

stationary distribution. The empirical nature of the distribution fitting procedure, as 

described in Section 1.3.3.1, does not allow any adjustment based on understanding of 

trend or quasi-oscillatory behaviour in the climate record. 

One consequence of this problem is the lack of a sound methodology by which to allow 

for the effects of future climate change: non-stationarity of precipitation characteristics 

threatens the relevance of historical gauged flow and flood records. Despite this, the 

continuing evidence for climate change as monitored by the Intergovernmental Panel on 

Climate Change (Arnell et al., 2001) suggests that a failure to plan for increases in flood 

risk could jeopardise the country’s ability to cope with future events. As such, a similarly 

 23



empirical principle, that of allowing for a 20% increase in peak flow in any new flood 

risk applications (Section 1.2.2.1), has been adopted in order to act on the current 

government advice to adopt the precautionary principle with respect to flood hazard: 

‘Where there are threats of serious or irreversible damage, lack of full scientific certainty 

shall not be used as a reason for postponing cost-effective measures to prevent 

environmental degradation’ (ODPM, 2004). The figure of 20% was arrived at after a 

preliminary modelling study in the Thames and Severn catchments (ODPM, 2004), 

however in applying this factor arbitrarily throughout the UK without regard to 

catchment-specific response, any justification for its use based on process understanding 

is lost. Similar limitations on the ability of the method to account for land-use change are 

also apparent. Even where future trends in land-use patterns in a catchment may be 

estimated, the curve-fitting exercise of the flood frequency assessment does not readily 

allow the inclusion of such knowledge. 

1.4.1.2 Flood Risk in New Locations  

In addition to changing flood frequency characteristics at sites known to be prone to 

flooding, climate change (and to a lesser extent land-use change) may cause flood events 

in locations not previously considered to be at risk. As high intensity storm events 

increase, the IPCC concludes that small headwater streams especially may demonstrate 

increased flood activity. This is a particular problem in Britain as there is central control 

of flood protection and channel maintenance only for sections of channel designated as 

‘main river’; headwater streams will generally fall outside of this bracket. Smaller rivers 

are also less likely to be gauged, and their large numbers make a complete gauging 

programme infeasible. Therefore flood risk assessments may increasingly need to be 

made without the traditional advantage of discharge records, forcing the adoption of 

alternative methods such as flood risk estimates based on precipitation data (Section 

1.3.3.2). 

Lack of gauged data is also a problem in urban areas which are more likely to be affected 

by intra-urban flooding in a flashier precipitation regime. The Foresight ‘Future 

Flooding’ report (Office of Science and Technology, 2004), which aims to inform long-

term policy on flood defence, identifies this as a major challenge to future strategy with a 
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possible 80,000 individuals at risk. Damages through intra-urban flooding may be low 

until the current excess capacity is exceeded, after which damages will rapidly increase. 

This must be anticipated many years in advance due to the long lead-in time required for 

major engineering works; for example, replacement of Victorian sewers is estimated to 

need 10-15 years notice. New strategies will be needed for assessment of risk from urban 

flooding in order to commission such works in time. 

1.4.2 Connectivity of Channel and Floodplain 

Despite the benefits described in Section 1.3.3.3 of presenting flood frequency data in 

terms of flood risk mapping rather than river levels, such a transformation has 

conventionally been regarded as disconnected from the main task of flood risk 

assessment. The chief focus of a study has previously been seen as the derivation of 

discharge or level magnitude for a given set of return periods, with spatial mapping an 

optional extra. This attitude reflected a reliance on structural flood defence works whose 

aim was to contain flood flows within the designated channel. As shifts in attitude 

towards a preference for ‘soft’ engineering solutions and floodplain restoration have 

increased requirements for spatially distributed flood risk information, the 1D hydraulic 

models typically used to study levels within the channel have been extended to provide 

water elevation mapping over the floodplain. A widely-used example of this is the ‘GEO-

RAS’ add-on to the channel model ‘HEC-RAS’ (US Army Corps of Engineers, 2005) 

which enables water level output from the channel model to be draped over a terrain 

model of the surrounding area. This typifies the simplistic view of the role of the 

floodplain implicit in such a modelling strategy: the floodplain is seen purely as a storage 

reservoir and water movement over the floodplain as the river reaches bank-full and out-

of-bank stages is not seen as an integral part of the floodwater transport mechanism. The 

view mimics the disconnection of channel and floodplain which has occurred where 

structural flood defence measures have been employed. 

Contrary to the assumptions behind the view of a floodplain disconnected from the river 

channel, flood defence circumvention or failure during extreme events has demonstrated 

that these two areas function together as a coupled system during times of flood. Water is 

routed downstream as the floodplain assumes a transport as well as storage capacity. 
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Where paleochannels exist these often become active; in other cases where natural routes 

have been blocked by urban development then strong flows may occur even through 

built-up areas. It is here that deficiencies in the hydraulic approximations made by a 1D 

model become apparent. Firstly the model is unable to properly represent the lateral flows 

between the river and the floodplain. Being extremely dependent on the cross-section 

survey locations used to create the channel structure, the true shape, width variations and 

sinuosity of the channel is unlikely to be fully captured. Further to this, the 1D format 

cannot account for the pressure gradients which force water flows at highly variable rates 

between the two areas. Secondly, once water has reached the floodplain, the model 

cannot properly route flows through complex terrain. An urban environment presents a 

multitude of obstacles to flood water which cause a complicated response differing 

greatly from a ‘basin-fill’ scenario. Barriers and constrictions cause the creation of 

preferential pathways for water transport, while other areas are protected from the 

greatest water depths. The increased expectation of flood flows through urban areas, due 

to changes in flood defence strategy, leads to a requirement for flood risk mapping based 

on 2D models which couple channel and floodplain flows and provide a dynamic 

representation of water transport on the floodplain in order to overcome these difficulties. 

1.4.3 End-to-End Modelling: A Process-Based Continuous Simulation Methodology 

In order to address some of the deficiencies in standard flood risk assessment (FRA) 

techniques which have been outlined in the previous section, this thesis proposes a 

preliminary structure for a modern FRA methodology which seeks to include the benefits 

of the latest modelling techniques. These may previously have been used in research 

exercises but before now have rarely been seen as appropriate for wide scale application. 

The requirement to combine such techniques in an efficient and practical way is an 

important theme of the study. 

A critical criterion for the structure is that it should embody a process-based approach to 

FRA. This greatly increases the predictive power of the system: it is only with a correct 

representation of dominant process that the model may be expected to react correctly to 

novel input and boundary conditions, a point emphasised by Oreskes and Belitz (2001). 

The use of a process-based approach also allows the structure and parameters of the 
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system to be modified to reflect knowledge of changing conditions of climate and land-

use, a vital attribute for a modern FRA technique which will be used in a period of 

changing climate regime and catchment response. In order to achieve this, the FRA 

structure is underpinned by the technique of continuous simulation. This was introduced 

in Section 1.3.3.2 as part of the discussion on the use of rainfall-runoff models as a 

replacement for statistical flood frequency analysis. 

Continuous simulation uses the available precipitation record for the catchment as a basis 

for creation of long synthetic rainfall series typical of those experienced by the 

catchment. These series are used as input to a rainfall-runoff model to produce the 

corresponding discharge series, from which extreme event frequencies may be calculated 

explicitly. An important advantage of the method is that it provides continuous soil 

moisture accounting which gives implicit consideration of antecedent wetness conditions 

in the catchment. The stochastic generation of the rainfall series is achieved by creating 

frequency distributions for a variety of rainstorm characteristics such as duration, mean 

intensity and time between storms. Where the historical record is not felt to fully capture 

the possible range of catchment behaviour, the empirical distributions may be fitted using 

a standard distribution or be modified by the addition of an upper tail. The rainfall series 

is then created by sampling randomly from the distributions. Many variations on the 

method exist; these are explored more fully in Chapter 4. Using this flexible method, 

climate change might be represented via a modification of the rainfall frequency 

distributions, land-use change by a modification of the rainfall-runoff model structure or 

parameters, such as an increase in runoff coefficient. Although the method of continuous 

simulation is not new, and it has previously been used to forecast the discharge 

magnitude of extreme floods (Cameron et al., 1999), it has not been considered suitable 

for integration into the standard FRA framework due to the computational overhead 

required. However, by using a relatively simple rainfall-runoff model, it proves to be a 

practical and valuable tool. 

The new structure is also defined by its integrated, ‘End-to-End’ approach to FRA. As 

management plans become catchment- or basin-wide in their scope, so too should FRA 

methods be spatially and temporally ambitious. It is clear to the observer that no part of 

the catchment acts in isolation, and the process-based approach attempts to replicate this 
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connected system through a cascade of coupled models representing precipitation regime, 

rainfall-runoff characteristics and floodplain inundation behaviour. As such, discharge 

estimates from the continuous simulation of runoff are used to drive a 2D model of 

floodplain hydraulics which aims to simulate the dominant behaviour of the floodplain as 

a dynamic system with a key role in the control of flood behaviour. By using a 2D model 

which couples channel and floodplain behaviour, many of the limitations outlined in 

Section 1.4.2 are overcome. The advantages of the particular choice of inundation model 

are explained more fully in Chapter 5, however amongst them is the opportunity to 

benefit from new, high-resolution elevation data which provides an explicit topographical 

boundary condition for the model. By enabling 2D urban flood modelling with extremely 

low grid sizes, the accuracy required to properly capture flow dynamics within the built 

environment may be achieved. A spatially distributed flood forecast available at high 

resolution also paves the way for additional modules for vulnerability and damage 

assessment, calculating social and economic impacts of floods, for example using 

information on building use or value (Apel et al., 2004; Merz et al., 2004). In the UK a 

simple way to access such information might be through ties to a postcode database.  

Finally, the aspiration to produce an ‘End-to-End’ modelling structure is also important 

in order to include uncertainty estimation as an integral part of the FRA procedure. 

Uncertainty cascades through any FRA system as outputs from one component go on to 

become the input or boundary conditions for the next. By treating the procedure as a 

coupled system, it may be run within a proven uncertainty estimation framework (further 

details are given in Chapters 4 and 7).  
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1.5 Conclusion 

This introductory chapter has sought to set flood risk assessment in both its historical and 

contemporary context. Firstly, the underlying phenomenon, flooding itself, was 

examined. The causes which provide the forcing factors behind flood risk were set out, 

with examples of recorded flood events resulting from each. This provided the 

background for a discussion of flood risk today, which is widely perceived as an 

increasing threat. Possible reasons for such a rising trend were considered, broadly 

categorised into those relating to climate change and those relating to land-use change. 

In a society increasingly concerned by the threat of flood inundation, flood risk 

assessment is an essential tool to enable emergency and strategic planning. Section 1.3 

examined the conventional methods used to carry out such an assessment. These methods 

were found to be strongly influenced by the use to which the results of any estimate of 

flood frequency would be put. An important part of this section was therefore a look at 

the type of flood prevention and mitigation measures typically used in the UK. In recent 

years, understanding of the need to manage flood risk at a catchment or basin scale, 

integrating economic, social and environmental concerns, has led to a step-change in 

flood defence strategies from structural to non-structural solutions. This has in many 

cases left behind the standard methods of flood risk assessment, which are no longer able 

to provide the information needed to plan and implement such solutions. 

Section 1.4 examined in more detail some of the reasons behind the inability of standard 

flood risk assessment methods to adapt to today’s demands. In particular, the lack of a 

process-based approach was identified as a major limitation which left the system unable 

to respond to non-stationarity in the flood generation process. In addition, the 

disconnection of channel and floodplain in the modelling process was particularly 

damaging to the system’s usefulness in assessment of spatially dispersed flood mitigation 

measures. These problems led to the identification of a need for a contemporary, flexible, 

flood risk assessment structure, able to take advantage of recent improvements in data 

availability and modelling techniques to meet the diverse demands of a modern 

catchment management plan. 
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1.6 Structure of the thesis 

The preceding discussion of conventional methods of flood frequency analysis, together 

with a critical analysis of their ability to deliver the data required for contemporary 

catchment and flood management plans, led to the conception of a modern structure for 

flood risk assessment. This thesis aims to establish such a system, using a case study 

catchment to test and demonstrate its ability to perform under the typical conditions of a 

lowland UK catchment. The thesis falls naturally into three parts: 

 

Part I: Hydrological Setting for the Study 

Part II: Component Model Development 

Part III: ‘End-to-End’ Flood Risk Assessment with Uncertainty 

 

The objective of Part I is to set the study in context. Chapter 2 does this from a 

methodological perspective, examining the current and evolving themes in hydrological 

research which have provided the stimulus for a modernisation of the flood risk 

assessment procedure. These include the effects that increased data availability has had 

on hydrological modelling, the emergence of process-based modelling, an acceptance of 

uncertainty leading to the rejection of deterministic forecasts, and the increased emphasis 

placed on providing hydrological forecasts in an accessible format. 

Chapter 3 provides the context for the thesis in terms of the study catchment. The 

essential part that field data sets play in hydrological modelling is highlighted in Chapter 

2, and this chapter provides details of data availability in the catchment and additional 

information collected through fieldwork. This includes both flow gauging and the 

collection of point inundation data through a survey of residents. It also provides a 

physiographical, climatological and hydrological review of the catchment. Finally, the 

methods and outcome of previous modelling of the catchment is examined. 
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Part II details the development of the three component models which go on to make up 

the coupled flood risk assessment system. The first of these is the stochastic rainfall 

series generator described in Chapter 4. Different methodologies for rainfall simulation 

are reviewed, and a profile-based method is chosen. The gauged rainfall series from the 

catchment is then processed and used to create simulated series using two variants of the 

method. These are evaluated in their ability to reproduce statistics of the catchment 

rainfall regime.  

The continuous simulation methodology requires that the simulated rainfall series should 

form the input to a rainfall-runoff model which predicts the associated river discharge. 

Chapter 5 describes the choice of rainfall-runoff model, together with detail of model 

structure identification and parameterisation, using both Environment Agency gauged 

data and that collected during fieldwork. It also introduces the Generalised Likelihood 

Uncertainty Estimation (GLUE) philosophy, used to support a set theoretic approach to 

model structure and parameter choice, and to estimate uncertainty in model output. The 

results of the rainfall-runoff modelling exercise are produced in terms of this probabilistic 

approach. 

As the final part of the chain of coupled models, Chapter 6 describes the floodplain 

inundation model. The benefits of using reduced-complexity techniques for high 

resolution floodplain modelling are discussed, and the model structure is described in 

detail. Developments to the model to ensure numerical stability and correct model 

functionality at small scales are described. A method to enable the incorporation of sub-

grid scale information, one of the themes discussed in Chapter 2, is established. The 

chapter then describes the model application to the study catchment, including calibration 

and multi-criteria validation of the model. Model performance is compared across scales 

and the value of sub-grid scale information is assessed. 

 

Part III synthesises the results of the three chapters of Part II to create, apply and assess 

the ‘End-to-End’ modelling framework for flood risk assessment. Chapter 7 first gives a 

detailed explanation of the framework, discussing issues of efficiency and data 

preparation. The framework is then applied to produce a flood magnitude and inundation 
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frequency analysis for the study catchment, with integral estimation of the predictive 

uncertainty in the results. The role of uncertainty estimation in the risk assessment is then 

considered further with an attempt to quantify the relative magnitude of uncertainty 

originating from different aspects of the system, and therefore the opportunities to 

constrain such uncertainty. 

Finally, Chapter 8 concludes the thesis by assessing the success of the study in 

establishing a modern, rigorous and efficient framework for flood risk assessment, 

together with a summary of achievements in terms of methodological improvements. 
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Part I 
 

 

 

HYDROLOGICAL SETTING FOR THE STUDY 
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Chap t e r  2  

NEW DIRECTIONS IN FLOOD FORECASTING 

 

Abstract 

This chapter aims to summarise the current and evolving themes in hydrological research 

which have provided the stimulus and direction for this thesis. First, the characterisation 

of recent years as a new ‘data-rich’ age of hydrology is discussed, including the 

relationship between data availability, hydrological understanding and refinements in 

model process representation. It is the availability of high-resolution remotely-sensed 

topographical data sets which has enabled development of floodplain inundation models 

capable of simulating flow through complex urban environments. Consideration is given 

to conflicts which can occur between spatial data availability for different hydrological 

variables, leading to possible bias in process representation or calibration strategy.  

High resolution spatial data sets encourage the use of distributed, process-based models; 

however these models are often highly scale-dependent. Section 2.2.2 examines the 

difficulties associated with the use of ‘effective’ parameter values where it is not possible 

to measure quantities at the model grid scale. Another important theme is that of 

reconciling the availability of extremely high resolution data with the scales required to 

retain efficient model performance; this leads to consideration of sub-grid variability. 

The difficulties of deterministic specification of model structure and parameterisation, in 

the face of limited data for calibration or validation, are discussed in Section 2.3. 

Increasing acceptance of the necessity of probabilistic forecasts has resulted in 

methodological frameworks which accept uncertainty in all aspects of model deployment, 

such as the GLUE method which is outlined here and later used in Chapters 5 and 7. 

Finally, the challenges of communicating the strengths and weaknesses of current 

modelling and uncertainty mitigation strategies, both within the hydrological community, 

and to a wider audience, are considered in Section 2.4. 
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2.1 A Resource-Rich Age? 

2.1.1 A Spatial Revolution  

The advent of remote sensing has brought about a spatial revolution in hydrological data 

and has precipitated a change in focus in catchment modelling. Historically, data 

collection methods tended to bias records towards at-a-point temporal patterns. These 

records naturally lent themselves to models lumped at the catchment scale, and provided 

only limited support for distributed hydrological modelling. In order to use point input 

measurements such as gauged rainfall depth, interpolation or extrapolation was required. 

Similarly, point validation data typically only measures bulk catchment response such as 

river discharge and cannot be used to distinguish correct spatially-distributed process 

representation. Today, however, Bates (2004) suggests that availability of remotely-

sensed data has ushered hydrology into a new ‘data-rich’ age where distributed data 

highlights the importance of spatial variability and models are redesigned to take full 

advantage of the data influx. Grayson and Bloschl (2000c) explore many of the same 

themes and discuss their consequences for model structural design. They demonstrate the 

consequences of assumptions of spatial uniformity by comparing the runoff simulations 

in two implementations of the THALES model, one assuming a random soil moisture 

deficit field, the other organised by wetness index. Very different responses to rainfall 

inputs were observed in the two cases (Figure 2.1). 

Figure 2.1: Runoff simulations using the Thales model with both random and organised 
saturation deficit scenarios, for a rainfall event of (a) 30 mm and (b) 5 mm over 1 hour. 

From Grayson and Bloschl (2000c). 
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One of the most common forms of data made available by new remote sensing techniques 

are digital elevation models (DEMs) of the land surface. Previous such datasets were 

coarsely obtained by interpolation from digitised contours or aerial photogrammetry. 

These techniques have been replaced by collection via airborne laser altimetry (LIDAR) 

or interferometric synthetic aperture radar (INSAR), either airborne or from satellite. 

These new methods allow large scale collection of data at very high horizontal spatial 

resolutions (0.5 – 2 m) and high vertical precisions of the order of 10-1 m. Amongst other 

applications, DEMs may be used explicitly within a hydrological model as a topographic 

boundary condition, or to derive other variables such as slope, aspect or wetness index. 

These now ubiquitous DEMs have been seen as a major catalyst in the increasing 

awareness of the importance of spatially-distributed data (Dietrich and Montgomery, 

1998; Grayson and Bloschl, 2000c).  

Remote sensing does not only provide elevation mapping; it has provided important 

techniques for collection of many other variables (Schmugge et al., 2002). The LIDAR 

and SAR measurements may, in addition to collection of elevation data, be used to 

determine vegetation types and land cover (e.g. Kasischke et al., 1997; Moffiet et al., 

2005), soil moisture (Pauwels et al., 2001), snow cover (Andreadis and Lettenmaier, In 

Press) or flood extent (Bates and De Roo, 2000; Frappart et al., In Press). The collection 

of precipitation information, vital for rainfall-runoff modelling, has been transformed by 

the emergence of ground-based weather radar. Data from these instruments allows 

distributed rainfall mapping with resolutions of 2 – 4 km, relaxing the traditional 

dependency on discrete rain-gauge sources and offering the prospect of real-time 

distributed measurements over large catchments (Collier, 1999; Schultz, 1988). 

Despite the profound effect that remote sensing has had on hydrology, it might be argued 

that this has been only a ‘partial’ data revolution, due to conflicts between the extent to 

which spatial data is available for different hydrological variables. While the impact has 

been strongest on systems dominated by surficial processes (e.g. hydraulic systems, 

runoff production systems in steep catchments), remotely sensed data has proved less 

valuable for subsurface model development where characteristics are not measurable 

from the air. The inaccessibility of key data required to establish process descriptions, 

parameterise and validate such models is highlighted by Anderson et al. (1996) in their 
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review of data capture issues. Subsurface water storage and water flows are an essential 

part of a full description of catchment behaviour, yet these are conditioned on soil 

structures and bedrock topography that is not readily apparent from the surface (Freer et 

al., 2002). Although techniques for subsurface remote-sensing are being developed, such 

as ground-penetrating radar (Knight, 2001), they currently lack the essential capability to 

capture small-scale heterogeneity and structural features. For example, it is not yet 

possible to map macropore distribution within soil layers, and yet these provide 

preferential flow pathways which are a significant contributor to storm flow (Flury et al., 

1994; Freer et al., 2002; Shakya and Chander, 1998).  

As well as underground structures, there are also surface features which are difficult to 

quantify remotely. For example, channel morphology is not usually well represented in 

DEMs, which may lack definition of fluvial features e.g. bars and banks, and of the 

channel/floodplain boundary (Dietrich and Montgomery, 1998). Difficulties are also 

compounded where valley slopes are shallow and therefore drainage directions may not 

be portrayed accurately, or may lie below the resolving power of the data acquisition 

method. It may be tempting to ignore the loss of these features and treat the DEM as a 

complete representation of the landscape, however they can provide important controls 

on floodplain flows. 

In some cases, an inaccessible variable required for understanding of process may be 

estimated using a surrogate variable which it is easier to measure using remote sensing; 

Grayson and Bloschl (2000b) provide a brief review. Again the ease of collection of 

DEMs means that they are a popular source of information, and there are many examples 

of the use of surrogate terrain indices such as calculation of contributing areas to enable 

channel definition (Rinaldo and Rodriguez-Iturbe, 1998) or use of topographic soil 

indices to infer the spatial pattern of water table depth (Famiglietti and Wood, 1994b). 

Indices not based on terrain include pedotransfer functions which are commonly used in 

soil science, to translate more easily obtainable measurements such as soil type and 

texture into hydraulically useful properties such as saturated hydraulic conductivity 

(Islam et al., In Press). Other examples include the use of vegetation types from 

LANDSAT Thematic mapper data to estimate evapotranspiration rates (Chen et al., 
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2005), and water quality measurements using water reflectance properties to estimate 

suspended sediment and other pollutants (Schmugge et al., 2002). 

2.1.2 An Empirical Science 

New remotely sensed data streams have reshaped hydrologists’ understanding of spatial 

variability in surficial catchment processes and hence their representation via 

hydrological models. Subsurface understanding has been correspondingly slower to 

develop due to reduced availability of high resolution spatial data. This understanding, 

vital to the development of hydrological theory, is what is referred to by Beven (2001b) 

as a ‘perceptual model’ of the catchment. Without the constraints of mathematical 

formulation, and guided by each individual’s study, data analysis and field experience, 

the model encompasses knowledge of the different hydrological processes at work, their 

relative importance and interactions. The development of the perceptual model has been 

recognised as an important first step preceding further hydrological work, and has been 

the subject of detailed local investigations in study catchments (e.g. McGlynn et al., 

2002; Ocampo et al., In Press). Differences in the perceptual model will lead to different 

strategies for modelling the catchment, as demonstrated by Botterweg (1995) who 

compared differences of calibration of a hydrological model by two independent users 

given the same input data, due to their different understandings of the system.  

The completeness of the hydrologist’s perceptual model is, however, generally limited by 

the availability of good field data sets. Despite recent advances, it is often impractical or 

impossible to collect comprehensive data on hydrological variables at time-scales 

appropriate to catchment-scale processes. Yet in spite of these difficulties, such 

information is vital in order to shape understanding of catchment behaviour and response 

to hydrological events. Silberstein (In Press) questions whether data collection is still 

necessary in an age where computer models of catchments are becoming increasingly 

complex, but concludes that without underlying data these models are little more than 

‘computer games’. Dunne (1982) and Klemes (1986) have called for modellers to work 

more closely with field hydrologists to ensure model results are backed up by sound data 

to avoid giving the appearance of hydrological knowledge where it is not justified. 

Hornberger and Boyer (1995) also conclude that despite advances in modelling, future 
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progress will be reliant on new data and new experimental work. The same sentiment has 

been echoed by many others (Anderson et al., 1996; Bencala et al., 1993; Beven, 2001b; 

PUB Science Steering Group, 2003). 

The search for a better understanding of a particular catchment process is therefore often 

a force for the collection of further data. Developments in theoretical models have guided 

the investigation of catchment response and generated new areas of ‘data capture’ in their 

exceptional demand for data for floodplain development and process operation 

understanding (Anderson et al., 1996). In some cases the data demand is too high for 

collection across the whole catchment, and instead the conceptual model may be built 

from localised investigation of processes in a subcatchment (Bormann et al., 2005). This 

is particularly the case at small scales where the heterogeneity of the catchment makes 

complete knowledge of catchment properties impossible. Hydrological advances continue 

to be reliant on such techniques for improving methods of data collection, information 

extraction and subsequent model conditioning, and hence hydrology remains very much 

an empirical science. 
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2.2 Emergence of Process-Based Modelling 

2.2.1 Using catchment understanding to inform model structure 

The improving availability and coverage of spatial data has both driven and been driven 

by developments in distributed, process-based modelling. Historical time series data of 

integrated variables measured at a point were most easily incorporated into models which 

were lumped at the catchment or basin scale. Now, where spatially-distributed 

measurements of catchment form and process are available, these encourage the 

incorporation of process understanding in model structures. This may range from a 

relatively simple decomposition of the catchment into hillslope and channel elements, to 

an attempt to produce a fully distributed model incorporating all the known surface and 

subsurface processes in the catchment. This latter aim was first described by Freeze and 

Harlan (1969) in their ‘Blueprint for a physically-based digitally simulated hydrological 

response model’.  

A more recent popular alternative to such spatially explicit methods is distribution 

function modelling. Here a hydrological similarity index is used to group dispersed 

locations by hydrological behaviour, assigning each landscape parcel to a conceptual 

‘Hydrological Response Unit’ (HRU). The advent of geographical information systems 

(GIS) has allowed easy identification of such HRUs based on maps of soil type, 

vegetation classification, geology, etc. Popular examples of distribution function models 

include the Probability Distributed Moisture Model (PDM), which extends the concept of 

lumped storage rainfall-runoff models to allow a probability distribution of different 

storage capacities throughout a catchment (Moore and Clarke, 1981), and TOPMODEL 

(Beven and Kirkby, 1979) which uses a topographic index to generate a probability 

distribution function of soil moisture deficit and hence to determine variable contributing 

areas within a catchment.  

The relationship between catchment understanding and model structure is a two-way 

process. Patterns in the landscape and process identification through field experiment will 

guide the choice of processes to be included or excluded from a model structure, or the 

level of detail at which they are modelled. In turn, sensitivities shown by the model 
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towards structural choices and parameter values will add to process knowledge (Grayson 

and Bloschl, 2000a). Also included in this cycle is the collection and processing of data; 

for example data interpolation methods may be guided by the identification of a spatial 

organisation in the underlying controlling process. Grayson and Western (1998) consider 

the benefits of using modelling results to refine sampling strategies by investigating the 

existence of parts of the landscape which consistently exhibit ‘mean’ behaviour in terms 

of soil moisture status. These sites may then be used to reduce sampling commitment in 

the future by allowing an accurate estimate of catchment mean soil moisture from a small 

number of locations (Figure 2.2) 

 

Figure 2.2: Catchment average moisture content for Tarrawarra versus values estimated 
from 20 sites identified as exhibiting ‘mean’ behaviour. From Grayson and Western 

(1998). 

2.2.2 Model Scales 

2.2.2.1 Process and Parameter Scale Dependency 

One important aspect of perceptual models is that they are usually scale dependant. The 

dominant processes identified in the catchment will change according to the scale of the 

system considered. The choice of scale acts as a filter on our view of the catchment 

(Woods, 2005). This is often referred to as the ‘scaling problem’ in hydrology: what is 

the relationship between spatial variability, scale and the governing description of 

hydrological processes? A change in prevalent process may occur within the same 
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underlying mechanism, for example Lane et al. (1997) discuss the different processes 

controlling sediment yield at various scales, from overland flow processes at the plot and 

hillslope scale, through gully erosion and channel processes at the sub-watershed scale, to 

rainfall coverage and transmission losses at the watershed scale. Similarly, Hopmans and 

Shoups (2005) consider the dynamics of soil water flow; they identify three characteristic 

scales at which different processes dominate: microscopic pore scale, local scale and 

regional scale. Woods (2005) gives a summary of the nested characteristic patterns in 

variables including climate, soils, geology, vegetation and topography, and identifies 

interactions between time and space scales. 

Hydrological models are typically developed for a particular spatial and temporal scale, 

to facilitate the choice of process representation. Once these choices have been made, the 

model may be unsuitable for rescaling. For example, if subsurface flow has been 

represented as soil matrix flow using Darcy’s equation for small spatial scales, the model 

would not be appropriate at the catchment scale where macropore flow dominates. It 

would therefore need to be reformulated rather than simply scaled up. For a larger scale 

model there may need to be a change of parameters, state variables and even fundamental 

equations. An example of the first is given by Yu and Lane (2006a) who examine the 

effects of mesh resolution on the performance of a two-dimensional diffusion wave 

model of flood inundation. They find that model response in terms of inundation extent 

and timing displays strong sensitivity to mesh resolution, and demonstrate the need for 

recalibration of the effective roughness parameter ‘Manning’s n’ in order to retain 

simulation accuracy when validating against observed data (Figure 2.3). 
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Figure 2.3: Relationship between Model Grid Scale and Value of Calibration Parameter 
Manning’s n in terms of Percentage Over-Estimation of Inundated Extent. From Yu and 

Lane (2006a). 

Questions remain as to the appropriate methods of integrating and representing effects 

from different spatial and temporal scales in catchment scale or macroscale models. One 

approach that is often used involves the use of a nested structure of models with 

appropriate aggregation/disaggregation transfer functions linking these (Famiglietti and 

Wood, 1994a; Famiglietti and Wood, 1994b; Sivapalan and Wood, 1987). In response to 

these uncertainties, Sivapalan (2005) calls for development of a unifying theory of 

hydrology at the catchment scale. This theory would aim to recognise that macroscale 

response is a function of currently poorly-understood interactions and feedbacks between 

small-scale processes; that apparently simple measured responses may result from the 

combination of multiscale heterogeneities.  

In some cases it is necessary to use model parameters that have been measured or 

calibrated at a different scale. This might occur when outputs from models at different 

scales need to be combined (Bloschl, 2005), or when responses from catchments at 

different scales are used together in the context of hydrologic regionalisation (Gupta and 

Waymire, 1998). Alternatively the problem may arise where laboratory or field 

measurements of parameters have been made at the point scale, but a model requires a 

parameterisation at a grid-cell or catchment scale. In this case the parameters required by 

the model are euphemistically termed ‘effective parameters’. If the small-scale variation 
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of the process is known completely then it may be possible to calculate the scaling 

relationship giving rise to the effective parameters deterministically; however typically an 

approximating function is used. The complexity of this function would depend on the 

nonlinearity of model process equations relative to the input fields, the spatial 

autocorrelation and scaling properties of the fields, and the extent of model spatial 

interaction (Wigmosta and Prasad, 2005; Wood, 1998). Alternatively the parameter 

values may be determined empirically, using flux matching methodology (Raupach and 

Finnigan, 1995). 

2.2.2.2 Sub-grid variability 

The choice of a model scale often brings with it the question of representation of sub-grid 

variability. In some cases the scale will have been chosen to incorporate the finest 

measured heterogeneity; however more often the choice of scale will reflect limitations in 

data-handling capabilities, especially when applying models over large areas. In the latter 

case there will be catchment information available that would not be captured by using a 

mean or effective parameter value for each model cell. 

Various approaches to sub-grid variability have been suggested. Wood et al. (1988) 

outlined the concept of a representative elementary area (REA); a scale beyond which 

continuum assumptions could be used without explicit knowledge of the true patterns of 

variables such as topographic, soil, vegetation or rainfall fields. Therefore by running a 

model at a scale larger than the REA, typically quoted as around 1 km2, the patterns of 

sub-grid variability would not need to be explicitly accounted for. Their experimentation 

was in runoff production; it has also been repeated for runoff ratio (Wood, 1995) and 

evaporation (Famiglietti and Wood, 1995). However as Beven (1995) noted, although the 

trials demonstrated the insensitivity of the model to sub-grid pattern, the macroscale 

parameters may still need to be adjusted to take account of the distribution of 

characteristics at the sub-grid scale. A similar attempt to identify a critical scale has been 

made in geomorphology with the concept of the ‘fundamental hillslope’ (Dietrich and 

Montgomery, 1998; Montgomery and Dietrich, 1992) which is defined as having no 

organised persistent convergent areas within it. It is the scale where smaller areas could 

not generate sufficient overland flow to initiate surface erosion (Horton, 1945). 
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Where the qualities of the model render sub-grid variability important, it is sometimes 

possible to adapt the model or model parameters to use some of the information content 

carried in the variability, without the full cost of using a higher resolution model 

application. This technique aims to improve on the more usual assumption of uniformity 

of parameters below grid size. Often it is done using a distribution function method, using 

the assumption that spatially distributed description of subgridscale variability can be 

replaced by simpler statistical representation (Famiglietti and Wood, 1994b; Grayson and 

Bloschl, 2000c; Liang et al., 1994). An alternative method is to use the complete spatial 

pattern but under simplified process assumptions. For example, Koster and Suarez (1992) 

model the land surface boundary within one cell of a General Circulation Model (GCM) 

by using a tiling of smaller gridsquares of different vegetation types, each using a 

simplified form of the energy balance equation. In some model structures such as 

TOPMODEL, which use similarity theory, questions still remain as to the best way to 

incorporate sub-grid variability. When using a distribution function, a decision must be 

made as to the likely nature of the variability and hence the most appropriate 

representation. In the simplest cases it can be treated as a random variable characterised 

by its covariance. However, it is important to draw a distinction between ‘organised’ and 

‘disorganised’ variabilities; an organised variability being one that shows identifiable 

patterns, demonstrating feedback with other hydrological variables. Kirkby (2005) gives 

the example of organisation in sediment and solute processes which, through changes in 

landscape form, shape the hydrological response of the catchment to precipitation, but are 

themselves strongly affected by the form of flood hydrographs. In cases where 

organisation of variabilities is shown to exist, a more complex representation of sub-grid 

variability may be appropriate, together with a larger-scale REA (Bloschl, 2005; 

Shuttleworth, 1988).  

A number of studies have examined the effects of including information on sub-grid 

variability on modelling results, concluding that inclusion often results in significant 

changes in predictions. Freeze (1980) compared a stochastic model of rainfall applied to 

heterogeneous and homogeneous representations of a hillslope. He found significant 

differences in the runoff predicted by the two representations and stated that distributions 

of hydraulic conductivities should be included in the model. Wood (1997) examined the 
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effects of using simplified lumped or distribution (statistical) models versus a fully 

distributed model on the estimated value of the average evaporative fraction parameter. 

He found that the information included in the statistical model was sufficient to provide a 

good match to the fully distributed model, however the lumped model produced poor 

results, tending to overestimate evaporation in low atmospheric demand conditions while 

underestimating it in high demand situations (Figure 2.4). 

 
Figure 2.4: A comparison of three models for predicting actual evapotranspiration. (1: 
explicit) A fully distributed model in which the spatial patterns of the soil-topographic 

parameters and rainfall are preserved; (2: statistical) A macroscale, distributed model in 
which the spatial variability in the soil-topographic parameters is accounted for 

statistically; (3: 1-D) An aggregated, one-dimensional model in which parameters and 
inputs are spatially constant at their average values. 

The advantages of including sub-grid scale topographic information within a 2-D raster 

floodplain inundation model are explored in detail in Chapter 6. Traditionally, hydraulic 

models have used a ‘roughness’ parameter, Manning’s n, which subsumes the combined 

effects of topographical blockage and turbulence production, and hence must be 

considered as an effective parameter which cannot be calculated directly from the 

physical properties of the land parcel. Instead, the use of sub-grid scale information 

provides an opportunity to represent explicitly the effects of complex topography on flow 
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pathways without the penalty in terms of computer time and data storage which would be 

incurred by running the full model at the higher resolution. 

2.2.3 Balancing Data Capabilities and Requirements 

The process-based models that have emerged through the partnership of improved 

hydrological data sets and improved catchment understanding are hungry for distributed 

data for both calibration and validation. A typical situation arises when a distributed 

model has been created through availability of a particular high-resolution data set such 

as a DEM. The model then requires distributed information on other processes, which 

may not be available. For example, Famiglietti and Wood (1994b) commented on this 

problem when using a distributed soil-vegetation-atmosphere transfer (SVAT) model 

which then required distributed water table depths. Grayson and Bloschl (2000a) describe 

the importance of considering interactions between processes when choosing the 

conceptual model, as the hydrologist cannot model a detailed process which depends on 

an unmodelled one. Where such a lack of data occurs, a common response is to impose 

spatial uniformity of parameters or processes. However this may bias process control to 

the datasets which do exist (Grayson and Bloschl, 2000c), and typically results in poor 

performance at internal data sites not used in calibration (Refsgaard, 1997). 

When a model has been calibrated, further data is needed for verification or validation. 

Some dispute the concept of model validation, seeing models as embodiments of 

hypotheses which cannot be proven or validated, only tested or invalidated through 

comparison with measured catchment responses (Konikow and Bredehoeft, 1992; 

Silberstein, In Press). Beven (1993) describes this process as model conditioning rather 

than validation. Whatever philosophical view is taken towards this process, there remains 

a requirement for additional field data in order to carry it out. The problems of collecting 

validation data at proper time-space scales mimic those encountered during the collection 

of calibration data. Further problems may occur if, for example, extrapolation across 

scales has been carried out in parts of the modelling process, leaving validation data at a 

different scale to that at which the model is operating (Wigmosta and Prasad, 2005).  

Consideration must also be given to the computational effort that may be required when 

complex, process-based models are run at high resolutions. Dietrich and Montgomery 

 47



(1998) highlight the mismatch that can occur between availability of input data and the 

resources available to process it within current modelling frameworks. In some cases 

solutions to this type of problem may be found in the use of sub-grid variability (Section 

2.2.2.2); this will be explored further in Chapter 6. 
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2.3 An Acceptance of Uncertainty 

2.3.1 Realisation of Uncertainty 

The preceding discussion has outlined the increasing use of process-based models as 

distributed hydrological data sets have become more widely available. It has also 

emphasised the many choices that exist as to which processes occur in the catchment, 

which should be included or emphasised within the model structure, and at which scale 

the model should be run. As different hydrologists come up with their own answers to 

these questions, hundreds or even thousands of different hydrological models are created, 

calibrated, and used in theoretical or practical applications. Just a few of the most popular 

are summarised by Singh (1995).  

Although many of these models have been optimised for use in a particular situation, it is 

undoubtedly true that in most applications, there are a variety of different models that 

could be used to provide adequate answers. Often, it would be hard or impossible to 

identify an ‘optimal’ model to be used, and yet each model may provide a different 

interpretation of catchment processes, and so differing predictions in future hydrological 

scenarios. This question itself hides the dual choices of model structure and 

parameterisation, which may each independently change the model representation of the 

catchment at different levels in the hierarchy of decisions required to fully specify model 

function. This type of situation has increasingly led hydrologists to question the 

acceptability of making deterministic predictions where no indication of uncertainty in 

the outcome is given. An engineering application where model choice or parameterisation 

makes little difference to predicted outcome may deserve a very different treatment to 

one in which the outcome is highly uncertain, even if both have the same ‘best estimate’ 

values. 

The realisation that deterministic predictions may not always tell the ‘whole story’ leads 

to questions on the role of uncertainty in the modelling process. Here we use 

‘uncertainty’ as a specialist term, in contrast to the colloquial understanding, meaning the 

absence or lack of information on prior probabilities and the likelihood of particular 

outcomes (Kundzewicz, 1995). What are the sources of uncertainty, how can these be 
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measured and if possible constrained? These questions are considered in some detail in 

the following sections. 

There is a fundamental difference of opinion on the nature of uncertainty in hydrology. 

Kundzewicz (1995) poses the question as ‘Is the world deterministic?’ - could uncertainty 

eventually be removed through improvements in the monitoring and measuring program 

or is a representation of nature necessarily uncertain? The former standpoint is taken by 

Beck (1987) and is described as the non-identifiability of the system with respect to some 

true description. The latter view is taken by Klemes (1996) who attempts to convey the 

extreme difficulty of quantifying the system at its fundamental level by describing 

uncertainty as ‘irreducible’. In response to a similar philosophical viewpoint, Beven 

(1993) introduces the concept of equifinality, which is defined as the situation where 

points from dispersed areas of the model structure and parameter space give equally good 

fits to available data for the catchment. Gupta et al. (2005) describe different responses to 

equifinality: it might be seen as an indication that the model structure is too complex for 

the available data and should be simplified. Alternatively it may be due to a failure to 

properly specify the calibration problem to exploit the data available. Finally, and 

following Beven’s (1993) philosophy, it may support the need for a set theoretic 

approach to model choice where different models are accepted as equally valid.  

2.3.2 Overwhelming Uncertainty? 

Many authors attempt to classify the different causes or types of uncertainty in a 

hydrological system. Typically these would include uncertainty in process descriptions, 

inexact knowledge of parameter values (particularly in the case of effective parameters) 

and uncertainty in calibration and validation measures (Bardossy, 2005; Beck, 1987; 

Gupta et al., 2005; Melching, 1995). Melching (1995) and Kundzewicz (1995) both 

highlight the apparent lack of structure in some hydrological processes, referring to this 

as ‘natural randomness’ and ‘chaotic behaviour’ respectively. Uncertainty may also be 

caused by non-stationarity in hydrological processes, including trends, periodicities and 

correlations between variables. This may include trends produced by climate change or 

land use change (Kundzewicz, 1995; Strupczewski and Mitosek, 1995). Bogardi and 

Kundzewicz (1996) describe the importance of the pre-hydrological (e.g. meteorology) 
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and post-hydrological (e.g. social, psychological and institutional) sources of uncertainty. 

Klemes (1996) considers the social and political factors which may govern which sources 

of uncertainty are considered. Finally there are the sources of uncertainty which are 

unidentified until a hydrological event or disaster brings them to our attention: these are 

the ‘unknown unknowns’ (Klemes, 1996). 

It seems that the closer one examines a hydrological system, the more sources of 

uncertainty can be identified. For example, Melching (1995) studies the use of point 

rainfall measurements to estimate the catchment rainfall input and describes eight 

different sources of uncertainty (Table 2.1).  

1. Depth Measurement error in gauge due to equipment malfunction 

2. Representiveness of ground-level precipitation at gauging point 

3. Gauge location, e.g. gauges may be in positions that constantly result in high or 
low readings relative to rainfall. 

4. Gauge network areal-mean rainfall versus true areal-mean 

5. Rainfall spatial variability. 

6. Rainfall temporal variability 

7. Lack of synchronisation between time clocks for rain and stream gauges. 

8. Lack of synchronisation between time clocks for the various rain gauges in the 
watershed. 

Table 2.1: Eight sources of uncertainty in estimation of rainfall input. From Melching 
(1995).  

Catchments may be particularly susceptible to large uncertainties where there is a lack of 

data; Kotwicki and Kundzewicz (1995) give the example of an arid catchment which 

rarely exhibits flow conditions. In this type of system there may be insufficient 

information to ‘close’ the catchment, leading to large uncertainties in even the most 

fundamental analysis of mass or energy continuity. Catchments which have multiple 

controlling mechanisms or mechanisms which switch between states are also prone to 

high uncertainties, e.g. Romanowicz et al. (1995) study the uncertainties in a model of 

evaporation which has two distinct process states depending on a threshold value of soil 

moisture in the surface layer. The problems are often exacerbated because uncertainties 

are at their greatest during extreme events such as flood peaks when accuracy may be at 
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its most critical. Gupta et al. (2005) cite the problems of streamflow gauges which suffer 

from rating curve inaccuracies and bypassing of gauging structures at high flows. Beven 

(2001a) questions whether, given so many possible faults in any model, a scientist 

searching for a truthful representation of reality might feel that he should reject all 

models. This might seem to be the most rigorous response, and might indeed lead to 

advances in process understanding and refinements in modelling technique as we search 

for an acceptable model. However, referring back to the theory of equifinality and 

irreducible uncertainty, it may be necessary to accept and accommodate uncertainty. 

Given that model predictions are required for many applications, we must instead look 

for a way to simplify the layers of uncertainty and identify those that are the most 

important (Beven, 2001a).  

Kundzewicz (1995) outlines some of the practical ways that hydrologists and engineers 

have dealt with uncertainty in the past. The technique of Laplacian Postulates, otherwise 

known as the principle of insufficient reason, suggests that when probabilities of 

alternative outcomes are not known, they should be assumed equal. This is the basis the 

uniform a priori distribution commonly used in Monte Carlo sampling applications. 

Another popular method is simply to use the worst case scenario, or to introduce an 

arbitrary ‘safety factor’ (Plate, 1996; Yen, 1996), or to use a measure of central tendency. 

A slightly more advanced analysis might consider an interval or range of possible 

outcomes. In some cases it may be justified to ignore uncertainty altogether: Moore 

(1996) suggests that deterministic forecasts are often sufficient, and that it is only in 

marginal cases where there is a high probability of false positives or negatives where a 

probabilistic forecast would be required. Melching (1995) and Troutman (1983) give the 

example of model errors consisting of systematic bias, which in some cases may be 

ignored altogether as it would be corrected automatically during calibration of parameter 

values, or in other cases may be included explicitly as an additional parameter such as a 

rainfall input scaling factor (Gupta et al., 2005). 

Recently, hydrologists have tried to take a more thoughtful approach to dealing with 

uncertainty, using the information that is available about the magnitude of uncertainty, its 

variability over space and time, and the role that it plays in the modelled system. For 

example, it may be possible to consider uncertainty in some variables only; Romanowicz 

 52



et al. (1995) modelled dynamic unsaturated flow in spatially variable soils by assuming 

that soil properties were uniform with depth. This is based on a similar principle to the 

shallow water approximation to the Navier-Stokes equations; although not uniform, 

pressure may be expected to behave hydrostatically and hence velocity may be replaced 

by its mean over depth. We should, however, take care not to fall into the trap of 

modelling only those uncertainties we know how to analyse (Singh, 1995). In order to 

make this type of judgement, rigorous methods of uncertainty estimation are required. 

2.3.3 Approaches to Uncertainty and Uncertainty Estimation 

In order to ensure that model predictions are both reliable and precise, or to assess their 

progress towards achieving this aim, methods are needed to estimate and report 

uncertainty. The new generation of physically-based, process-orientated hydrological 

models require methodological frameworks which are able to accommodate the multiple 

sources of uncertainty encountered as we try to simulate the hydrological behaviour of a 

catchment. In particular, models are increasingly being created which simulate linked 

hydrological systems, and methods must be found to combine the component 

uncertainties associated with these. Process-orientated models may also be required to 

incorporate qualitative expert knowledge of a system, an example of ‘soft data’, and 

techniques for dealing with the uncertainties of such judgements must be included.  

When dealing with such complex systems, an important constraint on the completeness 

of an uncertainty estimation technique is the way in which uncertainties in input 

parameters are described. Yen (1996) gives various methods for specifying the 

uncertainty, from the complete probability density function (pdf) of the parameter, 

through simpler descriptions such as its statistical moments or as a confidence interval. 

However, as he points out, only the full pdf will allow a (numeric or analytical) 

calculation of how two or more uncertainty sources combine. It is important to note that 

in coupled systems, one model’s output uncertainty will be the next model’s input 

uncertainty and so in order to evaluate the combined uncertainty of the system, the 

uncertainties have to be expressed as complete pdfs. Plate (1995) gives an example of 

tracking uncertainty through a coupled system; in this case a pollutant transport model 

describing first pollutant runoff into a river, then transport along the river reach. The 
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complete distributions of the input parameters were not determined, and therefore a 

distribution function type was imposed, in this case requiring each parameter to conform 

to a normal distribution. This assumption allowed analytical calculations of combined 

uncertainty probabilities to be made, using known characteristics of the normal 

distribution. The technique of imposing analytical distributions is popular for the ease 

with which such analyses can be made (e.g. Karbowski, 1995; Kozlowski and Lodzinski, 

1995).  

In many applications, it is possible to capture a complete empirical pdf of input 

parameters. This is preferable to an assumed statistical distribution function, however it 

precludes the use of analytical methods for combining uncertainties. In such situations 

discrete numerical methods such as Monte Carlo analysis must be applied. This involves 

random sampling from input distributions, which can be of any form, to build up a 

distribution of associated outputs. Uncertainties from many sources can be 

accommodated by sampling independently from each distribution for each model run. For 

example, Fahmy et al. (1996) used the technique to include uncertainties in the model, 

parameters and input samples in an ecological risk model. Melching (1995) describes the 

Monte Carlo sampling technique as an ‘extremely robust and flexible method’ which is 

often the only option when the system is highly nonlinear. The method was extended by 

Beven and Binley (1992) to form the Generalised Likelihood Uncertainty Estimation 

(GLUE) technique by associating a ‘degree of belief’ with each output sample. Again this 

measure of belief is extremely flexible and could include fuzzy measures to incorporate 

soft data (Bender, 1996; Kindler and Tyszewski, 1995). Using the measure allows the 

output samples to be weighted according to the likelihood that the model used to produce 

them was a good representation of the catchment. Melching (1995) however sees the 

need to reject some models as ‘non-behavioural’, i.e. not adequately simulating 

catchment behaviour, as a shortcoming of the methodology due to the arbitrary choice of 

threshold value. The GLUE methodology is described more fully in Chapter 5. 

A disadvantage of Monte Carlo sampling is the high cost in terms of computational 

resources when even a moderate number of different parameters are considered uncertain 

and need to be explored. This has spawned various methods to approximate the response 

surface to save computer time. Both Melching (1995) and Yen (1996) give reviews of 
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several of these, including Latin hypercube sampling, integral transformation techniques 

and point estimation methods such as those of Rosenblueth and Harr which assume local 

linearity of response. Given certain conditions these are found to compare well to full 

Monte Carlo sampling (Melching, 1995).  

2.3.4 Mitigating Uncertainty 

The uncertainty estimation methods described in the previous section are undertaken in 

the hope that knowledge of uncertainty can aid in its mitigation. Our perception of the 

approach used in mitigation has its roots in the answer to the fundamental question posed 

in Section 2.3.1 – is the uncertainty inherent in the system? If the answer is yes, the 

process will be seen as progressive and iterative as we aim to reduce uncertainties in 

knowledge of structure and parameterisation, rejecting non-behavioural models while 

retaining a set of behavioural ones. If contrastingly there is a belief that all uncertainty is 

avoidable, the process will be seen as a pathway to acquiring the knowledge required to 

remove uncertainty. Typical of this process would be the description by Melching (1995) 

of the reduction of uncertainty associated with data-handling, timing and reading errors 

that has been achieved by using telemetry rather than manual reading of raingauges. 

Despite these conflicting paradigms, the methodology may in fact be very similar. Given 

the constraint of finite resources for data collection and processing, how may we best 

reduce uncertainty in model outcome? 

One of the crucial roles of uncertainty estimation is to allow the total uncertainty to be 

disaggregated into its source components. This is not an easy task and sometimes 

assumptions or simplifications must be made, for example to assume that model structure 

is correct and focus on uncertainty due to inexact parameter knowledge only. Another 

possible simplification is to look at uncertainty in classes of variables rather than each 

individual variable, e.g. Plate (1995) looked at uncertainty in the levels of classes of 

pollutants which could be separated by behavioural differences. Various methods may be 

used for disaggregation, depending on the uncertainty estimation technique. Melching 

(1995) describes the use of reliability analysis, including both sensitivity analysis and 

estimation of magnitude of parameter error. This technique relies on the assumption that 

the response surface is locally multivariate normal around the optimum predicted 
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parameter set. When GLUE is used, Monte Carlo simulations can provide a correlation 

coefficient between the parameter value and output values. 

The knowledge of individual uncertainties can be used to identify problem areas in the 

model, enabling resources to be used in the most efficient way. For example, where the 

variance of the pdf of a model parameter is small compared to that of the model input 

samples, it may not be worthwhile to attempt further data collection to improve 

knowledge of that parameter (Plate, 1995). Instead an attempt may be made to reduce 

input uncertainty. Many authors have highlighted input uncertainty as a major factor in 

rainfall runoff models, and have been able to quantify the effects of reducing it by 

comparing an uncertain estimate of rainfall fields from a gauging network with the ‘true’ 

field measured by radar, (e.g. Melching, 1995; Moore, 1996) and a summary of other 

work by Gupta et al. (2005). Care must however be taken that in aiming to reduce 

uncertainty in one part of the system, bias is not created in the balance of process 

descriptions leading to increased uncertainty in other areas (Gupta et al., 2005).  
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2.4 Use and Communication of New Techniques 

2.4.1 Challenges in Communication 

The preceding discussion has emphasised the high current level of awareness of 

uncertainty in the hydrological community, and the understanding of the importance of 

its role during the interpretation of model predictions. Various authors comment on its 

centrality to water resource management decisions (Kindler and Tyszewski, 1995; Yen, 

1996). Why then is the consideration of uncertainty almost non-existent in commercial 

application of hydrological models? There are counter-examples to this observation, e.g. 

Krzysztofowicz (1996) cites the development of a probabilistic hydrometeorological 

forecasting system for the United States National Weather Service which aims to quantify 

uncertainty in precipitation quantity and river flow (USNWS, 2006). The system is 

described as increasing the economic benefit of forecasts, and being at least as reliable as 

deterministic forecasts, yet it is an example that has been seldom copied elsewhere.  

The reality is that many organisations have entrenched modelling frameworks which 

would require an extreme stimulus to overturn. This prevents both unjustifiably 

deterministic models and under-performing models being replaced. Oreskes and Belitz 

(2001) attribute the continuing use of established models and techniques, in the face of 

poor results, to an effort to avoid legal liability by being seen to follow standard 

techniques. Anderson and Bates (2001) reiterate this, by considering the government 

agency endorsement of some models and giving the example of the United States 

Environmental Protection Agency mandating the use of certain models in environmental 

risk assessments. Similarly in the United Kingdom, the Environment Agency indicative 

floodplain map, originally produced using a simple three-parameter model, has been 

enshrined in statutory governmental guidance (Reed, 2002). However, these types of 

considerations cannot be the only reason why people continue to use bad models, as 

hydrologists without these pressures also fall into the same trap on occasion. Oreskes and 

Belitz (2001) suggest that past failures of the model are either forgotten, or never 

established due to a lack of comprehensive monitoring. Perhaps particularly true for 

experienced hydrologists is in fact an expectation that models will produce poor results. 
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With a heightened awareness that models are at best a crude representation of reality, 

with little or no place for their validation or verification (Konikow and Bredehoeft, 

1992), perhaps it is no surprise to produce poor results at times.  

With this in mind, one of the most difficult challenges in the drive for recognition of 

uncertainty is to bring uncertainty estimation into widespread use as a way of increasing 

the information available from a model, rather than as an excuse for ignoring bad model 

performance. Anderson and Bates (2001) highlight the importance of differentiating 

between models which correctly identify the driving processes of the catchment, albeit 

with uncertain parameters, and those for which parameterisation has allowed a bad 

representation to produce reasonable results. An instance of the latter is given by Oreskes 

and Belitz (2001) in the form of a beach erosion model which could reproduce current 

observations, but incorrectly represented the erosion as a steady process whereas it 

actually occurred only during rare storms. This is a further example of calibration bias 

allowing the accommodation of an unreasonable model structure (Section 2.2.3). In order 

to make the differentiation, methods for visualising uncertainty and the information that 

this gives us about the model must be developed. This will make uncertainty estimation 

relevant and useful to researchers, commercial modellers and the wider public. 

2.4.2 Using and Visualising Uncertainty 

2.4.2.1 Methods in the context of Research 

While uncertainty estimation is well established in the field of hydrology in general, Lane 

and Bates (2000) emphasise its infrequent use in floodplain inundation studies. They 

suggest that this may be due to a combination of the computational effort needed, and a 

lack of process knowledge which would be required to specify uncertainties. Perhaps 

another contributing factor is a greater confidence in the completeness of such physical 

hydraulic models, which require far fewer parameters than, for example, rainfall-runoff 

models. The dominant uncertainties in hydraulic models may instead stem from initial 

and boundary conditions, and model structure (including treatment of numerical 

instability; see Section 6.3.1.3). Now that models using high-resolution floodplain data, 

run on high-powered computers, are increasingly able to support detailed process 
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representations, the barriers to inclusion of uncertainty estimation are beginning to be 

removed. In turn the ability and necessity of including uncertainty in flood inundation 

predictions is becoming apparent; Wheater (2002) concludes that increased 

understanding of uncertainty will in particular emphasise the current limits and 

deterministic nature of floodplain inundation mapping. 

Methods must therefore be established to visualise and use uncertainty information in 

floodplain inundation prediction and mapping. These methods must be suitable for their 

intended use; Reed (2002) draws the distinction between simple and complex 

representations of uncertainty depending on specific needs. An example of the former 

would be a ‘statement of ignorance’; that uncertainty is known to exist with a certain 

magnitude, but nothing further is known. This may be sufficient for applications such as 

planning decisions. The latter would include more information such as variances or 

spatial distribution of uncertainty; an example is given of an application to Kriging 

variance mapping to highlight weak spots in a gauging network where new investment in 

equipment would reduce uncertainty most effectively. 

There are two main cases where there is a need to visualise uncertainty. Firstly the 

uncertainty in the model input: knowledge of uncertainty in any estimated or calibrated 

parameters may allow identification of gaps in catchment process understanding or data 

collection. Secondly the uncertainty in the model output: knowledge of uncertainty in the 

prediction allows better informed decisions to be made. In the first case, where an 

uncertainty estimation technique such as GLUE is being used (Section 2.3.3), ‘dotty 

plots’ enable a visualisation of the uncertainty in each parameter. These plots show the 

parameter value against the performance measure, one dot for each model realisation. In 

effect they are a one dimensional representation of the response space, and show the 

sensitivity of the model to changes in that parameter (Figure 2.5). The data behind the 

plots may also be used to create histograms showing the marginal posterior likelihood 

weighted distributions of individual parameters. Multiple dotty plots may also be made 

with different performance measures which highlight particular aspects of model 

behaviour. For example Freer et al. (2004) give dotty plots based on performance in 

predicting near-stream water table levels, hillslope water table levels, discharge and 
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combinations of these to show the control of different parameters on different aspects of 

model output (Figure 2.5).  

 

Figure 2.5: Dotty Plots used to visualise uncertainty in 8 parameters of a TOPMODEL 
application to the MaiMai M8 catchment in New Zealand, in response to 6 different 

performance measures (validating against discharge, near stream/hillslope water table 
depth and combinations). Each plot shows performance score against parameter value; 

each dot represents one behavioural simulation. From Freer et al. (2004). 

To extend the concept to interactions between parameters, plots may be made which 

show one parameter on each axis, with each dot representing the existence of a 

behavioural model realisation with that combination of parameters. These plots will give 

visualisations of correlations between parameters which may indicate model process 

interactions. 

In the second case, uncertainty visualisation is needed to demonstrate possible errors in 

model prediction. From a researcher’s point of view, this may often be most usefully 

expressed in terms of a cumulative probability distribution of each output variable such 

as discharge at a given time step. This distribution may be created using a combination of 

predictions from behavioural models weighted by performance measure. The 

 60



distributions may then be used to create confidence limits for each point of the time-

series (Figure 2.6).  

Figure 2.6: 90% Confidence bounds for catchment discharge compared with observed 
discharge, from an application of dynamic TOPMODEL within a GLUE framework 

(displayed on a log scale for clarity). From Freer et al. (2004). 

Such a type of representation may not be the most easily understood by the public: this 

issue will be discussed in the following section. It is important to be able to visualise 

output uncertainty in order to understand how further data collection might serve to 

reduce it. For example, by plotting prediction bounds of an output variable as additional 

sets of temporal and spatial data are included in the model conditioning procedure, the 

value of the data may be demonstrated in terms of a narrowing of these bounds (Freer et 

al., 1996; Lamb et al., 1998). This effect is shown in Figure 2.7. 

 

Figure 2.7: Uncertainty bounds for (a) discharge and (b) borehole water levels using a 
single period of data and updated using a second period. From Lamb et al. (1998). 
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2.4.2.2 Methods for Public Understanding 

The techniques used to explain and represent uncertainty in hydrological predictions 

intended for use by the general public may be quite different to those used by 

hydrological researchers. The techniques will also differ according to their intended 

audience: a group of concerned homeowners affected by recent flooding may be more 

receptive to detailed technical data than populations not previously flooded.  

It is important that information is presented in a way that will be accessible to the user 

community (Wheater, 2002). This may involve the use of different variables to those 

used in the uncertainty analysis. Keys (1997) uses the example of gauged discharge 

levels, which are meaningless to the community, being translated into information on the 

horizontal spread of water on the ground, hence implying the necessity of coupled 

rainfall-runoff and hydraulic modelling. Alternatively, it may be couched in terms of 

simple instructions such as avoiding certain roads. The uncertainty within this data must 

similarly be expressed in an accessible way. Instead of frequency distributions of 

variables, simplified representations such as an upper and lower bound, best and worst 

case scenarios, or the percentage chance of a particular area being flooded may be most 

appropriate. 

As well as information provision, uncertainty estimation is also used in public policy for 

making benefit-cost decisions; this will increasingly be the case as the Water Framework 

Directive comes into force (Newson and Chalk, 2005). In this case, it is the combination 

of uncertainty and the possible consequences of that uncertainty that are important: this is 

referred to as the risk (Kundzewicz, 1995) or vulnerability (Gilard, 1996) associated with 

the uncertainty (the concept of vulnerability was examined in more detail in Section 

1.3.2.2). Public participation and opinion can be seen as the bridge between predictive 

uncertainty and risk (or the perception of risk) (Newson and Chalk, 2005); hence public 

understanding of uncertainty is vital. It is not only important in providing informative 

warning messages, but also in improving public comprehension of hydrological 

complexity. This will help to prevent the dominance of oversimplified ‘narratives’ of 

catchment processes (Forsyth, 2005) and allow more complete and reasoned responses to 

hydrological uncertainty. 
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2.5 Conclusion 

This chapter has discussed a range of the current opportunities and challenges in 

hydrological science. These have, in the main, been related to the availability of new data 

sources, emphasising once again the continued status of hydrology as an empirical 

science. Increasingly powerful computing facilities, while easing problems of data 

manipulation capability, and allowing more complex, process-based model structures, 

have not removed the need for improved provision of reliable and wide ranging data sets. 

The revolution in data availability has been examined, from the historical prevalence of 

temporal sources, to new spatially-distributed data sets made available through 

developments in remote-sensing technology. This expansion has highlighted the 

interdependence between data collection, hydrological understanding and model design; 

new information on spatial variation in catchment processes has forced hydrologists to re-

examine their own perceptions of catchment behaviour and hence appropriate model 

structures for simulation. 

Some of the problems associated with the sudden deluge of spatial data sets have also 

been studied. In some cases, the almost unprecedented situation now exists where data 

availability outstrips computational processing power, leading to exciting new research 

opportunities into techniques for utilising this data in an efficient way. One method for its 

inclusion as subgridscale information will be pursued in Chapter 6. It was also argued 

that this has been only a ‘partial’ data revolution, with detailed monitoring of surficial 

processes far exceeding that possible for subsurface structures and behaviour. This may 

lead to a danger of unwarranted assumptions of uniformity in unmodelled processes and 

calibration bias towards particular aspects of model behaviour. It has therefore become 

more important than ever to consider the unavoidable uncertainty present in choice of 

model structure and parameterisation. 

A review of the current approaches to uncertainty estimation was undertaken, particularly 

with regards to calculation of uncertainties deriving from combinations of sources and 

within systems of coupled models such as the linked rainfall, rainfall-runoff and 

hydraulic models that are the subject of this thesis. This emphasised the importance of 
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capturing complete empirical pdfs of parameters or variables, and hence the necessity of 

numerical methods such as Monte Carlo sampling in order to combine uncertainties. 

Improvements in computer resources have increasingly made it possible to integrate such 

data intensive techniques into standardised hydrological assessment methods for use in 

commercial and public policy applications. However, to achieve acceptance in such 

arenas, clear visualisation techniques are required in order to demonstrate the effects of 

uncertainty on model predictions and make the concepts accessible to a wider audience. 

This in turn will reinforce the benefits of uncertainty mitigation through additional 

collection of validation data in terms of improved prediction accuracy. However, to 

succeed in this aim, uncertainty must be expressed in terms meaningful to the user. 

Chapter 7 demonstrates how this might be achieved through the use of coupled rainfall-

runoff and hydraulic models to translate uncertainty in terms of discharge magnitude into 

information on inundation extent, the latter being accessible to the general public and 

more specifically to homeowners on the floodplain. 
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Chap t e r  3  

STUDY CATCHMENT: THE RIVER GRANTA 

 

Abstract 
This Chapter introduces the study catchment which is used throughout the thesis to 

provide practical application and testing of the ‘End-to-End’ flood risk assessment 

framework. The catchment chosen is that of the Granta above Linton in Cambridgeshire, 

UK. The reasons for the choice of site are presented, together with a review of the history 

of flooding in the catchment. The physical characteristics of the catchment, and the part 

that these play in controlling the flow regime, are examined in some detail. Information 

on geology, soils, land-use, climate, water use and river management is presented. 

The chapter also describes the data collected in order to structure, calibrate and evaluate 

the model components developed in the thesis. Rainfall and gauged flow data were 

provided by the Environment Agency. To further inform the structure of the rainfall-

runoff model, flow gauges were installed in the two main tributaries of the Granta above 

Linton, to provide information on relative subcatchment contributions to total discharge. 

Data on flood extent and depth was required for the floodplain inundation model; this 

was collected through a survey of floodplain residents. 

The data collected is used to undertake a hydrological review of the catchment. This 

includes analysis of rainfall and flow characteristics, and presentation of tributary flow 

gauging results for individual hydrographs. The catchment behaviour is linked to the 

geological and climatic controls. In addition, the meteorological conditions leading to the 

floods of October 2001 are examined. Finally, a review is made of the previous flood risk 

modelling carried out in the catchment. In 2004, the Environment Agency commissioned 

a report on the standards of flood protection provided in the catchment, to include 

modelling of channel flows and inundation associated with the 100-year flood. A 

summary of the methods and results of the study is presented. 
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3.1 Introduction 

3.1.1 Catchment Choice 

It is important that this thesis should be not only a theoretical exercise in model design, 

implementation and coupling, but also be grounded in a practical application, testing 

techniques in a study catchment. The essential part that field data sets play in 

hydrological modelling was emphasised in Section 2.1, concluding that model results are 

rarely justified unless they are backed up by sound data. 

The study is based on the River Granta in Cambridgeshire, UK. This site has a recent 

history of flooding, the effects of which have been exacerbated by the lack of a reliable 

warning system. This is partly due to the fact that the Granta to Linton falls into a 

problematic class of catchments, where the speed of response hinders the use of 

traditional upstream monitoring to aid real-time forecasting and warning systems. Despite 

these constraints, a combination of climate and land-use change has increasingly put this 

type of lowland headwater catchment at risk from flooding (Section 1.3.2), and therefore 

solutions must be found in order to improve flood warning capacity. A strong candidate 

for such provision is in the use of operational forecasting systems based on forcing 

precipitation forecasts, i.e. the operational equivalent of the strategic ‘end-to-end’ flood 

risk assessment system proposed here. The Granta to Linton therefore provides an ideal 

opportunity to develop and test the ‘end-to-end’ framework, and also benefits from a 

strong data content including rainfall records, hydrometric data and topographic mapping, 

ease of access and local support for the project. 

A map of the surrounding area is shown in Figure 3.1. The map shows the location of the 

River Granta, which flows in a North-Westerly direction from its headwaters in the South 

Cambridgeshire chalk uplands to its confluence with the River Cam near Stapleford. A 

more detailed topographic map of catchment of the Granta to Babraham is shown in 

Figure 3.2, and more details on the catchment physiography are given in Section 3.2. 

Figure 3.1 marks the three Environment Agency gauging stations at Linton, Babraham 

and Stapleford; the data available for the study from these gauges is examined in Section 

3.3. Velocity and stage measurements were also made on the two main tributaries 
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(Camps Tributary and Bourn Tributary), marked upstream of Linton, over a three-year 

period; the results are presented in Section 3.4. 

The study of flood risk is based around the town of Linton. The most recent severe 

flooding in Linton took place in October 2001, after 70.2 mm of rain fell in 17 hours on 

top of already saturated ground. River flow is estimated to have exceeded 20 m3s-1, 

compared to a typical base flow of 0.2 – 0.4 m3s-1. The meteorological conditions leading 

to this flood are examined in Section 3.4.4. Data on the associated floodplain inundation 

were collected through a survey of floodplain residents and are given in Section 3.3.  
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Figure 3.1: Granta to Linton Catchment Location Map. Flow gauges on the River Granta are marked.



 

 

 

Figure 3.2: Topographic map of the Catchment of the Granta to Babraham   
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3.1.2 Hydrological History of Linton 

Linton has a long history both of habitation and of flooding. Early remains found in the 

village include a Roman villa on the banks of the river towards Hadstock, further Roman 

remains on the site of the current secondary school, and Saxon burial mounds on Linton 

heath (Seaman-Turner, 1987). These finds date the settlement to pre-700 AD. The 

location of Linton stems from its importance as a crossing-place of the River Granta; the 

roads and tracks of the town radiate out from what is now the main bridge and was 

originally a ford (‘Chilford’). There were also two main tracks parallel to the river, one 

on each bank. It is likely that these tracks marked the boundaries of the normal 

floodplain; they have subsequently become Bartlow Road and Back Road on the North 

side, Long Lane and Cambridge Road on the South (Linton Parish Council, 1982). Linton 

High Street joins the Northern track to the old ford at a diagonal; on the South side the 

connecting track is perpendicular to the river, suggestive of wetter ground on this bank. 

Figure 3.3 illustrates these roads on a historical map of Linton.  

The river has always had an influence on land-use in the town. The relatively steep banks 

seen today suggest that the Granta was deeper and faster flowing in the past, and the river 

has been used for boating and bathing within living memory although flows are seldom 

sufficient to warrant such activities today (Linton Parish Council, 1982). Land close to 

the river is commonly still waterlogged in winter, suggesting that in the past it would 

often have been underwater. Further evidence for this lies in the designation of both the 

floodplain land upstream of Linton and the cricket meadow downstream as ‘common 

land’ of low value. It is possible however that such water meadows were encouraged in 

some places as an early form of irrigation to provide winter and spring feed for sheep. In 

Cambridgeshire evidence for this is seen in leats or channels along valley sides which 

then overflow through fields back to the main stream, and this type of system is known to 

have been introduced by the owner of Babraham manor (Taylor, 1973).  

Floods have been a persistent feature of the Granta and have constrained both building 

and land cultivation. Failure of harvest caused by flooding has been put forward as an 

explanation for the abandonment of former arable land and decline of population in 

Linton in the 1300s (Taylor, 1973). Maps of the town commissioned by the Paris and 

Millicent families of the Linton manors in 1600 show that the lower part of the High 
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Street was not occupied save for an inn at the bridge, probably due to frequent flooding 

(Linton Parish Council, 1982). The same map shows dwellings on both sides of ‘The 

Grip’ – a tributary joining the main channel just upstream of the ford; however a series of 

drainage ditches were used to make this land habitable in times of spate. Population 

growth, together with improved river management, has however pushed housing towards 

the river in more recent times. The population grew from 600 in 1600 AD, to 976 in 1731 

AD, to 2061 in 1851 AD, and stood at 4412 in the 2001 census. Records referring to the 

main bridge in Linton also demonstrate a history of flooding. Frequent references to 

repair of the original wooden foot bridge after storms or floods occurs in the Constable’s 

accounts and money was specifically allocated for this from the Guildhall income from 

1564 (Linton Parish Council, 1982). In 1867 the wooden bridge was replaced by a 

sturdier iron road bridge, which was in turn destroyed by severe flooding in September 

1968. To replace it, the current concrete bridge was erected, having greater width and 

clearance in anticipation of further floods.    

 



 

Cambridge Road 

Long Lane

Back Road

Bartlow Road 

Main Bridge and  
connecting roads. 

River Granta 

 

Figure 3.3: Historic Map of Linton, taken from the 1:10560 County Series. 
 Sheet: Cambridgeshire and the Isle of Ely. Published 1891. 

Map illustrates major routes parallel to River Granta on North and South sides, marking 
the boundaries of the historical floodplain. The connecting roads to the main town bridge 

are also shown. Note the land close to the river marked ‘Liable to Floods’. 

 72



 73

3.2 The Granta Catchment: Physiography and Climatology  

3.2.1 Hydrogeology and Soils 

The geology of the Linton catchment is illustrated in Figure 3.4. Linton lies on the edge 

of the chalk uplands which rise in the South East of the Cambridge Region and are a 

direct continuation of the Chilterns (Hey and Perrin, 1980). At Stapleford, the 

impermeable and easily eroded Chalk Marl of the lower Cam valley gives way to a zone 

of Upper Cretaceous Chalk lying above Totternhoe Stone, forming higher terraces. The 

Chalk is more permeable and more erosion resistant than the Chalk Marl, and forms scarp 

slopes in North and West directions, dip slopes of an angle of 1º to the South and East. 

The mature escarpments now take the form of rounded ridges. The Cam and Granta, in 

draining the Chalk Uplands, are obsequent streams flowing in the opposite direction to 

the Strata (Marr and Shipley, 1904; Staff, 1946), and the Granta at Bartlow is thought to 

have captured a stream which previously flowed South (Staff, 1946). Groundwater flow 

in the region is in a north-westerly direction, mirroring the surface drainage (Muhlherr 

and Hiscock, 1997).  

Several divisions occur within the Chalk, often classified as Lower, Middle and Upper 

Chalk. The Lower Chalk (Cenomanian stage) is well and regularly jointed, and largely 

determines the line of springs following the base of the chalk escarpment, including one 

at Baslow and one on Rivey Hill above Linton. The Middle Chalk layer (Turonian stage) 

has a depth of around 60 m, and includes a lower layer of hard Melbourn Rock, overlain 

with well stratified White Chalk. This is then topped with the Upper Chalk which 

includes bands of semi-crystalline and rubbly chalk known as ‘Chalk Rock’. Above the 

Chalk Rock, the layers are much more soft and earthy and include tabular flints between 

layers. 

Above the chalk there are accumulations of late glacial Boulder Clay, a mixture of coarse 

and fine material containing pebbles and boulders, with the exact constitution determined 

by the rock floor north of the location in question. Flint and chalk fragments are common, 

also occurring are other rock types foreign to the region. The Boulder Clay does not 

occur on steep slopes: accumulations are thickest in valley bottoms and on the flatter 

upland areas. In some places such as Barrington Hill near Linton, Plateau Gravel overlies 
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the Boulder Clay; these gravels consist of the less soluble residue of the Boulder Clay, 

with a much smaller proportion of chalky material. On the valley floors, Boulder Clay is 

overlain by outwash materials of gravels and sands. This occurs at both Bartlow and 

Linton (Seaman-Turner, 1984). 

The soils of the Linton catchment are illustrated in Figure 3.5. The soils of the Granta 

valley consist of Brown Earths and Brown Calcareous Soils along the valley beds, giving 

way to Rendzinas (originating from thin Chalky Drift) on the higher slopes and Surface-

Water Gleys (originating from Chalky Boulder Clay) on the Chalk Uplands (Steers, 

1965). The Surface-Water Gleys have been cracked by wetting and drying cycles, 

producing a blocky structure at the surface, a prismatic structure lower down. In winter, 

swelling of the soil causes partial closure of these cracks and percolation of water is slow. 

Almost all these soils have, however, been heavily modified by the long agricultural 

history of the region, with the valley soils forming Calcareous Loams and the upland 

Gleys kept reasonably well aerated by artificial drainage. 

The soil and geological features of the region produce a characteristic response to rainfall 

patterns through the year; three dominant mechanisms which route rainfall into the river 

channels may be identified. Where rainfall intensity exceeds infiltration capacity, 

overland flow will result. This may be due to soil saturation, or impermeable surfaces for 

example in urban areas. Where infiltration does occur, soil throughflow provides a 

second important transport route. This is particularly likely to occur where soil lies over 

relatively impermeable bedrock such as the Boulder Clay of the Linton catchment. 

Thirdly, groundwater movement through the bedrock contributes to river flow either by 

discharge directly into the channel, or through re-emergence as springs supplied by a 

rising water table. This mechanism plays a major role in the Linton catchment due to the 

permeable and fractured nature of the underlying chalk, with between one third and one 

half of discharge volume thought to result from it (Barrington Local History and 

Conservation Society, 1979). In particular, this behaviour is caused by the constraint of 

groundwater circulation by hard bands such as the Totternhoe Stone and Melbourne 

Rock, while outcrops of fractured Lower Chalk deposits allow the water to return to the 

surface through springs and groundwater seepage zones. Typically, through the 

contribution of groundwater to channel slowflow, spring-fed regimes are expected to 

produce stable hydrological regimes with a narrow range of discharge (Sear et al., 1999; 
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Whiting and Stamm, 1995). However, studies have also shown that the contribution of 

groundwater to the quickflow storm hydrograph may also be high, due to processes such 

as pipeflow in connected fracture systems (Sklash and Farvolden, 1979). In Linton 

therefore, a strong baseflow signal would be expected from the groundwater contribution, 

overlain by flood peaks resulting from a combination of the three processes identified 

above. This response may be seen in the flow series illustrated in Section 3.4.2. 



 

 

 

Figure 3.4: Geological Map of the Linton Catchment 
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Figure 3.5: Soil Map of the Linton Catchment 

Key: 
Symbol Soil Group Parent Material 
1 Rendzina Mainly Chalk 
3 Brown Calcarous Soil Loamy, Chalky Drift over Chalk 
4 Brown Earth and Brown C. Soil Sandy, Chalky Drift over Chalk 
5 Brown Calcarous Soil Chalky Boulder Clay over Chalk 
6 Calcarous Grey Soil Chalky Boulder Clay 
9 Calcarous Grey Soil Alluvium, locally overlying Peat 
10 Brown Earth Loamy, Gravelly or Clayey Drift 
15 Gleyed Brown Earth Sandy, Loamy and Gravelly Drift 
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3.2.2 Catchment Climate 

In common with the rest of East Anglia, Cambridgeshire has a climate described as more 

‘continental’ than other parts of the UK. Figure 3.6 illustrates mean temperature, total 

rainfall and total sunshine by month for the years 1995-2004, in Cambridge. Cool dry 

winds from the East or North-East can often dominate and a typical yearly pattern is of 

frosty springs and sunny autumns (Staff, 1946). Precipitation may vary significantly 

between years (Figure 3.6a) but is typically greater in summer than in winter. However, 

in summer and early autumn the higher temperatures and longer hours of sunshine 

(Figures 3.6b and 3.6c) mean that it is usual for evaporation to exceed rainfall and 

therefore soils to become progressively drier. By autumn it is usual for soil moisture 

capacity to be around 10 cm below saturation (Barrington Local History and 

Conservation Society, 1979). This corresponds with measurements at Fleam Dyke, north 

of Linton, showing very little percolation in summer (Hey and Perrin, 1980). Over a 

complete year only around 33% of a total of 54 cm of precipitation was found to 

percolate. This soil state gives a situation where, typically, heavy summer rainfalls have 

little effect on the water table whereas autumn rainfall produces an immediate sharp rise 

and rainfall in the winter and spring produce a high and extended annual maximum 

(Steers, 1965). The increased downflow during the winter is likely to be indicative of 

fissure flow within the chalk, which occurs when the saturated hydraulic conductivity of 

the chalk matrix (around 3-5 mm/day) is exceeded (Ragab et al., 1997). Considered as a 

dual-porosity aquifer, the chalk has a mean transmissivity of 110 m2d-1 and a specific 

yield of 10-2 (Muhlherr and Hiscock, 1997).  

 



 

(a)

 

 

(b)

  

(c) 

 
Figure 3.6: Cambridge Climate Statistics. Graphs show (a) Total Rainfall, (b) Mean 

Temperature and (c) Total Sunshine by month from 1995 – 2004. 
 Source: http://www.cl.cam.ac.uk/Research/DTG/attarchive/weather/ 
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3.2.3 Vegetation and Land Use 
The Granta catchment would originally have been forested; oak woods grew particularly 

well on the Boulder Clay. The woods would have been interspersed with chalk grasslands 

on the higher areas. Today little of the forest remains, although isolated patches of oak 

together with hazel, ash and hawthorn still occur. The influence of the underlying 

geology is still apparent, however, with trees, hedges and pasture land more plentiful in 

areas of Boulder Clay. The clay also gives rise to abundant surface water in ponds and 

small lakes, with accompanying wetland vegetation. 

The area has long been used for arable farming: the cold springs are less suitable for fruit 

crops and long hours of sunshine in the autumns provide good ripening and harvesting 

conditions. In the 18th century the principle crops were barley and rye; today they include 

wheat, barley, oats, sugar beet and potatoes. The chalk slopes have unsuitable soils for 

large scale livestock farming, however mixed farms have been popular with arable on the 

high ground, stock on the Boulder Clay near the farmstead (Staff, 1946). Although the 

crops grown have remained similar, the layout and management of the land have changed 

over time. In the late 18th and early 19th century enclosure took place in the parishes of 

upland Cambridgeshire, with common fields and pasture being replaced by the familiar 

large, modern, geometrically shaped fields under the ownership of the larger estates. In 

Cambridgeshire as a whole, the landcover currently consists of 72.3% arable land, 14.7% 

grassland (of which 3.5% managed grassland, 5.2% rough grassland and 5.8% calcareous 

grassland), 7.5% urban and suburban areas and 3.6% woodland (Cambridgeshire County 

Council, 2005). In the Granta catchment above Linton, arable land (78.6%) and woodland 

(7.5%) are more dominant; grassland (9.2%) and urban areas (3.1%) occupy a smaller 

percentage, as shown in Figure 3.7. 

Traditionally habitation in the area was relatively scarce, and largely confined to the 

lower valleys. Few farms were situated on the upper slopes as the dominance of 

groundwater over surface water transport resulted in a lack of drinking water supply. In 

modern times however Linton and the surrounding villages have become dormitory 

towns for Cambridge and other population centres, and the area’s population is increasing 

steadily.  



 

 

 

Figure 3.7: Land-Use in the Linton Catchment derived from the Land Cover Map 2000, 
CEH Monks Wood 

Source: http://www.nwl.ac.uk/ih/nrfa/spatialinfo/LandUse/landuse033066.html 
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3.2.4 Water Management 

The flow regime of the Granta is affected by human activity in numerous ways. The high 

percentage of arable land means that farming has an important influence on water 

movement. These influences can be categorised as indirect or direct: examples of the 

former include ploughing which opens macropores encouraging water to infiltrate to 

deeper levels, and seed drilling which results in more compact soils (Robinson et al., 

1997). Direct influences include the imposition of artificial drainage on areas of Boulder 

Clay (Staff, 1946). Field drainage may have the effect of lowering the water table and soil 

water content in fields, hence reducing groundwater recharge; river flows however may 

be more sustained by drainage from the top layer of soil. Increases in soil erosion may be 

another effect of farming, a problem which has intensified since the transition to winter 

wheats in the 1970s and 1980s which leaves bare ground susceptible to autumn storms 

after drilling in October. Damaging ‘muddy floods’ resulting from agricultural runoff 

have made this a contentious issue sometimes resulting in legal proceedings, and 

proposed solutions include subsidies for conversion to grassland as well as engineering 

works to protect property (Boardman, 2003; Boardman et al., 1994). In the longer term, 

erosion may affect both infiltration rates at the surface, and the sediment transfer regime 

of the catchment. 

Intensive farming, in conjunction with a high population, makes requirements for large 

quantities of water for irrigation and domestic supply respectively. However, 

Cambridgeshire is one of the driest parts of the country with average annual rainfall of 

570 mm (Cambridgeshire County Council, 1998), therefore the demand cannot be met 

direct from surface rainwater within the catchment. Instead, groundwater abstraction is 

used with an annual abstraction total of 107 m3 within the county, of which 70% is used 

for public supply, 30% for industry and agriculture (Cambridgeshire County Council, 

1998; Muhlherr and Hiscock, 1997). South Cambridgeshire is supplied almost entirely 

from chalk groundwater; of the 77 million litres drawn daily by Cambridge Water 

Company which supplies the area, 97% is drawn from the chalk strata, 3% from 

greensand and river gravel aquifers (South Cambridgeshire District Council, 2001). 

Abstraction boreholes that affect the Linton branch of the River Granta are sited at 

‘Mark’s Grave’ north of Bartlow, Rivey Hill above Linton, Hildersham and Babraham 
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(Environment Agency, 1998). The abstracted water is also used to maintain a baseflow 

level in the summer of 0.04 m3s-1 in the Granta at Linton, preventing the river from 

drying up as had previously occurred, and was likely to become more frequent as 

abstraction reduced water table levels (Barrington Local History and Conservation 

Society, 1979; Staff, 1946).  

3.2.5 River Management 

As well as human influence on flow paths within the catchment, management of the river 

channel itself plays an important role in controlling discharge patterns. There are many 

different reasons why the channel may be modified: to contain the channel or re-route it 

to somewhere more convenient, to protect or allow the building of near-channel 

structures, to increase conveyance and provide flood protection. Ancient channel 

modifications still play an important role, such as the mill pond in Linton linked to the 

mill construction on what was Linton fen in 1220. Today projects are more likely to have 

the aim of reversing former changes and returning the channel to its natural state, such as 

the creation of gravel point bars and riffles in the Granta at Hildersham which are 

designed to encourage the spawning of wild trout and the growth of aquatic and riparian 

vegetation (Weightman, 2004; Wood-Gee, 2001). 

Where the Granta flows through Linton, more traditional modifications are in evidence. 

The river has been straightened and its banks reinforced. Weirs have been installed to 

control the bed gradient and add aeration at low flows. Structures in the channel control 

its width and depth at certain points such as foot and road bridges, the ford and the mill 

sluice gates. Vegetation and sediment in the channel are also controlled during routine 

river maintenance carried out by the Environment Agency in the case of the main river 

from Linton downstream, and local landowners upstream of this. Weed clearance takes 

place every year; dredging is carried out at intervals of between 5 and 12 years depending 

on need, to remove silt which has accumulated in the channel. Dredging of the stream is 

required in order to maintain flow of water and conveyance capacity and ensure the 

correct functioning of agricultural drainage systems, and is used especially on steeper 

sections of topography within the catchment (Dunbar, 2004).    

These types of intervention may have far-reaching consequences for the flow regime. The 

form of the channel is generally simplified, with dredging also restricting the 
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development of channel and bank features (Dunbar, 2004). This is likely to affect rates of 

process and the extent to which adjustment and dynamism within the channel occur in 

response to flood peaks (Sear et al., 1997). Hydraulic connectivity with the floodplain 

will also be reduced, with loss of the associated benefits such as flood peak attenuation, 

sediment storage and nutrient recycling.  
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3.3 Data Collection 

Data collection from the catchment is required for several aspects of the end-to-end 

modelling process. A long-term rainfall series is required in order to characterise the 

catchment precipitation regime and build a stochastic rainfall model which can simulate 

long periods of data. Rainfall, discharge and temperature data are required to calibrate 

and evaluate a simple rainfall-runoff model to simulate the runoff production and routing 

processes. Rainfall and discharge data representing subcatchments are also intended to 

help formulate and guide the rainfall-runoff model structure by improving understanding 

of spatial variability within different catchment zones. Finally data on inundation extent 

during the major October 2001 flood event is used to calibrate the floodplain hydraulic 

model. 

3.3.1 Environment Agency Data: Rainfall and Flow 

The Environment Agency is able to supply both rainfall and runoff data for the 

catchment, as detailed below. 

(i) Rainfall  

Data is available from the following sources close to Linton: 

Location Grid Ref. Distance from  
Catchment Centroid 

Start Date End Date Resolution 

Abington Piggot 306445 26.6 km 1/1/1909 31/7/2002 Daily 
Cambridge QEW 478558 13.3 km 1/1/1898 31/7/2002 Daily 
Little Abington 534495 4.9 km 1/8/1975 31/7/2002 Daily 
Linton Chilford 568489 2.6 km 1/1/1976 30/11/2001 Daily 
Quy Hall 516612 15.9 km 1/1/1908 31/7/2002 Daily 
Bassingbourn 330451 29.3 km 1/8/1999 18/8/2002 15 minute 
Bourn 334579 26.4 km 21/10/1991 5/12/2001 15 minute 
Burrough Green 641555 11.4 km 1/8/1995 1/1/2002 15 minute 
Elmdon 470403 12.9 km 1/8/1991 1/1/2005 15 minute 
Fleam Dyke 540549 11.5 km 1/4/1995 18/8/2002 15 minute 

Table 3.1: Rainfall gauges close to the Linton catchment, with their corresponding series 
length and temporal resolution 
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The location of the gauges is shown in Figure 3.8. The data obtained from the 

Environment Agency and Meteorological Office raingauges is in either 15 min or daily 

resolution. Although the closest gauge to the catchment site was of daily resolution and 

daily data is available for much longer time periods, it was decided that this data did not 

provide sufficient detail for storm identification, due to the transient nature of much of 

the rainfall in the Linton area. The 15 min series is therefore be used for profile analysis 

and modelling. There are three gauges providing 15 min data close to Linton: Burrough 

Green, Elmdon and Fleam Dyke. A traditional approach would be to construct a synthetic 

record based on a spatially weighted interpolation of the gauged data; however in this 

application the use of a single record was felt to be important, to properly characterise 

storm profiles and other characteristics which would be blurred if average values were 

taken from a moving storm. The record from Elmdon was therefore used as it provided 

13.5 years of data as oppose to the shorter 7 year records from the alternative sites, with 

relatively few gaps in the data series. 
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Figure 3.8: Raingauge Locations in the Linton Area 
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(ii) River Flow 

The following table shows river flows measured close to Linton. This study is primarily 

concerned with those stations on the River Granta. 

Location River Grid Ref. Catchment 
Area (km2) 

Start Date End Date Resolution 

Linton Granta TL 570464 60.0 28/8/1985 1/1/2005 15 min 
    2/1/1982 1/8/2002 Daily 
Babraham Granta TL 510504 98.7 5/1/1979 21/8/2002 15min 

    2/12/2000 1/8/2002 Daily 

Stapleford Granta TL 471515 114.0 5/9/1985 21/8/2002 15min 

    1/1/1985 1/8/2002 Daily 

Chesterford Cam TL 505426 141.0 19/1/1988 21/8/2002 15min 

    1/1/1988 1/8/2002 Daily 

Dernford Cam TL 466506 194.0 2/10/1979 21/8/2002 15min 

    1/1/1979 1/8/2002 Daily 

Table 3.2: Flow gauges on the Rivers Cam and Granta, with their corresponding series 
length and temporal resolution 

Information on each of the weirs is available through the National River Flow Archive 

(2002).  

Location Weir Type Notable Details 
Linton Compound 

Crump Weir 
Structure drowns when water level exceeds 0.46m. 
River is pump supported to maintain flow of 0.03 
m3s-1. 
Runoff influenced by abstraction and effluent 
returns. 

Babraham Triangular profile 
Flat V Weir 

Significant groundwater abstraction. 
Runoff influenced by abstraction and effluent 
returns. 

Stapleford Compound Weir 
with Crump notch 

Flow readings can be unreliable. 
Runoff influenced by abstraction and effluent 
returns. 

Table 3.3: Details of Gauging Stations on the River Granta 
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3.3.2 Temperature 

The rainfall-runoff model, specifically the nonlinear rainfall to effective rainfall 

transform, requires an estimate for ambient temperature at the time of each sample 

(Section 5.2). For the period 1/1/1995 – 16/8/2005, temperature data is available at 30 

minute intervals (AT&T Laboratories, 2005) and a simple interpolation is used to give 15 

minute data. However, for the period 1/1/1991 – 1/1/1995, rainfall and flow data are 

available at 15 min intervals but temperature data is available only as daily maximum and 

minimum (BADC, 2005). An algorithm must therefore be used to approximate the daily 

temperature curve at 15 minute intervals from these data. Downscaling methodologies 

that have been used in the past range from the simple, e.g. approximation by single sine 

curve (Allen, 1976; Gelegenis, 1999) through the use of a combination of Fourier 

harmonics with varying trend (Axelsson, 1998; Vinnikov et al., 2004) to the highly 

complex, such as stochastic weather generators based on GCM output (e.g. Dibike and 

Coulibaly, 2005).  

In this case, the information on the local temperature regime that could be extracted from 

the 30 minute temperature data was felt to provide the optimal basis for disaggregation. 

Following Feidas et al. (2002) and Peters and Evett (2004), local data from a reference 

site were used to perform disaggregation based on a single daily measurement. In their 

study, the reference curve was found as the average of two recorded year-long curves; 

however the same technique is not suitable for use when taking an average over a large 

number of years of reference data. There would be an overestimation of temperature 

variability in the catchment when the average shape of the data was rescaled to reach the 

maximum and minimum points. Instead, the daily temperature pattern was considered as 

3 distinct periods: rise in temperatures from dawn to peak temperature, cooling from peak 

temperature to sunset, cooling at a separate rate during night hours. The average shape for 

each period was recorded, and the average time from sunrise to maximum temperature, 

using data from the period 1/1/1995 – 16/8/2005, enabling an estimated temperature 

curve to be reconstructed for any given day given knowledge of the maximum and 

minimum temperature, together with the sunrise and sunset times. This method was then 

used to reconstruct the 15 minute temperature series for all dates and times when the 30 
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minute series was not available. A typical example of the results is shown in Figure 3.9, 

and the complete reconstructed time series in Figure 3.10. 

Fig 3.9: Recreation of Temperature Curve. ‘x’ marks the end of the recorded 

temperatures and start of the recreated series.  
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Figure 3.10: Complete Reconstructed Temperature Series for the Years 1991-1994 
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3.3.3 Tributary Flow Gauging 

3.3.3.1 Gauge Details and Location 

Environment Agency and Meteorological Office datasets provide historical data for the 

catchment, but do not provide the local data necessary for detailed modelling of the 

hydrological regime around Linton. The Environment Agency has responsibility only for 

the main river downstream of Linton so does not hold information on the upper reaches 

of the catchment. By a more specific study of the catchment upstream of Linton it was 

felt that a deeper understanding of the local hydrology would be gained. To achieve this, 

runoff was monitored on each of the individual subcatchments contributing to the Granta 

at Linton. This took the form of the use of two velocity/depth gauges placed in the two 

main tributaries of the Granta which meet at Bartlow (see Table 4 and Figures 3.1, 3.2). 

There is a small third tributary, however the flows in this are very low due to 

groundwater abstraction and it was felt that the upper catchment could be adequately 

represented by knowledge of the two main input flows and the total flow recorded at 

Linton. The flow gauge to be used is a Starflow Ultrasonic Doppler which is capable of 

measuring speeds down to 0.021 ms-1, suitable for channels with low flows such as those 

at Bartlow. The gauge measures the average velocity in a vertical section of water above 

and in front of the gauge. For use in calculating discharge this measurement must be 

transformed into average velocity over the cross-section: methods for doing this are 

described in Section 3.3.3.4. The exact locations of the two gauges are given below, and 

are illustrated in Section 3.3.3.3. 

Location (Grid Ref) Details 
TL 583 449 Bourn tributary flowing through tunnel under disused railway. 

Regular channel profile, gravel bed. 
TL 484 451 Camps tributary flows through bridge under Bartlow-Ashdon road. 

Regular channel profile, mud bed. 

Table 3.4: Details of Flow Gauge Locations 

Both the tributaries rise in the high ground south-east of Linton, the Bourn Tributary 

draining northwards, and the Camps Tributary draining westwards. In order to make a 

further comparison of the two tributary catchments, statistics for each were obtained 

using the database included with the Flood Estimation Handbook. Pertinent attributes are 

given in Table 3.5. 
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Statistic Bourn Tributary Camps Tributary 
Area (km2) 22.25 14.83
Mean Altitude (m) 93 95
Mean Aspect (deg from N) 2 284
Mean Slope (m/km) 37.2 37.3
Longest Drainage Path (km) 9.38 7.98
Mean Distance to Outlet (km) 5.19 4.38
Urban Land Cover 1990 (%) 0.008 0.005

Table 3.5: Tributary Catchment Statistics 

The statistics show that the two tributary catchments have very similar topographical 

character. The Camps Tributary drains approximately two-thirds the area of the Bourn 

Tributary and has a correspondingly shorter ‘longest drainage path’ and ‘mean distance to 

catchment outlet’. However, the altitude and slopes of the catchments are very similar 

and both are predominantly rural. One attribute of the catchments which is not easy to 

characterise is the extent to which each is influenced by groundwater. This could be in 

terms of sink points where surface water infiltrates to aquifers, or source points such as 

springs. This feature may however have significant effects on the hydrological regime of 

the two catchments, and is considered further in the review of recorded catchment 

hydrometry (Section 3.4). 

3.3.3.2 Discharge Calculation: Method Choice 

Two possibilities were considered in order to calculate discharge from the velocity / 

depth measurements. 

1. Stage-Discharge Relation 

This method assumes that there is a unique relation between depth and discharge, i.e. that 

the channel shape will remain constant and that the depth of the river also specifies its 

average velocity. This assumption is likely to be valid where the riverbed is very stable; 

the two gauging locations chosen have reasonably stable profiles; however the 

relationship could be compromised by movement of sediment changing the channel 

slope. This methodology is also susceptible to hysteretic characteristics in the stage-

discharge relation resulting from backwater effects. The validity of the method can be 

partially tested by plotting velocity-depth relationships for the data to check for a single 

relationship. It uses only the depth time-series recorded by the Starflow, which has the 
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disadvantage that not all the data available is used; however this could be seen as an 

advantage given that the velocity measurement of the Starflow was more often subject to 

error than the depth measurement. 

2. Velocity-Area Method 

This method would use the both the depth and velocity time series recorded. A survey of 

the river would be carried out to relate depth to cross-sectional area. The velocity 

recorded by the Starflow would then be transformed into mean velocity for the cross-

section. This would be calculated using analytical calculations of velocity profile within 

the channel area. Cross-sectional area would then be multiplied by mean velocity to find 

discharge. The removal of the assumption that the channel has a stable depth:velocity 

relationship makes this a more robust method; however it restricts the length of time 

series that are available as both depth and velocity data must be present.  

In order to make a decision, depth-velocity curves were plotted for both sites, using the 

hydrographs for which depth and velocity had been successfully measured by the 

Starflow (Figure 3.11). Study of the depth-velocity curves show that for a given depth, 

velocity may vary considerably. The Bourn tributary has the more stable relationship; 

however use of an averaged depth-velocity curve could typically lead to errors in velocity 

of up to 30%. The Camps tributary has a less stable relationship and errors could reach 

40%. In part this is due to the hysteresis visible in the velocity-depth relationship (e.g. 

hydrograph 3 of Figure 3.11B). In both cases it was decided that the relationship was not 

sufficiently well-defined for use of the stage-discharge method and that velocity-area 

method should be used in preference. 
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Figure 3.11: Depth-Velocity Curves for individual hydrographs recorded at the (A) 
Bourn tributary and (B) Camps tributary meeting at Bartlow 
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The two channels were surveyed at the locations of the flow meters, and the results are 

shown in Figure 3.14. The survey was carried out using a telescopic level mounted on a 

tripod on the riverbank to read the depth of the riverbed below the (arbitrary) survey point 

using a graduated pole. A Matlab routine was written to convert the depth of water 

recorded by the Starflow into a cross-sectional area for the river, using linear 

interpolation between the survey points as shown in the profiles. The relationship is also 

shown graphically in Figure 3.14. 
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In order to calculate the discharge of each channel from measurements of the velocity and 

depth, the cross-sectional profile of the channel must be known. The gauges were both 

deliberately placed in locations where the channel was constrained against overbank flow 

and of a regular shape. In the case of the River Bourn this was inside a tunnel under a 

disused railway (Figure 3.12), for the Camps tributary it was at one side of a bridge 

structure (Figure 3.13). By this choice of location, the typical problems of flows outside 

of the surveyed channel are avoided in all but the most severe floods: during the gauging 

period the river stayed in-bank throughout. 

3.3.3.3 Discharge Calculation: Channel Survey 

 
  Figure 3.12: Location of Flow Meter on 

Bourn Tributary 

 
Figure 3.13: Location of Flow Meter on 

Camps Tributary 



 97 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2

Water Depth (m)

Cr
os

s-
Se

ct
io

na
l A

re
a 

(m
^2

)

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2

Water Depth (m)
Cr

os
s-

Se
ct

io
na

l A
re

a 
(m

^2
)

Figure 3.14: Channel Cross Sectional Profiles for (A) Bourn Brook and (C) Camps Tributary.  

Also depth: cross-sectional area relationships for (B) Bourn Brook and (D) Camps Tributary. 
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3.3.3.4 Discharge Calculation: Mean Velocity Calculation 

In order to calculate discharge, the mean velocity over the channel cross-section must be 

known. The Starflow records only the mean velocity over a vertical column so a 

conversion must be found. One possible way to do this is through manual calibration 

gauging, where a series of velocity measurements are made across the cross-section in 

order to calculate the total discharge as a sum of discharges between bounding verticals. 

This method is labour-intensive and relies on the ability to make such measurements 

during periods of high flow as the velocity : mean velocity relationship may change with 

depth. It was not found possible to use this method for the Linton tributaries as during the 

season that the measurements were scheduled, low groundwater levels led to lack of any 

high flows during fieldwork visits. 

Instead, the theory of velocity profiles in open-channel flow may be used to produce an 

analytical relationship between mean vertical velocity and mean cross-sectional velocity. 

The theory relies on the Prandtl – von Karman universal velocity distribution law or ‘Law 

of the Wall’ which states that the velocity distribution in turbulent flow is a logarithmic 

function of the distance from a solid surface. The law is used by Chow (1959) to perform 

an integration of resulting velocities within a natural channel of arbitrary shape and hence 

to derive the mean velocity over the channel. In the case of the two study channels, the 

cross-sections are such as to allow the shape to be approximated as a rectangle, greatly 

simplifying the calculations. Using this approximation the mean velocity is found as: 
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where vf is the shear velocity, h is the depth of water, w is the channel width, and y0 is a 

constant which depends on the surface roughness height of the channel bed by the 

equation: 

kmy ⋅=0  (3.2) 

where k is the typical roughness height and m is a constant which was found to be equal 

to approximately 1/30 by experimentation with flow in rough pipes (Nikuradse, 1933). 

Using similar methodology, an integration is performed to find the theoretical mean 

velocity in a vertical column, in terms of the same quantities (all variables as before). 
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These two results may then be used to find the theoretical relationship between the mean 

vertical velocity and the mean channel velocity: 
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A Matlab routine was written to convert mean vertical velocity recorded by the Starflow 

into the mean channel velocity, using this equation. The value of k, the roughness height, 

was estimated as 4 cm, typical of the gravel, brickwork irregularities and small plants 

found on the channel bed and sides at the flow meter locations. Figure 3.15 shows an 

example hydrograph reconstructed using a range of values of k, demonstrating that the 

estimate is relatively insensitive to this parameter. 
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Figure 3.15: Variation of reconstructed discharge according to roughness height 
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3.3.4 Inundation Data: Residents Survey 

Data on the floodplain inundation extent during the 2001 flood is required to evaluate the 

model performance in terms of both channel and floodplain flow behaviour. Traditionally 

extent has been captured using remote sensing: reviews of methodology are available in 

Bates (2004) and earlier Bates et al. (1997). Options include photogrammetry (Lane et 

al., 2003), analysis based on a comparison of trash lines with topographic LIDAR data 

(Lane et al., 2003) and, most often used, satellite SAR data (Bates and De Roo, 2000; 

Oberstadler et al., 1997) which can be used in conjunction with image processing 

methods to identify flood outlines (e.g. Horritt et al., 2001). Satellite data are best suited 

to large catchments with slow response times, as flood outlines are typically recorded to a 

pixel size of 30 – 50 m, and extended flood peaks give a higher probability of image 

capture. In order to capture flood depths close to the maximum in Linton in 2001, a 

satellite image would have needed to be captured within approximately a 4 hour window, 

and no such image is available. Recent improvement in resolution has come from 

airborne SAR (Horritt et al., 2003) giving pixel sizes of 0.75 – 1.50 m, however this 

methodology is expensive and data must be acquired on an event-by-event basis.  

Instead, the option that was chosen was a survey of affected residents after the event. This 

type of approach provides an accessible option for flood assessment in small flashy 

catchments, where the flood peak is not of sufficient duration for other methods to be 

deployed. It is also a low-cost option that has the potential to be used in a wide variety of 

applications where there may not be emergency funds available for an immediate 

response to a flood event. These types of considerations are very important if a flood 

modelling technique is to be useful in the small, agricultural, lowland catchments that 

have increasingly been perceived to have been affected by flooding in recent years. The 

method has been successfully used in the past for model validation (Connell et al., 1998; 

Connell et al., 2001).  

To implement the survey, questionnaires were sent to each flooded building. This was co-

ordinated by members of the Parish Council who were keen to provide accurate data for 

the current study and who were best able to communicate the requirements to the 

residents due to their respect within the community. It was also found that homeowners 

were enthusiastic to provide complete information on their experience of the flood, in the 
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hope that it might be used to improve the response to future events. Information was 

collected on several aspects of the flood inundation. These included maximum flood 

depth, timing of maximum water depth and rate of water ingress. The complete data set 

acquired is presented in Appendix B; Figure 3.16 below shows a summary of the 

maximum depths recorded at each house for which a survey was returned. 

The map of flood depths serves to demonstrate some of the advantages and disadvantages 

of the method. The collection method is open to bias because it relies on memories and 

perceptions of the event, and therefore the expected precision of the data is low. It is also 

possible that worries of insurance blacklisting or concerns to emphasise the major effects 

of the flood led depths to be under or over-estimated accordingly. The record provides 

point data only: it is not known whether houses suffered varying depths of flood, and data 

is not equally spaced in the flooded area. Also, it is not possible to guarantee that houses 

where no data was recorded were not flooded, as some houses were empty at the time of 

flooding and neighbours were not able to provide estimates of flood depth. Despite these 

disadvantages, the approach can capture a much greater depth of information than the 

simple flood extent recorded when SAR is used, and this extra data can be used to 

compensate for other omissions. For example, although the data set does not provide 

definite ‘negatives’ for houses that were not flooded to prevent overestimation of flood 

envelope, the depths recorded at each house can instead be used to avoid overflooding in 

the model. Time to peak and timing of flood peak can similarly be used to test the speed 

and shape of the modelled wetting front in a way that is not possible with instantaneous 

remote-sensed data. Finally, an attempt was made to validate the accuracy of individual 

records by comparison with neighbouring houses, and any obvious outliers that could not 

be caused by underlying terrain were removed. 
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Fig 3.16: Maximum flood depths recorded on 20/21 October 2001, mapped from survey of residents. 
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3.4 Hydrological Review of Field Site 

As discussed in Section 2.2.1, knowledge of the hydrological response characteristics of 

the catchment should both inform and be informed by modelling methods and results. In 

part this catchment knowledge derives from field observations and study of the physical 

form of the catchment, but it is also gained from a study of past response both long-term 

and to individual rainfall events. In order to take advantage of this information, an 

investigation was made of catchment behaviour in terms of the data series available for 

the River Granta. The series used were those to be used in testing the model: the 15 min 

rainfall series from Elmdon and the discharge series for Linton.  

3.4.1 Hydrometeorology 

The 15 min rainfall series for Elmdon is shown in Figure 3.17; the gaps present in 1995 

and 1999 are due to missing data caused by gauge malfunction. In order to interpret the 

data in terms of catchment input, the rainfall was summed by month. The totals were 

recorded for each year, and the minimum, maximum and mean values are shown in 

Figure 3.18. This demonstrates the characteristic yearly cycle: the rainfall is spread fairly 

evenly throughout the year with the exception of September and October which are 

particularly wet. A small peak is also seen in April. The rainfall bounds show that the 

precipitation can be highly variable between years, with low rainfall totals seen even in 

winter months. This idea is explored further in Figure 3.19, which shows the seasonal 

rainfall totals for each year. These provide a visualisation of likely groundwater 

fluctuations, the winter total being particularly important but also influenced by the 

summer total controlling the groundwater level at the end of the summer recession. 

The monthly totals of rainfall characterise groundwater levels in the catchment; however, 

as discussed in Section 3.2, flood peaks are generally caused by short duration, high 

intensity rainfall events when overland flow, soil throughflow and groundwater discharge 

all contribute to channel flow. The susceptibility of the catchment to this type of event 

can be visualised by plotting the maximum 24-hour rainfall occurring each month; Figure 

3.20 shows the range and mean statistics. The pattern is similar to the monthly total 

rainfall, with the months September and October showing high 24-hour totals as well as 

high monthly totals. As recent experience suggests that destructive floods are typically 
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caused by high-volume, high intensity rainstorms on top of high baseflow levels, these 

two months are a particularly high risk period. The variation in the seasonal 24-hour 

rainfall maxima over the study period is shown in Figure 3.21. This, together with Figure 

3.19 (seasonal rainfall totals), clearly demonstrates the cause of the 2001 floods as the 

unusually high 24-hour total occurred after an unusually wet summer season and during a 

winter of medium-high rainfall total.   

The rainfall patterns should also be used to guide the choice and structure of rainfall 

simulation model described in Chapter 4. The difference in total monthly rainfall between 

consecutive months is relatively small, and even less when the 24-hour maximum is 

considered. This uniformity signals that it is unlikely to be necessary to consider each 

month separately in any rainfall simulation; instead it may be sufficient to simply use a 

wet season including the autumn months, and a dry season.  

 



 
 

 

 

Figure 3.17: 15 min rainfall data from Elmdon 
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Fig 3.18: Mean and Range of Monthly Rainfall at Elmdon: 1992-2001 
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Fig 3.19: Seasonal Rainfall Totals at Elmdon 
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Summer: March - August 
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Fig 3.20: Maximum 24hr Rainfall: Mean Value and Bounds by Month 
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Fig 3.21: Maximum 24hr Rainfall by Season and Year 

Winter: September – February 
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Summer: March - August 
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3.4.2 StreamFlow Characteristics 

The flow data from Linton is shown in Figure 3.22 and demonstrates the strong baseflow 

influence which would be expected from a chalk catchment with high groundwater 

dependence. Referring back to Figure 3.19 showing the seasonal rainfall totals, the 

winters of 1996/1997 and 1997/1998 which have low rainfall totals are seen to coincide 

with low baseflow years, as would be expected. Visual examination suggests a strong link 

between baseflow level and local flood peaks, suggesting that accurate representation of 

baseflow will be an important component in any flood simulation or forecasting system 

for the catchment. One cause of this is likely to be the baseflow level acting as a proxy 

variable to represent catchment wetness conditions. 

When using measured flow data to make inferences about flood characteristics of the 

Granta, the limitations of the gauging station must be taken into account. The flow gauge 

on the Granta at Linton is primarily designed for the measurement of low flows, and is 

drowned when upstream depth relative to the gauge exceeds 0.46 m (National River Flow 

Archive, 2002). This is demonstrated by considering the flood of 21st October 2001 

which provided the inspiration for this project, and comparing it to the less severe flood 

of 28 November 2000. The 2001 flood caused extensive damage to homes and businesses 

in the village whereas the 2000 flood caused no damage to property. The flow record 

(Figure 3.22) shows these floods as having similar maximum flow, however local record 

documents that the river level was raised by 9 ft during the 2001 flood in comparison to 

4.5 ft during the 2000 flood (Linton News, 2000;2001). A report by Halcrow (2004) 

records evidence from Environment Agency staff that during the 2001 flood, the weir 

was drowned out and the float to measure level also jammed. 

To study broad patterns of baseflow levels in the catchment, the total flows are plotted by 

month in Figure 3.23. These are also summed into seasonal totals and plotted by year in 

Figure 3.24. In contrast to monthly rainfall totals which showed a definite peak in 

September and October, monthly flow totals show a smooth variation through the year, 

with the September/October rainfall maximum translating into a flow maximum in 

January. This shows the lag time associated with the filling of groundwater stores and 

demonstrates again the importance of antecedent conditions and hence long-term rainfall 

averages in conditioning catchment behaviour. To illustrate this more clearly, Figures 
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3.27 and 3.28 show water balance characteristics by month in the catchment, in terms of 

runoff ratio and catchment losses respectively. The runoff ratio is low through the 

summer as high evapotranspiration means that little water infiltrates to the water table. In 

September and October, runoff ratio remains low despite lower temperatures and 

increased rainfall, as rainwater recharges the soil and groundwater stores. This is 

demonstrated by the peak in catchment losses during these months. The peak runoff ratio 

comes in January suggesting that during this month the catchment is at its wettest and 

groundwater stores are at their peak. Even in January, however, the mean monthly flow 

total does not exceed one third of the mean monthly rainfall total. Water balance figures 

are also shown on a year-by-year basis (Figure 3.29), showing that catchment losses vary 

broadly in line with rainfall totals. Runoff ratio does not follow the same pattern, and may 

be more closely linked to temperature, as shown by the low ratio in the hot, dry year of 

1997. 

The range of monthly totals and maxima is also shown on the figures. The minimum 

values must be used with some caution, as low totals can reflect missing data. It is clear, 

however, that range varies widely across the year, with winter flow values much more 

variable than their summer counterparts. For rainfall totals the pattern was less 

pronounced, although it is evident that months with higher mean rainfall also tend to have 

a greater range. When creating rainfall and flow simulation it may be necessary to model 

months with high range in greater detail, to capture the full range of extreme behaviour. 

Figures 3.25 and 3.26 above are plotted to show the instantaneous flow maxima, both by 

month and by year. These values are dependant not only on baseflow levels but also on 

surface runoff caused by heavy rainstorms. Although the flow maxima bounds are 

constrained by the malfunctioning of the gauge above around 5.5 m3s-1, it is clear that it is 

possible for flows in summer to attain high levels, driven by the summer thunderstorms 

that occur frequently in Cambridgeshire. In general however, the peak flows in the 

summer months of March – September are lower than in the winter months October – 

April. In the case of both summer and winter, high peaks do not occur in low-

groundwater years, demonstrated by Figure 3.26 in the years 1990, 1996 and 1997.   



 
 

 

 

 
Figure 3.22: 15 min Flow data from Linton 
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Fig 3.23: Mean and Range of Total Monthly Flow at Linton: 1986-
2001 
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Fig 3.24: Seasonal Flow Totals at Linton 

Winter: September – February 
Summer: March - August 
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Fig 3.25: Mean and Range of  Monthly Instantaneous Flow 

Maxima at Linton: 1986-2001 
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Fig 3.26: Seasonal Instantaneous Flow Maxima at Linton 
Winter: September – February 

Summer: March - August 
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Fig 3.27: Mean and Range of  Monthly Runoff Ratio at Linton: 1992-
2001 

J F M A M J J A S O N D
0

20

40

60

80

100

120

140

Month
C

at
ch

m
en

t L
os

se
s 

(m
m

)

Catchment Losses Mean  
 
Catchment Losses Bounds

 
Fig 3.28: Mean and Range of  Monthly Catchment Losses at Linton: 

1992-2001 
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Fig 3.29: Runoff Ratio and Catchment Losses by Year at Linton: 1992-2001 

 



 115

3.4.2.1 Tributary Flow Analysis 

Section 3.3.3 explained the gauging and analysis methods used to produce discharge 

series for the tributaries of the Granta at Bartlow. Here the series are presented in order to 

assess the contribution of each subcatchment to the flow at Linton. The length of flow 

series available for analysis was limited by the low flow conditions seen over the 2 year 

period of fieldwork. This was exacerbated by the poor performance of the Starflow 

Velocity Meter at low flow depths. In shallow water the recording typically featured high 

levels of noise, despite being averaged over each 15 minute period. Due to these 

problems, it was not possible to use continuous velocity measurements, and instead 

individual hydrographs were extracted from the complete series. For each hydrograph the 

vertical velocity and depth series are used to calculate the mean cross-sectional velocity 

and cross-sectional area using the Matlab routines described in Section 3.3.3. These are 

then combined to give a discharge series; the results are plotted in Figure 3.30. The plots 

show the discharge for each tributary separately, for the sum of the tributary flows, and 

the discharge from the Environment Agency gauge downstream at Linton for 

comparison. The relative areas of the catchment are shown in Table 3.6. 

Catchment Area (km2) 

Bourn Tributary 22.3 

Camps Tributary 14.8 

Linton 61.6 

Table 3.6: Relative Catchment Areas 

The two tributaries typically have very similar discharges, especially during flow events, 

despite the larger catchment area of the Bourn tributary. However the elongated recession 

period of the Bourn tributary suggests that this subcatchment has a greater storage 

capacity. The timings of the flood peaks in the two catchments are also similar, although 

this can vary by storm. The lower peak flow : area ratio of the Bourn and the more 

sustained recession suggests that groundwater interactions are more significant in this 

tributary catchment. 
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The combined discharge of the two tributary catchments is also compared to the 

discharge recorded at Linton. Again this relationship shows variability between storms. In 

hydrographs 1 – 3 of Figure 3.30 it is observed that during the wetting-up and recession 

periods, there is little additional flow added between the confluence of the tributaries and 

the Linton gauge, despite the additional 24.5 km2 of catchment area; however during the 

flow peak there is significant flow added in this reach. This may provide some evidence 

for the observation that there is a third small tributary which is generally dry due to 

abstraction but shows ephemeral flow during storms. It may also reflect surface runoff 

flowing laterally into the main channel. In hydrographs 4 and 5 of Figure 3.30, the 

recession flows at the confluence are markedly lower than at Linton; this typically 

coincides with low flows in the Camps tributary, however the cause for this change in 

behaviour is not clear. 
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Figure 3.30: Comparison of discharges in the Bourn and Camps tributaries, and at 
Linton, for 5 hydrographs during the gauging period 
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3.4.3 Trends in Rainfall and Flow 

As well as patterns across each year, a short investigation was made into the trends in 

rainfall and flow during the study period, and the correlations between them. 

3.4.3.1 Annual Totals 
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Figure 3.31: Annual total Rainfall and Flow 

Comparison of annual totals of rainfall and flow (Figure 3.31) shows that from 1992 to 

2001, the average percentage of rainfall that leaves the catchment as river flow is 14.0%. 

The high percentage loss is due to a number of reasons including groundwater 

abstraction, water flow out of the catchment through bedrock and soil, and evaporation. 

The record is not sufficiently long to detect any linear trend in the annual total for rainfall 

or flow; however over this short timescale there appears to be a cycle of length around 6 

years occurring in the flow data. Although the cycle here cannot be attributed to a 

specific cause, cycles of length 4-8 years are often found to be linked to the North 

Atlantic Oscillation and associated weather patterns. 

3.4.3.2 Annual Maxima 
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Figure 3.32: Annual maxima for 24 hour rainfall depth 
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Figure 3.33: Annual flow maxima 
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The pattern in annual flow maxima shown in Figure 3.33 mirrors closely that shown in 

the annual flow total (Figure 3.31). This provides further evidence for the suggestion in 

Section 3.4.1 that catchment wetness conditions play a major role in controlling flood 

flows. For example, the effect of low winter rainfalls of 1996/1997 can be seen 

particularly clearly. For the same reasons, the fact that the maximum 24-hour rainfall 

total (Figure 3.32) does not seem to correlate with the flow maximum suggests that 

intense short term rainfall can only be a contributing factor to high flows, not the sole 

cause. 

3.4.3.3 Events over Threshold 
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Figure 3.34: Events per year over fixed thresholds: Flow: 1.5 m3s-1, Rainfall: 4 mm/day 

The ‘events over threshold’ statistic shows the frequency of medium-high rainfall and 

flow events. Flow events are defined as independent, and hence contribute to the total, 

where they are separated by a 24 hour period for which the flow is under the threshold. 

The rainfall data shows simply the number of calendar days for which rainfall is greater 

than 4 mm. This does not guarantee independence, however as only 4% of rainstorms last 

for 25 hours or longer then no more than two days of high rainfall should be recorded for 

the same storm in the majority of cases. It should also be noted that some of the totals are 

artificially low due to missing data: this applies to 1991/1992 for flow data and 1999 for 

rainfall data. 

Excluding the 1999 data, the rainfall and flow sequences show a correlation coefficient of 

0.48 suggesting a weak positive correlation, confirming that seen by eye. Reasons for the 

lack of a stronger correlation include the dependence of flow on antecedent conditions 

and duration of rainfall event. Although the years 2001 and 2002 show higher than 

average number of rainfall and flow events, there is no evidence from this plot of a 

sustained linear trend in event frequency. 
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3.4.4 Meteorology of the October 2001 storm 

The flooding of Linton in October 2001 was caused by a slow moving front over the east 

of the UK which brought prolonged heavy rainfall (Met Office, 2006). 70.2 mm of rain 

fell at Linton; other parts of the county had even higher totals, such as Cambridge which 

recorded 90.4 mm, the highest total in a 24 hour period since records began in 1900. 

Figure 3.35 shows the synoptic chart for 12:00, 20th October 2001, Figure 3.36 the 

rainfall radar images for 00:00 21st October 2001 – 00:00 22nd October 2001 and Figure 

3.37 the resulting rainfall totals in the period 09:00 20th October – 09:00 22nd October. 

The high rainfall totals, shown in Figure 3.37 to be centred over the Cambridgeshire 

region, demonstrate the short-term cause of the flood event. However, the unusually wet 

summer and early autumn preceding this event were instrumental in providing the long-

term cause, as discussed in Section 3.4.1. 

  

 
Figure 3.35: Synoptic chart from 20 October 2001 showing the cold front which caused 

heavy rainfall and flooding in Linton 
Source: http://www.met-office.gov.uk/climate/uk/interesting/images/asxx20thoct01.gif 
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Figure 3.36: Rainfall Radar images at 3-hourly intervals from 00:00 21st October 2001 – 

00:00 22nd October 2001.    
Source::http://www.metoffice.gov.uk/climate/uk/interesting/oct2001rain2.html 
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Figure 3.37: Rainfall totals (mm) in the period 9am 20th October – 9am 22nd October 

Source: http://www.met-office.gov.uk/climate/uk/interesting/oct2001rain2.html 
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3.5 Historical Rainfall-Runoff and Flood Risk Modelling 

3.5.1 Introduction to the Study 

The Environment Agency is responsible for maintenance and flood management of the 

River Granta where it is identified as ‘Main River’. This designation includes the river 

from the gauging station just upstream of Linton, downstream to the Cam confluence. 

Linton is one of several sites along the river which has been identified as at risk of 

flooding, in response to both the October 2001 floods which inundated 150 houses, and 

the historical flood record. As a result of the risk, the Environment Agency is responsible 

for carrying out periodic reports into the Standard of Protection provided for residents in 

case of flood. The most recent modelling and analysis was originally carried out by 

Bullen Consultants (2002). The model was later audited by Halcrow (2003) who 

identified a number of deficiencies in the assumptions made regarding the model 

structure, input data, and hydraulic regime, and therefore updated the model and 

published the new conclusions in their final report (Halcrow, 2004). This report remains 

the current Environment Agency position with respect to the Granta valley, and the 

conclusions were used as the basis for a cost-benefit analysis for floodplain improvement 

works. 

The methodology used is typical of that employed in flood defence applications, and 

represents a standard technique recommended by the Environment Agency (see Section 

1.3.3 for an overview discussion of these techniques). In brief, the methods detailed in the 

Flood Estimation Handbook (FEH) are used for upstream flow estimation. This includes 

both statistical methods and those using a rainfall-runoff model. The flow is then routed 

along the channel and overbank using a hydraulic model created using the iSIS modelling 

software (Wallingford Software Ltd, 2006). The report provides a good demonstration of 

the implementation procedure, together with some of its advantages and disadvantages. 

Insight into the technique allows a later comparison with the execution of and 

conclusions from the continuous simulation methods proposed in this study. An overview 

of the report methods and findings is therefore presented below. 
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3.5.2 Methods used in the Study 

3.5.2.1 Estimation of Flow Regime 

Unlike the 2D raster floodplain proposed in this thesis, which allows flow contributions 

along the model boundary and additional runoff contributions, this model uses a single 

hydrograph at the upstream boundary point of the channel. In this case, Bartlow was used 

as the boundary point to enable modelling of a potential storage reservoir upstream of 

Linton. The prediction was made using a combination of statistical and rainfall-runoff 

approaches. The statistical methodology used the historical record of annual maximum 

flows at sites along the Granta to construct flood frequency curves. For stations without a 

sufficiently long historical record, a ‘pooling group analysis’ is undertaken which uses 

supplementary data for other catchments in the UK with similar hydrological attributes to 

extend the flow record. Priority is given to catchments close to the study site. In the case 

of Linton, 17 other sites were used, giving a combined total of 486 years of record. Using 

this extended data set, the flood frequency curve was constructed using the median 

annual flood and growth curve produced by fitting a Generalised Linear Distribution to 

the data. 

In addition to the statistical flow analysis, a rainfall-runoff model was constructed for the 

catchments upstream of each flow gauge on the Granta. Five flood events during the 

period 2000-2001 were used to estimate parameters which control the shape of the 

hydrograph for each catchment. These parameters were standard percentage runoff 

(SPR), baseflow (BF) and time-to-peak (Tp). The baseflow parameter was however 

adjusted to take account of the raised groundwater levels during the study period. The 

rainfall-runoff model was then used to produce a revised flood-frequency curve by 

processing the long rainfall series available for the catchments. Finally, the parameters 

and scaling factors obtained were transferred from the gauging station locations to the 

relevant upstream subcatchments where the input flow series is required. Differences in 

area, land-use etc. were adjusted for during the process.   

The two flood frequency curves were then compared, to ensure that the predictions from 

the rainfall-runoff model lie within the confidence limits of the statistical analysis. Where 

this is not the case, a scaling factor is applied to reconcile the data sets. In the case of 

Linton, a factor of 1.54 was required, at Babraham the factor was 0.85. 
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3.5.2.2 Formulation and Calibration of Hydraulic Model 

Having estimated the upstream flow conditions, a hydraulic model was used to simulate 

the flood propagation along the channel and surrounding floodplain areas. iSIS is a 1d 

channel model which is designed to include structures within the channel and out-of-

channel storage zones. It is based on cross-sectional channel data and details of within-

channel structures; cross-sections were surveyed at 200 m intervals and at every structure 

location. LIDAR data were available for the river corridor and were used to extend cross-

sections further into the floodplain to allow for overbank flows up to the indicative flood 

outlines suggested by the Environment Agency, and to simulate static floodplain storage 

capacity. This required manual editing to remove inconsistencies from the LIDAR DEM. 

Manning’s n must be specified for the model and was chosen as 0.035 m-1/3s for inbank 

flows and 0.05 m-1/3s for out-of-bank flows, after a field visit and consultation of 

recommended values provided by Chow (1959). 

The combined rainfall-runoff and hydraulic models were then tested on the Granta 

between Linton and Stapleford by simulating three observed flood events; those of 

October 2000, February 2001 and October 2001. Modifications were made to the 

hydrograph time-to-peak parameter to improve the model fit, as the model was found to 

be relatively insensitive to Manning’s n. After these modifications, the model was 

deemed to provide satisfactory simulations of gauged flow hydrographs. In addition to 

testing against individual hydrographs, the model was also tested in its ability to 

reproduce the flood frequency characteristics of the sites. Using a design rainfall 

simulation representing the 100-year event, the results were compared against the 100-

year flow event taken from the statistical analysis. Again agreement was found to be 

acceptable. 
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3.5.3 Results of the Study 

The results from the statistical analysis are given in Table 3.6 for the three gauging 

stations on the Granta of Linton, Babraham and Stapleford. The 100-year pooled flows 

were used to calibrate the rainfall-runoff model. 

Design Peak Discharge (m3s-1) 
Linton Babraham Stapleford 

Return 
Period 
(yrs) Single Site Pooling Single Site Pooling Single Site Pooling 

2 4.43 4.43 4.10 4.10 3.89 3.89 
5 5.44 6.18 5.75 5.66 4.45 5.31 
10 5.85 7.21 6.73 6.59 4.67 6.14 
25 6.23 8.44 7.93 7.72 4.86 7.15 
50 6.45 9.33 8.81 8.55 4.95 7.89 
100 6.61 10.22 9.69 9.38 5.03 8.62 

Table 3.6: Design Peak Flows from Statistical Analysis 

The model was run for design events with return periods of 2, 10, 25, 50, 100 and 200 

years. For each event the number of properties within the projected flood envelope was 

calculated. At Linton, no properties were at risk below the 100-year return period, 11 at 

risk for the 100-year flood, a further 4 in the 150-year flood and again a further 4 in the 

200-year flood. The properties were situated on the High Street and Church Lane; the 

majority of flooding was confined to recreation grounds and fields. A map of the results 

is shown in Figure 3.38, and for comparison, the 100-year flood envelope from the 

Environment Agency indicative floodplain map. It is interesting to note that of the two, 

the Halcrow iSIS study predicts a significantly reduced area to be flooded during the 100-

year event. This may in part be due to inadequacies in the gauged record, as discussed in 

Section 3.4.2. 
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(a) iSIS model and (b) Environment Agency indicative floodplain map 
Figure 3.38: !00-yr Flood Outline Estimates from  

 



 128

3.5.4 Comment on the Method and Conclusions 

There are several assumptions made during the modelling methodology that may affect 

the results of the study. Firstly both the rainfall-runoff and hydraulic models used are 

relatively simple models which may not reflect the full non-linearity and complexity of 

catchment behaviour. For example, the rainfall-runoff model employs a linear 

hydrograph formulation which does not account for antecedent wetness conditions, likely 

to be very important in a groundwater-dominated catchment such at that of the Upper 

Granta.  

Another simplification is the use of a 1d hydraulic model which cannot fully simulate 2d 

routing of water over the floodplain. iSIS allows simple floodplain flow routing along 

predetermined pathways, however the capacity was not used here. Instead, the 

assumption is made that the floodplain provides static storage areas but does not provide 

downstream conveyance capacity.  

Another assumption is that the annual maxima series from the gauged records at Linton 

and Babraham can be used directly within the statistical analysis. This does not take 

account of the fact that Linton weir is known to drown at levels exceeding 0.46 m, and 

that Babraham station is also known to be bypassed at high flows. Therefore neither 

station may record the true magnitude of large events. For the October 2001 event in 

particular, the report notes that Environment Agency staff stated that the float at Linton 

gauging station jammed (therefore the high levels were not properly recorded). At 

Babraham the October 2001 annual maximum recorded is also incorrect; the value given 

is 6.71 m3s-1 compared with the 20.5 m3s-1 recorded in the 15-minute series used 

elsewhere in the report. Although the effect of such errors may be reduced by the use of 

pooling group data, they would still have a significant effect on the design flows 

produced which would be smaller than those actually occurring in the catchment. This 

may have important knock-on effects in the provision of flood protection measures in the 

catchment, which may be considered uneconomic in a cost-benefit analysis using the 

reduced design flows. 
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3.6 Conclusion 

The need for any model building exercise to be underpinned by practical application and 

testing, in a study catchment representative of the locations of the intended future use of 

the model, was emphasised in Section 2.1. This chapter therefore introduced the 

catchment which was used throughout the thesis to provide a testing ground for the end-

to-end modelling framework as it is developed. 

Section 3.1 explained the choice of catchment. The Granta above Linton is representative 

of a problematic class of catchments where the speed of response hinders the use of 

traditional upstream monitoring to aid real-time forecasting and warning systems, but in 

which an ‘end-to-end’ forecasting system based on precipitation forecasts may provide a 

solution. Section 3.2 then provided further information on the geology, soils, climate, 

land-use and management of the catchment. The geology of the area plays a major role in 

controlling catchment response to climate, the jointed nature of the chalk bedrock giving 

rise to significant groundwater contributions to river flows. 

The data collection undertaken was described in Section 3.3. The Environment Agency 

provided rainfall and flow records, and temperature data was reconstructed using 

interpolation and reference curve techniques. In addition, velocity/depth gauges were 

installed in the two main tributaries of the Granta upstream of Linton; discharge was then 

reconstruction from the measured data (Section 3.3.3). Data on flood extent during the 

2001 flood was collected using a survey of affected residents (Section 3.3.4). Using the 

collected data, a hydrological review of the study catchment was undertaken in Section 

3.4. Monthly and annual rain and flow statistics were used to analyse the catchment water 

balance characteristics. The tributary flow records were also used to assess the spatial 

variability of catchment response. Further to this, the meteorological conditions leading 

to the flood event of October 2001 were presented in Section 3.4.4. 

Finally, a review of previous flood risk modelling carried out in the catchment was 

presented in Section 3.5. A study was undertaken in 2004 using the statistical and 

rainfall-runoff techniques recommended in the FEH to estimate upstream hydrographs for 

design flood events. The flood wave was then routed downstream using a 1d model. The 

results of the study were presented and a critical assessment of the methods was made.  



Part II 

 

 

 

COMPONENT MODEL DEVELOPMENT 
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Chap t e r  4  

STOCHASTIC RAINFALL GENERATION 

 

Abstract 

This chapter describes the stochastic rainfall generation component of the flood risk 

assessment framework. A review of stochastic rainfall generation methodology is 

undertaken, and two candidate profile-based model structures are put forward for testing 

in the study catchment.  

The modelling methodology is described in detail. The rainfall record is segmented into 

single storms, using stipulated storm identification criteria. A database of storm 

characteristics is thus created; interdependence and seasonality of variables is considered 

at this stage. The database is used to estimate the empirical distribution of each storm 

characteristic. The first candidate model uses these distributions directly; the second 

extends the intensity distribution with an extrapolated upper tail. Finally, samples from 

the distributions are used to create synthetic rainfall series. 

The methods for model performance evaluation are discussed in relation to the objectives 

of the study. The two candidate models are assessed in their ability to reproduce observed 

rainfall maxima for durations ranging from 1 hour to 28 days, long term averages being 

particularly important in the groundwater-dominated study catchment. The empirical 

model without extrapolated upper tail was found to achieve the better results, and was 

therefore chosen for use in future simulations.   
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4.1 Introduction 

The first step in developing an end-to-end modelling scheme for the Granta is to specify 

the rainfall input. As described in Section 1.5.3, the concept of a single design storm, that 

can embody the complex causative relationships between rainfall, antecedent catchment 

wetness conditions and the range of flood characteristics that cause destructive flooding, 

is increasingly being rejected. As Cameron et al. (1999) suggest, to identify one 

combination of storm depth, duration, profile and antecedent conditions that constitutes 

the ‘most damaging’ storm, is to simplify the pre-storm catchment state, even where the 

complete hydrograph of a storm is specified rather than purely the peak value. Wheater 

(2002) focuses on a variety of storm characteristics that control the flood hydrograph and 

may be important depending on the intended application. For example, the storm volume 

may be required when planning storage reservoirs, or the volume over a threshold level 

may determine the quantity of water overtopping existing defences. 

To address the deficiencies of the ‘design storm’ approach, the use of continuous 

simulation of rainfall and flow is becoming increasingly popular. This method involves 

the use of long-duration rainfall series, either observed or stochastically simulated, as 

input data to a rainfall-runoff model. The corresponding discharge simulations can then 

be sampled directly to obtain the desired statistics of the flow regime. The use of long 

flow series removes the need for statistical extrapolation of flow characteristics to higher 

return periods, a practice which may introduce additional uncertainty in the choice of 

distribution used for extrapolation (Beven, 2000). As Lamb (1999) comments, this 

method provides considerable advantages in representing the dynamic features affecting 

runoff production. Continuous soil moisture accounting gives implicit consideration of 

antecedent wetness conditions and estimation of baseflow. Although the method is more 

computationally intensive than previous approaches such as that of Eagleson (1972) who 

analytically described the relationships between rainstorm and flood frequency 

characteristics, recent advances in computing resources have made the technique of 

continuous simulation a practical method in flood hydrology (Beven, 2000).   
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In order to use this technique within the end-to-end modelling framework, long periods of 

rainfall data are required to estimate flow characteristics for the desirable extreme return 

periods. Observed rainfall series at 15 minute resolution are only available for 15 years 

and therefore a stochastic rainfall generator must be constructed and tested. The function 

of the generator is to extract information from the rainfall series, and use it to build a 

statistical characterisation of the rainfall regime. This characterisation would typically 

contain information on the distributions of storm intensity, duration and inter-storm 

periods. The aim is to use the information collected to enable the generation of stochastic 

simulations of catchment rainfall over arbitrarily long periods.  
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4.2 Review of Stochastic Rainfall Generation Methodology 

A variety of stochastic rainfall generation models have been developed, all relying on an 

initial decomposition of regional empirical rainfall records to identify frequency 

characteristics of storm data (e.g. depth, duration and intensity). These characteristics are 

then used to parameterise the rainfall generator. This simulation approach has the 

advantage that a relatively short period of calibration data can to be used to generate 

long-term simulations of rainfall and catchment wetness which may incorporate extreme 

conditions. Such extremes may arise simply from the particular combination of storm 

characteristics (e.g. long duration with high intensity) or from more complex behaviour 

such as clustering of high magnitude events or the superposition of severe events on 

already wet catchments. However, for simulation of truly extreme intensity, depth or 

duration beyond empirical experience, the derived frequency characteristics used to 

parameterise the model must be re-estimated through further distribution fitting. While 

possible using standard techniques, such extrapolation is difficult to validate and likely to 

be associated with significant uncertainty. 

Previous studies in continuous rainfall-runoff simulation have employed a variety of 

different rainfall models. The main distinction is between storm profile-based methods 

and pulse-based methods (Cameron et al., 2000). Profile-based methods split the total 

storm depth into time-step depths by using a profile or mass curve, whereas pulse-based 

methods use statistical distributions to model the arrival time and characteristics of rain 

pulses within the storm period. 

4.2.1 Profile-Based Models 

Eagleson (1972) first proposed the use of stochastic rainfall simulation for flood 

frequency assessment. The stochastic rainfall model he employed used a relatively simple 

event-based, derived-distribution approach, with storms characterised by point rainstorm 

intensity and point rainstorm duration. Intensity and duration were measured from an 

observed timeseries and frequency parameters fitted using independent exponential 

distributions. 
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This principle has been used extensively in later studies (Cadavid et al., 1991; Diaz-

Granados et al., 1984; Hebson and Wood, 1982) and extended by Loukas (2002) to 

incorporate spatially variable rainfall data. While the event-based approach is 

computationally simple, coupling to rainfall-runoff models requires the use of 

simplifying assumptions about antecedent catchment wetness which may bias the 

resulting runoff characteristics. With advances in computer power, this restriction can 

now be relaxed, and recent studies incorporating Eagleson’s model have increasingly 

used continuous rainfall series, with soil moisture accounting models implicitly providing 

catchment wetness information (Beven, 1987; Blazkova and Beven, 2000). An additional 

requirement of this approach is the accurate estimation of extra parameter(s) to simulate 

the inter-arrival times of storms. Blazkova and Beven (2000) used an exponential 

distribution to model inter-arrival time, normalized to preserve seasonal rainfall totals, 

while Cameron et al. (1999) found empirical distributions of inter-arrival time, intensity 

and duration to be uncorrelated and modelled them independently. 

Recent improvements have been made by relaxing the assumptions associated with 

simple distribution models. For example Cernesson et al. (1996) and Arnaud and Lavabre 

(1999) both showed that extreme events follow an ‘over-exponential’ distribution, and 

Moughamian et al. (1987) showed that the exponential fit performed poorly when 

compared to a Gumbel (EV 1) distribution. Cameron et al. (1999; 2000) noted that 

inflexibility in the tail of an exponential probability density function (pdf) could lead to 

bias in the representation of the mean storm intensity of extreme rainfalls and suggested 

that more flexible models such as the Generalised Pareto Distribution (GPD) should be 

used in preference. 

A further key assumption of Eagleson’s model is the independence of storm intensity and 

duration. This restrictive simplification was relaxed by Cameron et al. (1999) who 

developed the ‘Cumulative Density Function and Generalised Pareto Distribution Model’ 

(CDFGPDM) which allows for such correlation by segmenting the intensity into seven 

duration classes. When compared to the MEEM (Modified Eagleson Exponential Model), 

this model performed significantly better in the simulation of extreme statistics and the 

improvement was attributed to the independence assumption of the MEEM (Cameron et 

al., 2000). An alternative approach was also adopted by Kurothe et al. (1997) who used a 
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joint pdf to represent the negative correlation between intensity and duration, and Goel et 

al. (2000) who further extended this to allow for either positive or negative correlation. 

One of the major tasks in defining a storm-based model involves the identification of 

storms within the observed rainfall timeseries. The most common criteria are a lower 

bound for the duration of storm, lower bound(s) for the intensity of the storm averaged 

over set period(s) and a lower bound for the separation time between storms. These 

criteria must reflect the governing hydrometeorology and the percentage of the series that 

the modeller intends to classify as storm rainfall, and may vary greatly. Cameron et al. 

(1999), for example, classified 99% of rainfall in their empirical timeseries as event 

rainfall, whereas Blazkova and Beven (2000) isolated only the highest intensity events. 

Cameron et al. (1999) defined a storm as having a minimum intensity of 0.1 mm/hr, a 

minimum duration of 1 hour and a minimum separation time of 1 hour. A different set of 

criteria were used by Koutsoyiannis and Mamassis (2001), who employed rules that a 

storm should have minimum hourly intensity of 5 mm or daily intensity of 15 mm, and 

minimum separation time of 6 hours. These are however just examples, and a wide 

variety of definitions have been used to suit particular demands and specific data 

resolutions. 

Storms may also be separated into categories which may have different identification 

criteria. The most commonly adopted segmentation procedure is to split events by season, 

where the definition of season may be data or objective dependent. For example, 

Blazkova and Beven (2000) used four unequal seasons of November – April, May, June – 

August, September – October to reflect the main changes in rainfall through the year 

found at their study site in the Czech Republic. Walshaw (1994), by contrast, used 12 

equal length seasons as a compromise between continual seasonal change and the need to 

retain sufficient observational data within each season. As well as a split by season, 

Blazkova and Beven (2000) also divided storms into high and low intensity events, in 

order to distinguish convective and frontal rainfall. An additional criterion they adopted 

was that the intensity should not drop below 6 mm/hr. 

Splitting events into separate categories permits a more flexible approach to statistical 

fitting as distribution types or parameters may be allowed to vary between categories. 
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This approach does, however, increase the number of parameters to be identified from the 

(possibly limited) data available, and Walshaw (1994) suggests that homogeneities across 

seasons should be exploited by fitting a constant shape parameter across seasons where 

this is appropriate to the distribution type. 

4.2.2 Pulse Models 

Pulse-based models characterize inter-arrival time and storm duration in a similar way to 

profile-based models, however instead of using an empirical storm profile, the storm is 

modelled as a series of randomly-generated raincells. One of the first pulse models to be 

used was the ‘Poisson Model with Rectangular Pulses’ (Rodriguez-Iturbe et al., 1984; 

Rodriguez-Iturbe et al., 1987) in which each point of a Poisson process represents a rain 

pulse with random intensity and duration. The intensity and duration are typically 

selected from exponential distributions, however if longer-term effects are to be studied 

then a longer-tailed Pareto distribution may be substituted. 

A common problem with Poisson models is their failure to transcend temporal 

aggregation scales effectively, so that their application is limited by the resolution of the 

calibration data (Rodriguez-Iturbe et al., 1987). This is a significant drawback if the 

model is to be used to study long-term processes such as extended wet or dry spells. To 

this end, cluster-based models such as the Neyman-Scott model or the Bartlett-Lewis 

models were introduced (Rodriguez-Iturbe et al., 1987). In these models, a rain pulse is 

associated with each point of a clustered point process rather than a Poisson process. 

Storm origins arrive as a Poisson process, then a random number of raincells from a 

Poisson or geometric distribution are attached to the origin of each new event. In the 

Neyman-Scott model, the positions of these cells are independent identically distributed 

random variables (IIDRVs), whereas in the Bartlett-Lewis the intervals between cells are 

independent identically distributed (IID). Again, the exponential distribution is most 

commonly employed. The Neyman-Scott model therefore tends to give rainfall clustered 

towards the beginning of the storm, which may be more realistic from a physical 

standpoint where rainfall is associated with an initial frontal system (Cowpertwait, 1994). 

These models have been demonstrated to be much more successful in reproducing the 
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physical rainfall process and the multifractal scaling properties associated with true 

rainfall series (Islam et al., 1990; Olsson and Burlando, 2002). 

These models have been significantly developed and improved since they were first 

introduced. Both models were initially shown to overestimate the probability of long dry 

periods (with aggregated surface runoff therefore showing an error of up to 20%). 

Rodriguez-Iturbe et al. (1988) therefore modified the Bartlett-Lewis model, so that 

instead of selecting storm durations from the static distribution exp(η), η should be 

drawn each time from a γ distribution. Entekhabi et al. (1989) suggested a similar 

improvement to the Neyman-Scott model. Questions were later raised as to whether the 

extra parameters produced improvements in the fit to historical rainfall series. Burlando 

and Rosso (1991) and Velghe et al. (1994) found that, in the modified Bartlett-Lewis 

model especially, the greater parameter complexity leads to high sensitivity to the 

parameter estimation method used. Calenda and Napolitano (1999) suggested an 

alternative to the usual method of moments for parameter estimation (Onof and Wheater, 

1993), which attempts to alleviate this problem. 

Onof and Wheater (1993) tested the modified model and found that it was successful in 

reproducing proportions of dry time periods at a variety of scales. However there were 

still problems in replicating the extreme values of the depth distribution. This was 

mitigated (Onof and Wheater, 1994) by using a γ variable to replace the exponential 

distribution of pulse intensity. A jitter process was also superimposed on each rainfall 

pulse to avoid the overestimation of daily auto-correlation. Verhoest et al. (1997) 

compared the three versions of the Bartlett-Lewis model (original, modified and modified 

gamma) against 27 years of test data and found that the modified model was most 

successful, while the modified gamma failed to produce the expected improvements in 

representation of extreme events. They suggested that this could be due to the clustering 

of rainfall events, which gives rise to design storms of shorter duration than those in 

observed series. 

Further developments to the Neyman-Scott model include its generalisation to a 2D 

model by Cowpertwait (1995) such that rain cells occur as discs on the x-y plane, and the 

 138



inclusion of multiple classes of raincell type to allow, for example, heavy convective 

raincells (Cowpertwait and O'Connell, 1997).  
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4.3 Methods 

4.3.1 Method Choice 

The choice was made to use a profile-based model for the current application. The storm 

characteristics required for each simulated storm produced by the model are mean storm 

intensity, storm duration, storm profile (mass curve) and storm inter-arrival time. The 

profile model was chosen over the pulse model both for its simplicity and ease of 

implementation; but also through a desire to use a ‘data-based’ model as described by 

Cameron et al. (2000) whose characteristics can be determined directly from the rainfall 

series without the need for parameterisation. For the same reason the storm 

characteristics are sampled directly from the empirical distributions rather than from a 

standard distribution fitted to the empirical histogram. This method is suitable where 

there is a sufficiently long rainfall record at high resolution to characterise the empirical 

distributions, and removes the need to choose and parameterise a standard distribution 

that may not reflect the full complexity of catchment behaviour. It also eliminates the 

uncertainty introduced during distribution fitting. 

It is, however, possible that the 15 year rainfall record available for the catchment may 

not be sufficiently long to capture the full range of rainfall behaviour in the catchment. 

Although the stochasticity of the model allows combinations of storm characteristics not 

seen in the record, in the long term there may be storm characteristics more extreme than 

any recorded, which would not therefore be reproduced. The characteristics considered 

are storm intensity, duration and inter-arrival time. On inspection of the rainfall 

characteristics, it was felt that the duration and inter-arrival time were sufficiently well 

captured by the empirical record. In the case of inter-arrival times, extreme values were 

obtained during the drought period of 1996-1997 and are therefore thought to be 

adequately represented. Long storm durations are also present in the record due to the 

occurrence of low intensity, long duration events. However, the same argument does not 

hold true for storm intensities, especially since intensity is considered by duration class as 

described in the following sections. The possibility for short-duration, high intensity 

events in the record to create long-duration, high intensity events in a simulated series is 
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therefore removed, and a reduced number of storms in each class diminishes the 

likelihood of extreme events appearing in the record. Instead, in order to introduce these 

into the simulated rainfall sequence, a tail can be appended to the empirical intensity 

density estimate. Theory predicts the form that this tail should take given that under 

reasonable assumptions the data points can be considered independent identically 

distributed random variables (IIDRVs): see Section 4.3.4.1 for further details. This 

method was therefore considered in addition to sampling from the unaltered empirical 

distribution, as a compromise between reducing needless parameterisation and predicting 

the complete range of rainfall behaviour. 

The structure of the method involves several components which are outlined in the 

following sections. Briefly, the approach first involves the segmentation of the record 

into single storms, and then using this to create a database of storm characteristics. If 

appropriate, the database should be divided into different classes of storm, for example 

by seasonality or storm intensity. Second, the database must be used to estimate the 

empirical distribution of each storm characteristic, and then finally, parameterisations of 

the extrapolated upper tail should be considered to create an extended sampling 

procedure. The data to be used in the model is the 15-year record of 15-minute data 

available from the Elmdon raingauge; this choice was made for reasons of proximity to 

the catchment and length of record. In order to accurately capture the characteristics of 

the catchment rainfall, it was felt to be important both to use a single rather than spatially 

averaged record, and to use a record local to the catchment. The possibility of 

supplementing the record with others close to Linton was also rejected as this would 

mean that storms were double-counted and hence would give lower than expected 

variability in storm characteristics. For further details and summary statistics of the 

rainfall data, refer to Sections 3.3.1 and 3.4 respectively.  

4.3.2 Storm Identification and Sampling 

4.3.2.1 Storm Identification Criteria 

The storm identification criteria must ultimately reflect the goals of the modelling study. 

The study catchment of the Granta has been identified as groundwater-dominated due to 
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the underlying chalk aquifer. A strongly non-linear runoff response is therefore expected, 

in which long-term rainfall volumes are of equal importance to short-term storms in 

controlling flood behaviour. An analysis of storm volumes demonstrates that 

contributions to total rainfall volume are evenly spread between storms of different 

volumes (Figure 4.1). As such, it is important that the storm identification criteria 

incorporate the majority of small rainfall events as well as severe storms. 
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Figure 4.1: Rainfall contribution split by storm volume for the Elmdon rainfall series 

1991-2005 

The choice of parameters should be such that rainfall is correctly grouped according to 

storm body, and such that very minor events which do not have representative storm 

profiles are excluded. On the basis of initial analysis, the following identification 

parameters were chosen: 

Parameter Condition 
Minimum Storm Duration 6 hours 

Minimum Termination Time 6 hours 
Minimum Intensity 1 mm hourly or 6 mm daily 

Table 4.1: Initial Storm Identification Parameters 

Similar parameters have also been used in other studies (e.g. Koutsoyiannis and 

Mamassis, 2001). An experimental trial was undertaken, applying these criteria to a 

section of the rainfall series, and then inspecting sections of data to check the quality of 

storm identification. The results showed that the algorithm successfully identified most of 

the storms, including longer-duration, lower-intensity events. However, there were 
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notable periods of rainfall which were not classified, including short, high intensity 

events. This type of rainfall pattern appears frequently within the rainfall sequence and 

makes an important contribution towards the overall rainfall depth, so must be included 

as a storm period. Subsequent experimentation with the storm identification parameters, 

in particular the minimum duration and minimum intensity was then used to determine 

the combination of conditions which optimally characterised rainfall events as storm 

periods. Minimum termination time was left unchanged as it was felt that the method 

adopted by Cameron et al. (1999) who used a termination time of 1 hour would fail to 

group events caused by the same storm body. The final parameters selected are shown in 

Table 4.2; the notable change being in the definition of storm duration criterion in order 

to reflect the frequent occurrence of short duration storms. 

Parameter Condition 
Minimum Storm Duration 1 hours 

Minimum Termination Time 6 hours 
Minimum Intensity 0.4 mm hourly or 3 mm daily 

Table 4.2: Storm identification parameters refined after initial experimentation. 

The new algorithm was again tested against a rainfall sequence, and the results inspected 

to check quality of storm identification. The use of the updated parameters was found to 

produce a satisfactory result which identified all major storm events, identifying 93% of 

total rainfall depth as storm rainfall. A typical section is shown in Figure 4.2 with the 

start and end points of each storm identified marked in green and red.  
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Figure 4.2: Identification of storms from rainfall sequence, sample period. 
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4.3.2.2 Dependence of Intensity upon Duration 

As noted in Section 4.2.1, models which assume that mean storm intensity is independent 

of storm duration have been shown to perform less well than those which allow for such 

dependence. In order to evaluate the importance of this dependency within the local 

rainfall data, the empirical relationship between duration and mean intensity was 

constructed (Figure 4.3). The plot below was re-drawn from a wireframe mesh 

constructed from a 2D histogram. This plot was created using the complete rainfall series 

for Elmdon. 
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Figure 4.3: Relationship between Storm Duration and Mean Intensity 

Although this plot reveals that there is negative correlation between intensity and 

duration, there are no clear cut-offs between duration bands with ‘similar mean storm 

intensities’ as found by Cameron et al. (1999).  

Two possible approaches for allowing dependence between duration and mean intensity 

were considered. The first was to define a series of duration categories and to consider 

the distribution of storm intensity within each one. One method considered for defining 

the duration categories was such that each contained the same number of storms in the 

historical test sequence used. However it was found that unless a very large number of 

categories was used, there was insufficient discretisation for higher-duration storms. 

Instead, class boundaries were equally spaced (to nearest hour) along a log-transformed 

scale. Five categories were used to give a compromise between sufficient number of 

storms per class and small class widths.  
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The classes were therefore defined as follows: 

Duration Class (Hours) Number of Storms in Class 
1 – 2 108 
2 – 5 246 
5 – 11 334 
11 – 25 219 

25 + 38 

Table 4.3: Duration Classes with Number of Storms in Each Class 

The second approach considered was to use an empirical estimate of the full bivariate 

distribution of duration and mean intensity, based on a smoothed 2D histogram. This 

method is covered in more detail when methods of empirical density estimation are 

considered in Section 4.3.3. 

4.3.2.3 Seasonality 

In the rainfall series used here, as in most environmental time series, seasonal variation is 

apparent. A plot of the average monthly rainfall shows that most rainfall occurs in the 

months September to January, which reinforces the empirical observation that most 

floods occur in the autumn (although this is also driven by evaporation rates). 
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Figure 4.4: Rainfall totals by month showing rainfall seasonality. 

In the past, modellers have used several different methods of accounting for seasonality 

in the data. It is possible to remove known seasonal components to create a stationary 

series (Walshaw, 1994), however the components which affect the upper tails of the 

distributions may not be known (Davison and Smith, 1990). Some models have 
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parameters that can be continuously varied to mimic seasonality (e.g. Guenni et al., 

1996). Some modellers have felt able to ignore seasonal effects for their particular site, 

(e.g. Cameron et al., 1999), but in general the favoured approach is to fit separate models 

to each of a chosen number of seasons. The number of seasons is chosen as a 

compromise, with more seasons giving improved representation of data but decreasing 

the amount of data available in each season, hence increasing the uncertainty within the 

model (Cameron et al., 2000). In general, the number of seasons used has been either two 

(winter and summer) where data has been limited (e.g. Cameron et al., 2000) or twelve 

(monthly) where data is more abundant (e.g. Onof and Wheater, 1993; Walshaw, 1994). 

In this study, the greatest consideration was that sufficient data should be available within 

each season, and so just two seasons were used. The choice of these was based on Figure 

4.4 above, and is September – January and February – August. Although the winter 

season is shorter, this is ameliorated by an increased concentration of storms during these 

months. 

4.3.2.4 Sampling Methodology 

To build a database of empirical distributions of storm characteristics, storms are 

identified and characterised from a historical record. As explained above (Section 4.3.1), 

the record from Elmdon was used for this purpose. The empirical distributions which are 

sampled from the results for each season are as follows: storm duration, storm intensity 

for the five separate duration classes, storm inter-arrival time. For histograms of the 

distributions, see Section 4.3.3. The profile of each storm is also recorded; these are later 

scaled to give simulated storms. 

4.3.3 Empirical Density Estimation 

4.3.3.1 Theoretical Background 

When the database of storm characteristics is complete, it must then be used to estimate 

and provide samples from the underlying distributions. The values of each sampled storm 

characteristic can be considered as observations from a distribution with unknown 

density function . To enable efficient modelling, an estimate  of the density 

function is required. Ideally, a nonparametric density estimation method should be 

( )xf ( )xf̂
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employed for this purpose in order to reduce the number of assumptions made about the 

form of the underlying density. The simplest method of nonparametric density estimation 

is the histogram; however this gives rise to a non-differentiable form which cannot 

adequately represent the continuous nature of characteristics such as storm duration. 

Generalization of histograms by spline curve fitting could be used to interpolate between 

the data points, however the form of the resulting function remains potentially biased by 

the limited sample size and so a smoothing technique rather than an interpolation would 

provide a more robust generalization tool.  

The standard smoothing technique for density functions is kernel density estimation, 

which produces a smooth density function using weighted local averaging. A detailed 

explanation of kernel methodology is given by Silverman (1982; 1986), where it is also 

shown that the Gaussian kernel density estimator can be implemented using a Fast 

Fourier Transform. Antoniadis (1995) implemented this method for Matlab and this 

procedure was adopted for this study. Many extensions to Silverman’s methodology have 

been suggested, such as that of Marchette et al. (1996) who allow the Gaussian kernel to 

have multiple bandwidths, however such additional complexity may be unwarranted for 

rainfall modelling. The choice of a Gaussian kernel is also one option among many, 

however Marron and Nolan (1988) demonstrate that kernel functions can be rescaled 

such that the difference between two kernel density estimates using two different kernels 

is almost negligible, and thus the choice of scaling parameters is far more influential. 

4.3.3.2 Parameter and Transformation Choice 

In implementing the Gaussian kernel density estimator, the smoothness of the resulting 

density is determined by the bandwidth of the kernel. There are many methods of 

choosing this smoothing parameter, (eg. Silverman, 1986; Hardle, 1991; Park and 

Turlach, 1992), which vary in their complexity. At the simplest, the choice can be made 

by eye from suitable plots of the output density. Alternatively, the following ‘rule of 

thumb’ can be used: 

Bandwidth = k1.σx.nk2  (4.1) 
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where x is the input sample, σx is the sample standard deviation and n is the sample size. 

Different suggestions have been made for the values of the constants (e.g. Silverman, 

1986; Scott, 1992). It has been demonstrated that if the empirical data had a normal 

distribution, the ideal window width would have k1 = 1.06, k2 = -0.2, however by 

reducing the parameter k1 to 0.9 the results can be improved for skew distributions 

(which applies to the distributions being modelled in this study). Silverman (1986) 

showed that the results could be improved still further by using a more robust measure of 

spread instead of the standard deviation:  

A = min(σx, IQ range(x)/1.34)  (4.2) 

The parameter can also be drawn from the data, using the method of ‘cross-validation’ 

(Silverman, 1986). This entails omitting each data point in turn from the calculation, and 

then maximising a suitable long-likelihood function. However, the discretization of the 

data points inherent in the Fourier Transform methodology (even on a fine grid) can lead 

to poor results when using cross-validation. 

A further issue which is important when modelling rainfall characteristic distributions is 

that of discontinuous distributions. Due to the way in which storms have been defined, 

i.e. by minimum intensity, duration and inter-arrival time specifications, the densities of 

the duration and inter-arrival time variables must vanish for values less than the specified 

minimum (this does not apply to intensity as the distribution of mean storm intensity 

rather than point intensity is used). Although one option would be to compute the density 

as normal, truncate it for the appropriate value, and scale to produce a density (integrating 

to 1) this would give disproportionately small weighting to points near the discontinuity 

(Silverman, 1986). Instead, the suggestion is made that the empirical distribution could 

be reflected around the discontinuity point before smoothing, then double the calculated 

density for points above the minimum would be used. This is similar to the method 

suggested by Scott (1992) using a one-sided kernel. By using this method, the difficulties 

of a skewed distribution are also avoided as the distribution to be fitted is symmetrical. 

The density estimation methods used in this study are therefore summarised as follows. 

The mean storm intensity has a skewed distribution but no discontinuity at a positive 

minimum value, so is log-transformed before fitting. The storm duration and inter-arrival 
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time both have discontinuous distributions so the distributions are reflected around the 

discontinuity before fitting. All three densities are then estimated using a Gaussian kernel 

with bandwidth chosen using the improved Silverman ‘Rule of Thumb’ method. 

4.3.3.3 Fit of Smoothed Distributions 

The following diagrams (Figures 4.5 and 4.6) show the results of smoothing the 

histograms to produce empirical distributions for the winter and summer season although, 

as noted in the next section, these distributions are not required explicitly. 

 149



 

0 5 10 15 20
0

1

2

3

Storm Mean Intensity, Duration Class 1 (mm)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

0 5 10 15 20
0

0.5

1

1.5

2

Storm Mean Intensity, Duration Class 2 (mm)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

0 2 4 6 8
0

0.5

1

1.5

2

2.5

Storm Mean Intensity, Duration Class 3 (mm)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

0 2 4 6 8 10
0

0.5

1

1.5

2

Storm Mean Intensity, Duration Class 4 (mm)
Fr

eq
ue

nc
y

Smoothed Density
Empirical Density

0 1 2 3 4
0

1

2

3

4

5

Storm Mean Intensity, Duration Class 5 (mm)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

0 20 40 60 80 100
0

0.01

0.02

0.03

Storm Duration (Hours)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

0 200 400 600 800
0.000

0.002

0.004

0.006

Storm IA Time (Hours)

Fr
eq

ue
nc

y

Smoothed Density
Empirical Density

Figure 4.5: Histograms and Smoothed Density Estimates of each Parameter for the 
Winter Season 
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Figure 4.6: Histograms and Smoothed Density Estimates of each Parameter for the 
Summer Season 
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4.3.3.4 Sampling from the Smoothed Distribution 

In order to draw a random sample from the smoothed distribution, it is not necessary to 

find this distribution explicitly (Silverman, 1986). Instead the following procedure can be 

used: choose sample X randomly from the observations recorded. Then generate ε to 

have pdf that of kernel K (in this case the normal density N(0,1)). The random sample 

from the distribution is then Y = X + hε where h is the bandwidth. Where a reflected 

distribution is used, samples are reflected about the discontinuity as appropriate. The 

procedure is slightly different in the case where smoothing is applied to the log 

distribution, here instead Y = Xehε. 

4.3.3.5 Use of Multivariate Density for Duration and Intensity 

The kernel method of Section 4.3.3.1 can be directly extended to higher dimensions 

(Silverman, 1986), in this case the bivariate density of duration and mean intensity. The 

kernel used is the bivariate normal, with bandwidth = k1*A*n-1/6. As before, the optimal 

value of k1 can be found for normal data, this is 0.96. The same scaling ratio is used as 

for one dimension to give k1 = 0.82 to allow for skew distributions. A is again taken as 

min(σx, IQ range(x)/1.34) (where A is now a vector to allow for different scaling for each 

variable). To draw observations from the smoothed density, a bivariate version of the 

method of Section 4.3.3.4 is used: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1
21

2

1

2

1

ε
ε

hh
X
X

Y
Y

  (4.3) 

with a vector bandwidth h used to give different smoothing parameters in the two 

dimensions. 

4.3.4 Empirical Density Estimation with Fitted Tail 

4.3.4.1 Predicting the shape of the intensity tail 

Cox et al. (2002) provide a review of the probability theory of extreme values, as applied 

to stationary processes, and its applicability to flood frequency estimation. They 

demonstrate that, when considering the limiting form of the cumulative distribution 

 152



function (cdf) of the maximum of a series of IIDRVs, there are only three possible 

solutions. These are the Gumbel, Frechet and Weibull distributions, particular cases of 

the generalised extreme-value (GEV) distribution. The distribution cdfs are shown here: 
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The Weibull is of less interest as it applies where the random variables have an upper 

bound. The Gumbel holds when the distribution reaches its limiting value (1) at least 

exponentially fast; the Frechet when a power law rate applies. A popular approach is to 

model extreme value series using the Gumbel rather than the inclusive GEV distribution; 

however Coles et al. (2003) highlight the dangers of underprediction of both extreme 

values and the associated uncertainties when using this restricted method.  

We may wish to characterise the sequence not only by its maximum, but also by the 

number and magnitude of peaks over a threshold un. Madsen et al. (1997) showed that 

using this ‘partial duration series’ is a more efficient technique than using the annual 

maximum series. Assuming that the mean number of exceedances n(1-F(un)) tends to a 

limit v, then these exceedances form a Poisson process, with the probability of non-

exceedance tending to e-v for large n. 

Given that there is an exceedance, the size Z = X-un has the cdf F(z+un)/(1-F(un)). In the 

limiting form this has the generalised Pareto distribution (GPD). 
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Here the parameter σ provides simple scaling, whereas the parameter k controls the shape 

of the distribution, k < -0.5 giving a concave plot, k = -0.5 a linear plot, -0.5<k<0 a 

bounded convex plot, k = 0.5 an exponential ‘thin tailed’ unbounded convex plot and k > 

0.5 a ‘heavy tailed’ unbounded convex plot with infinite moments for orders > 1/k (Katz, 

2002). The majority of studies have found that maximum rainfall within a set time period 

has a heavy tail (e.g. Egozcue and Ramis, 2001; Smith, 1999; Smith, 2001) however 

Cameron et al. (1999) argue that for the British climate there are probable upper bounds 
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to rainfall intensities, suggesting that a bounded distribution with k < 0 should be used. 

The upper bound is often referred to as the ‘probable maximum precipitation’ and may be 

quantified by the maximisation of the physical factors that control the precipitation 

evolution (Collier and Hardaker, 1996). 

4.3.4.2 Parameter estimation technique 

Several methods can be used for the estimation of the GPD parameters, the most popular 

being maximum likelihood estimation (ML), probability weighted moments method 

(PWM) and Pickand’s estimator. The ML method is preferred for its simplicity and 

applicability to structured models (Coles, 2001). It has been suggested that the PWM 

method is superior to the ML method for small sample sizes: Katz (2002) and Hosking et 

al. (1985) give examples of gross overestimation of the shape parameter when ML 

estimation is used. The investigations of Coles and Dixon (1999) suggest however that 

the superiority of the PWM is due to the imposed constraint k < 1 inherent in this 

method, and that if this same constraint is applied to the ML method, similarly good 

results would be found.  

In order to modify the ML method to impose bounds on k, two different methods have 

been suggested. Cameron et al. (1999) introduced the dependence k = -σ(b-u) where b is 

the upper bound postulated for the data, which enforces a distribution also bounded at b. 

Coles and Dixon (1999) use an alternative method, that of penalised maximum likelihood 

estimation (PML) which imposes a penalty function for values of k not in the required 

range. This can be seen as analogous to Bayesian methods using a prior distribution (e.g. 

Martins and Stedinger, 2000) which allow recent measurements to be combined with 

historical knowledge (Jin and Stedinger, 1989). In this study, the PML method is used as 

it is felt that this allows the structure of the data to impose the upper bound rather than 

using a predefined limit. 

The ML estimation technique selects distribution parameters such that the probability of 

obtaining the observed data is maximised. Grimshaw (1993) gives a comprehensive 

algorithm for the implementation of this method in the GPD case. Grimshaw’s method 

was implemented for Matlab by Brodtkorb et al. (2000) and a modified version of their 
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algorithm was used here. Their implementation of the PWM method was also used in 

those cases where the ML estimates do not exist (e.g. when k < -1).  

The main modification made to the method was an implementation of the PML method. 

The penalty function used is that recommended by Coles and Dixon (1999), with the 

form: 
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The corresponding penalized likelihood function is then: 

   )(),(),( kPkLkLPen ⋅= σσ   (4.10) 

This function penalizes all unbounded distributions (k >0) with the penalty increasing as 

lower order moments become infinite. No distributions with infinite mean (k>1) are 

accepted. 

Using the parameter estimation technique outlined, a GPD distribution was fitted to the 

upper third of intensity values within each duration class. The parameters for each 

distribution are given in Table 4.4 below. 

Intensity Class 1 2 3 4 5 

Season W S W S W S W S W S 

Shape -0.0153 0.3197 0.1484 0.1411 -0.1112 -0.2743 0.2285 -0.0981 -0.1462 -1.1135 

Scale 0.2828 0.2162 0.1594 0.1646 0.1520 0.1497 0.0931 0.0953 0.1083 0.0965 

Table 4.4: Penalized Maximum Likelihood Estimates for GPD Parameters 

In order to draw a sample from the distribution with upper tail, the sample is first classed 

as either belonging to the empirical part of the distribution, or the upper tail, using a 

uniform random variable to ensure the correct proportion of samples lie in each part. In 

the former case, the sample is made using the technique described in Section 4.3.3.4; in 

the latter it is drawn from the GPD distribution using a sampling function created by 

Brodtkorb et al. (2000). 
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4.4 Model Performance Evaluation 

4.4.1 Evaluation Methods 

In order to evaluate stochastic rainfall models, a set of numerical or qualitative criteria 

must be designed. As models are not designed to reproduce specific rainfall series, but 

rather to reproduce the dynamic behaviour of natural weather patterns, evaluation criteria 

should reflect key statistical characteristics of the series. Importantly, such characteristics 

must also reflect the hydrologist’s perception of the model qualities which are important 

to the specific application. Some of the possible objectives of model evaluation are 

outlined here. 

1. Representation of extreme statistics. Cameron et al. (1999), following Onof and 

Wheater (1993), tested their models against annual maximum rainfalls of periods of 

1, 2, 6, 8, 12 and 24 hours, whereas Smithers et al. (2002) used 10 different durations 

and Cameron et al. (2000) restricted themselves to just the 1 and 24 hour maxima 

which were found to be independent, and used the seasonal rather than annual 

maxima. Recognising the restrictions of judging seasonal maxima against only one 

observed series realisation, Cameron et al. (2000) calculated confidence limits for 

quantiles of a fitted GEV distribution, and judged a model as behavioural if was 

bracketed by the 2.5% and 97.5% simulations. 

2. Representation of dry periods. As well as flood peaks, the model should also be able 

to reproduce droughts. The proportion of dry intervals, with the mean and standard 

deviation of their length, have been used for this purpose (Cameron et al., 2000). 

3. Representation of storm characteristics. Koutsoyiannis and Mamassis (2001) ensured 

that storm character was adequately reproduced by their model by plotting total storm 

depth and incremental storm depth against duration for each duration class, together 

with respective standard deviation and autocorrelation. The mean and standard 

deviation of storm duration can also be used. 

4. Representation of long-term rainfall averages. This measure would use essentially the 

same method as that used when evaluating representation of flood peaks (Point 1). 

 156



However, longer durations (e.g. months) would allow comparison of long-term 

averages against observed data. 

In order to produce rainfall simulations to enable a flood frequency analysis for Linton, 

the relevant objectives of model evaluation were felt to be the accurate representation of 

rainfall maxima at a range of durations, to represent the range of causes of flooding from 

short-term, high intensity events, through prolonged but lower-intensity rainfall events, to 

longer-term rainfall averages. These evaluations should be split by season as summer and 

winter rainfall patterns differ considerably, as discussed in Section 4.3.2.3. The 

performance of the rainfall model was therefore tested by extracting seasonal maximum 

rainfalls of durations 1 hour, 24 hours, 7 days and 28 days from simulated rainfall 

sequences of the same duration as the observed sequence, and comparing these to the true 

seasonal maxima. This contrasts with previous studies which have in general only tested 

rainfall maxima for durations of less than 24 hours. By extending the duration, a more 

comprehensive evaluation of the model is made, and the longer-term rainfall volumes 

which are particularly important in a groundwater-dominated catchment such as Linton 

are included in the validation exercise. In order to account for the inherent variability in 

stochastic simulation, 100 sequences were created and used to obtain these statistics. The 

range of values was then plotted to ensure that the observed values fall within this 

envelope. When validating the simulated extremes, it is important to recognise the 

inherent difficulty associated with the treatment of observed extremes as ‘true’ data 

against which the model should be compared. Although the observed data provide the 

best information available on catchment behaviour, the rainfall record represents only a 

single sample from the range of possible records, and is therefore prone to sampling bias. 

This is especially relevant given the short length of rainfall data available, and should 

therefore be taken into consideration during the validation procedure. 

4.4.2 Evaluation of Empirical Density Model: Results 

As described above, for winter and summer the derived statistics from 100 simulations 

are plotted together with the observed values (Figures 4.7 and 4.8). The results show that 

for each duration, the true maxima are bracketed by the model simulations, demonstrating 
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that the model is adequately reproducing the rainfall characteristics of the catchment in 

terms of seasonal extremes.  

It is interesting to note that for the 7 day and 28 day totals, the true maxima are 

approximately central to the multiple model simulations, however for the 1 and 24 hour 

totals the model simulations tend to over-predict the rainfall total, especially for the 

winter season. One possible cause for this finding is that the duration classes chosen were 

too wide, meaning that the intensity and profile shape of storms was not matched to their 

duration with sufficient accuracy. For example an 11-hour storm could be given a higher 

intensity or flatter profile sampled from a 5-hour storm, giving an unrealistically high 24-

hour total. Over longer time periods this effect would be less noticeable as high within-

storm totals would be counterbalanced by the assumption that no rain falls without storm 

periods. 

To test this theory, the methodology suggested in Section 4.3.3.5 was implemented, 

namely to use a bivariate distribution for duration and intensity, smoothed using a 

bivariate normal kernel. Surprisingly, this did not improve the results, with the seasonal 

maxima for 24 hour duration still proving over-predicted. The methodology did not, 

however, address the similar problem in profile choice, although it is not clear how to 

smooth the array of profile shapes as they cannot obviously be ordered. One possibility is 

to make a random choice from existing profile shapes and then to add noise. However, it 

was felt that by tying the intensity and/or profile shapes more closely to the sampled 

duration, the model is limited in the choice of storms and may not address the assumption 

that the observed storms do not encompass the full range of possible storms. 
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Figure 4.7: Observed Maximum Winter Rainfalls compared with 100 Simulated 

Realisations, for Durations 1hr, 24hr, 7 day, 28 day. 
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Figure 4.8: Observed Maximum Summer Rainfalls compared with 100 Simulated 

Realisations, for Durations 1hr, 24hr, 7 day, 28 day. 
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4.4.3 Evaluation of Empirical Density Model with Fitted Tail: Results 

As with the original simulation model, the performance of the extended model was tested 

by plotting the seasonal maxima at durations of 1hour, 24 hours, 7 day and 28 days. The 

plots are shown in Figures 4.9 and 4.10 for the winter and summer seasons respectively. 

It is clear that these predictions produce a much poorer fit than the original model without 

GPD tail added, with the simulations overestimating the observed maximum flows in 

almost all cases. This was to be expected given that the original model tended to produce 

an overestimation, and this problem has been exacerbated by the possible inclusion of 

storms of higher intensity than that observed. 
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Figure 4.9: Observed Maximum Seasonal Rainfalls compared with 50 Simulated 

Realisations using model with GPD tail, for Durations 1hr, 24hr, 7 day, 28 day. 
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Figure 4.10: Observed Maximum Summer Rainfalls compared with 100 Simulated 

Realisations using model with GPD tail, for Durations 1hr, 24hr, 7 day, 28 day. 
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4.4.4 Discussion 

The results of the model evaluation with respect to reproduction of extreme rainfall 

statistics show that the empirical model, without extension by mean of an upper intensity 

tail, produces simulation results which bracket the observed extremes. In contrast, when a 

tail is added to the intensity distribution the model shows marked overestimation of the 

rainfall extremes.  

It could be argued that due to the relatively short sequence of validation data available, 

the latter set of simulations provide an equally valid prediction of future behaviour and 

indicate that much higher rainfall totals than those observed could be expected. However 

the model choice must be made with regard for the meteorological and hydrological 

behaviour of the catchment of interest. If we are to accept that higher intensities of storms 

should be included in the model despite lack of empirical evidence, in fact with a 

reduction of fit quality, we must be certain both that such storm intensities are likely to 

occur, albeit with low probability, and that the storms so produced would have important 

effects on the flood regime of the catchment that could be observed during a long 

measurement period but are not already achieved through use of the empirical model. In 

respect of the first point, the concept of ‘probable maximum precipitation’, that there is 

an upper bound on intensity given a specified duration, location and season, is widely 

used. The calculation of such a figure would be based on critical meteorological 

conditions of raindrop size and frequency. This concept is in conflict with the 

assumptions behind the addition of an infinite tail to the intensity distribution, although 

even if accepted it cannot be used to draw conclusions on whether the intensity spectrum 

is fully represented by the empirical data. 

Secondly, consideration must be given to the critical processes governing discharge 

generation within the particular catchment of interest. Summer storms are known to 

generate high intensity, short duration rainfall in the Linton catchment, yet there are no 

corresponding records of damaging flood peaks during the summer months. Instead, 

flood events are generally autumn or winter phenomena, caused only when rainstorms 

occur in times of high antecedent groundwater levels. The stochastic rainfall model 

would replicate such conditions through unusual clustering of rainfall events (i.e. a series 

 163



of low inter-arrival times), contributing to an extreme value of long-term rainfall total. 

This type of pattern is possible through use of the empirical model, and does not depend 

on high intensity rainfall during individual storms. Given this assessment, the empirical 

model (without intensity tail) was chosen to be used in future simulations. 
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4.5 Conclusion  

The stochastic rainfall model has been shown to provide an efficient and accurate 

characterisation of the rainfall regime recorded by the Elmdon gauge. Using kernel-based 

smoothing of the empirical distributions of storm characteristics, the rainfall series has 

been used to determine the model behaviour without additional parameterisation. Storms 

have been separated by season of occurrence, to allow for different meteorological 

behaviour during winter and summer seasons. Storms were also grouped according to 

intensity to account for the correlation between duration and intensity. In addition to the 

purely empirical model, a second model was created which allows for the possibility of 

storms with higher intensity than that measured during the calibration period. This is 

done by using a parameterisation of an extreme value distribution to fit an upper tail to 

the intensity distribution, while retaining the empirical distribution for lower intensities. 

The two models were tested by comparing the observed rainfall maxima over periods 

from 1 hour to 28 days with the corresponding maxima from a suite of simulated series. 

This tested both the short and long term rainfall response characteristics. The results 

suggest that the first empirical model provides an accurate simulation of the observed 

maxima, with the range of simulation maxima bracketing these for each test. The second 

model with an extended upper tail performed less well, with a tendency to overestimate 

maxima, and was therefore rejected in favour of the purely empirical model. The finding 

that a restriction of the intensity distribution to empirical pdf alone does not prevent 

realistic simulation of extremes follows the conclusions of Cameron et al. (2000) who did 

not use an upper tail for high duration intensity classes. The decision was also validated 

by a consideration of the controlling processes of flood generation in the Linton 

catchment, demonstrating the importance of a model tailored to the individual site 

characteristics.  

Finally, the processes described above of storm identification, separation by season and 

duration, density estimation, sampling and production of stochastic rainfall sequences, 

were all automated as Matlab scripts, such that arbitrarily long series may be generated to 

form the input for a rainfall-runoff model. 
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Chap t e r  5  

RAINFALL-RUNOFF MODELLING 

 

Abstract 

This chapter describes the structural choice, parameterisation, application and testing of 

the rainfall-runoff model component of the flood risk assessment framework. A transfer 

function model is used, consisting of a nonlinear module to represent runoff generation 

and a linear module to represent runoff routing. This class of model allows the 

incorporation of some information on catchment structure, while retaining the benefits of 

a lumped model.  

The model algorithms are defined, and through consideration of catchment characteristics 

and gauged flow data available from the river tributaries, two candidate model structures 

are put forward. These are tested using a restricted search of the parameter space to find 

optimal parameter sets for each structure. The simpler model is found to be preferable, 

providing improved parameter identifiability while achieving similar predictive 

performance to the more complex model. 

The rainfall-runoff model is tested using an application to the Linton catchment of the 

River Granta. The GLUE methodology for uncertainty estimation is used, which rejects 

the premise of an optimal model parameterisation and instead allows many different 

parameter sets to contribute to the model prediction. The model is validated in terms of 

its predictive capacity for hydrograph simulation and annual maxima statistics. The 

performance of the model is found to be satisfactory, and to allow prediction of extreme 

discharges even where flow records are incomplete due to gauge malfunction. 
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5.1 Introduction 

Within the end-to-end modelling scheme, the rainfall-runoff model is required to 

represent the transition of water from rainfall over the catchment area to channel 

discharge upstream of Linton. The hydrological processes that the model must represent 

include interception and evapotranspiration, overland flow and infiltration, soil storage 

and subsurface flow and routing. The methods available to simulate these functions range 

from explicit process representation in physically-based mechanistic models to empirical 

‘black-box’ models. A physically-based model is structured to represent the scientist’s 

perceptual model of the system and is based on hydrological principles. Such mechanistic 

models are often large and complex with many parameters, reflecting the perceived 

complexity of the underlying system (Young, 1993). At the other end of the scale are 

empirical models where the model structure and parameter values are inferred from the 

experimental data available and no prior knowledge of the system is assumed. Most 

models lie somewhere between these two extremes, and the choice of model must be 

made with respect to the project goals. In particular, the outputs required from the model 

must be considered; these could range from the simple, e.g. a single hydrograph, through 

to the very complex, e.g. distributed mapping of soil moisture.  

In this study, the primary function of the model is to make an accurate prediction of 

discharge given information on rainfall. No other information is required on catchment 

state or water table levels, and no validation datasets on this type of variable are 

available. This fits with the consideration that the model chosen must be suitable for 

parameterisation with limited quantities of observational data. These points led to the 

conclusion that a lumped model would be most suitable for this application. There is, 

however, a requirement that some information on catchment structure can be 

incorporated into the model, as data is available for separate tributaries within the 

catchment. A popular class of models that have the ability to include this type of 

structural information are the Transfer Function models. These models originated from 

unit hydrograph theory and the Nash Cascade (Nash, 1959), which represent the 

catchment as a linear system. The conventional model structure is detailed in Section 

5.2.2, and allows the catchment to be modelled as a combination of interconnected flow 
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pathways. The structure has been widely tested, and comprehensively reviewed by 

Young (2003). Two methods of using this basic approach have emerged: the first is 

referred to by Wheater et al. (1993) as a ‘hybrid metric-conceptual model’ and uses an a 

priori identification of model structure based on the hydrologist’s knowledge of the 

catchment. Parameters of this model are then optimised using the data available. This 

approach is used in the popular IHACRES model of Jakeman et al. (1990). The second 

has been termed ‘Data-based Mechanistic Modelling’ by its developers (Young and 

Beven, 1991; Young and Beven, 1994) and uses an a posteriori model identification 

approach using statistical estimation procedures, based on the philosophy that the data 

itself should be allowed to suggest the model structure. 

Transfer functions in themselves are not sufficient to map rainfall to stream discharge, 

due to the nonlinearity of the system. Antecedent conditions in the catchment, together 

with storm profile and intensity, affect the relationship between the measured rainfall and 

the ‘effective rainfall’ – the fraction of the rainfall that is routed into the channel system – 

in a nonlinear way. The transfer function module must therefore be augmented with a 

nonlinear module which seeks to represent this complexity. Again several options have 

been developed, ranging from conceptual catchment moisture deficit accounting schemes 

(Croke and Jakeman, 2004; Evans and Jakeman, 1998) through those which seek to 

provide a simple conceptualisation of soil storage behaviour (e.g. Jakeman and 

Hornberger, 1993; Post and Jakeman, 1996; Sefton and Howarth, 1998) to those which 

allow the data to suggest the filter form (Young and Beven, 1991; Young and Beven, 

1994). Chapman (1996) evaluated four loss models including that of the IHACRES 

model of Jakeman et al. (1990) and the ‘Time Compression Approximation’ of Reeves 

and Miller (1975). He found that the optimal algorithm varies between catchments, but 

that increasing the complexity of the module does not necessarily improve the results. 
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5.2 Model Definition 

Transfer function methodology was used in this study to provide the rainfall-runoff 

model component. As outlined above, the model consists of a nonlinear rainfall transform 

module that controls the fraction of the rainfall available as runoff (the Effective 

Rainfall), followed by a linear routing module controlling the characteristics of the runoff 

pathways. The combination of serial and parallel linear pathways may be chosen by the 

hydrologist; a simple example using two parallel pathways is illustrated in Figure 5.1. 

 
Figure 5.1: Example Transfer Model Structure with two parallel linear pathways 

Rt = Rainfall, ut = Effective Rainfall, Qt = Discharge 

The following sections describe the algorithms used for the nonlinear and linear 

transforms, and the choice of linear pathway structure.  

5.2.1 Non-Linear Rainfall Transform 

The nonlinear rainfall to effective rainfall transform used in the model is set out below 

(Equations 5.1 – 5.3). This version of soil storage representation was applied by Sefton 

and Howarth (1998) in their version of IHACRES. It is, in turn, a generalisation of the 

‘Antecedent Precipitation Index’ concept which provides a representation of current soil 

wetness (Ye et al., 1998). 
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Here ut is the volume of effective rainfall at time t resulting from input rainfall Rt. St 

represents the catchment storage index at time t, τ(Ti) is the recession rate of St at 

temperature Ti which depends on the recession rate at 20ºC, τw. The parameter c is used to 

ensure that the volume of effective rainfall equals the volume of runoff (requiring that 

catchment storage is similar at the start and end of the modelling period, usually achieved 

by modelling between two times of low flow). The parameter f modulates 

evapotranspiration with temperature. The model therefore requires a temperature series 

for the period of interest, and the use of calibration techniques to identify parameters c, τw 

and f for each model application.  

The form of the non-linear function implies assumptions about the hydrological response 

of the catchment which reflect the beliefs of the modeller (Young and Beven, 1994). 

Some features of the catchment are constrained in their ability to affect the catchment 

response to rainfall, for example seasonal vegetation effects may only be represented 

through the temperature parameter f (Ye et al., 1998).  

5.2.2 Linear Routing Transfer Function  

The linear routing module of the rainfall-runoff model is provided by the use of a transfer 

function to convert effective rainfall ut into flow Qt. A generalised higher-order transfer 

function has the form shown in Equation 5.4. 
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Where z-1 is the backward shift operator, i.e. z-1Qt = Qt-1. The notation [m n δ] is used to 

refer to a transfer function of this order; i.e. where the numerator has order m, the 

denominator has order n, and the pure time delay is δ. 

In cases where the denominator polynomial has real roots, this form is equivalent to a 

linear combination of first order transfer functions of the form shown in Equation 5.5. 
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Each such transfer function represents a single flow pathway where Qt = aQt-1 + but-δ. A 

higher order transfer function may therefore be designed to represent any combination of 

flow pathways within the catchment which exist in series or parallel.  

The most usual form of transfer function to be specified for small catchments is that of 

two parallel pathways representing quickflow and slowflow. This structure has been used 

in many applications, with possible interpretations of the two pathways being that they 

represent surface and subsurface flow, or old and new water. Although in cases of low 

noise it has been shown that a model with three components is often identifiable 

(Jakeman and Hornberger, 1993), this structure has less often been used in hydrological 

applications. In some applications a single component may be preferable, such as those 

where data is scarce (McMillan, 2002), or in ephemeral catchments without significant 

baseflow (Ye et al., 1997a; Ye et al., 1998).  

In the case of the catchment of the Granta to Linton, the choice of model structure was 

made in relation to both knowledge of physical catchment characteristics and gauging 

carried out in the field, as described in Chapter 3. The chalk aquifer underlying the 

catchment is known to give significant baseflow and therefore flows are expected to have 

a component pathway with a slow time constant relating to this groundwater contribution. 

This suggests that a one-component model is unlikely to be a suitable candidate structure 

as it would be unable to reproduce both the baseflow and flood peaks caused by runoff 

from the boulder clay surface cover. A two-component model may provide sufficient 

scope for representation of the catchment behaviour; however it is also possible that a 

three-component model would be more suitable to allow the simulation of a shallow 

subsurface flow in addition to the deep aquifer flow. 

Parallel pathways within the catchment may also be used to represent different 

geographical areas of the catchment which may have different physical characteristics or 

different precipitation regimes. This type of structure could also be used to allow scenario 

modelling, for example by examining effects of land-use change in individual 

subcatchments. It was thought possible that such a model might prove necessary in the 

Linton catchment, as the three tributaries meeting at Bartlow drain areas with varying 

topography and which frequently receive markedly different rainfall totals during storm 
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events. The component hydrographs reconstructed using gauged data from Bartlow were 

therefore consulted. Figure 5.2 shows a typical result, reprinted from Chapter 3. 
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Figure 5.2: Comparison of Discharges from the tributaries of the Granta, and that 

recorded at Linton, for a single hydrograph. 

The two major tributaries (Bourn and Camps tributaries) were found to have very similar 

hydrograph forms, although the Bourn tributary may have a slightly slower recession. 

This suggests that the two tributaries do not need to be represented as separate flow 

pathways, and could more parsimoniously be considered as a combined source. As 

described above, this source is expected to require representation by at least two parallel 

pathways to include the known groundwater component. However, it appears from the 

sample hydrograph that an additional flow pathway may be activated in times of high 

flow, increasing the flow peak between Bartlow and Linton. This is postulated to be a 

result of overland or near-surface flow directly into the river channel rather than through 

tributary streams, as a result of the less complex topography close to Linton. This result is 

not however seen in all the sample hydrographs. 

Two different model structures were therefore developed for testing. The first comprised 

two parallel pathways, under the assumption that additional flow between Bartlow and 

Linton may be represented by an additional volume entering the same pathway structure 

as that of the upper catchment. The second adds an additional pathway, expected to have 

a shorter time constant and therefore be activated mainly during flood events, which 
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allows for a different underlying mechanism of water transport in the lower part of the 

catchment. Results from the tests are allowed to determine the final choice of structure. 

This method follows the philosophy of data-based mechanistic modelling, allowing the 

data to determine model structure. 

The two structures to be used are therefore as follows: 
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Equation 5.6: Two-component transfer function structure 
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Equation 5.7: Three-component transfer function structure 

The model structures are shown in diagrammatic form in Figures 5.3 and 5.4. The 

parameters that must be estimated for the two component model are βq, βs, αq, αs, δ 

(where suffix q represents quickflow parameters, s represents slowflow parameters), 

given calibration data consisting of effective rainfalls {ut} and flows {Qt}. For the three 

component model there are additional parameters βxs, αxs representing the extra store. 

However, there is an additional constraint that water volume must be conserved within 

the model, as we assume that all effective rainfall becomes discharge. In order to satisfy 

this constraint, it is easier to consider the parameters in terms of proportion of flow pq and 

ps (and pxs for three stores) entering each of the pathways, with the corresponding 

recession time constants τq and τs (and τxs). The constraints then become: 

 ps =1 - pq (5.8: Two components) 

 pxs =1 - pq - ps (5.9: Three components) 

The new parameters are related to the original parameters by the following equations: 
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Where Gq, Gs and Gxs are the steady state gains of the first order components. 

 

 

 

Figure 5.3: Schematic diagram of two-component rainfall-runoff model structure. 

 

 

 

Figure 5.4: Schematic diagram of three-component rainfall-runoff model structure 
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5.3 Model Calibration Techniques 

5.3.1 Calibration Strategies 

In order to make predictions of discharge from the rainfall hyetograph, values for the 

parameters c, τw and f in the non-linear module, and τq, τs and pq (also τxs and ps for the 

three-component model) in the linear module must be found. There are numerous 

techniques available to choose these values. The first decision that must be made is 

whether the hydrologist believes that an ‘optimal’ parameter set exists to be found, or 

whether it is believed that many parameter sets may produce similarly good results.  

In the former case a number of automatic optimisation techniques may be used. In many 

studies using transfer function models, the Simplified Refined Instrumental Variable 

(SRIV) technique (Young, 1984; Young and Jakeman, 1980) and its corresponding 

continuous time form are used (e.g. Jakeman et al., 1990; Ye et al., 1998). However 

many other techniques are available from basic hill-climbing algorithms, to simulated 

annealing and genetic algorithms. A discussion of various methods is given in Sorooshian 

and Gupta (1995). When optimum parameters have been identified, they may in turn be 

used to inform our knowledge of catchment dynamics (Hansen et al., 1997). 

In the latter case, it is accepted that in trying to model any hydrological regime, there may 

be no optimum parameter set, nor indeed any optimal model structure. Instead, given a 

set of observed data and a particular model structure, many different parameter sets from 

different regions of the parameter space may give similarly good predictions, judged in 

terms of some objective function. Instead of a peak in the response surface of the 

objective function, a plateau may be found, with the value of the objective function 

limited by errors in observed data or by constraints imposed by the model structure. This 

type of response has been described by the term 'equifinality' (Beven, 1996; Beven and 

Binley, 1992), and demands new methods of model calibration together with an 

acceptance of the uncertainty within the modelling procedure 
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5.3.2 GLUE 

5.3.2.1 Philosophy 

The Generalised Likelihood Uncertainty Estimation (GLUE) methodology, proposed by 

Beven and Binley (1992), is premised on the concept of equifinality and allows many 

different model realisations to contribute towards an estimation of hydrological response 

and, integrally, the associated uncertainty.  

Based on principles from Bayesian statistics, the technique relies on the computation of a 

'likelihood' measure, which represents an estimate of how likely the model is to produce 

acceptable simulations based on its performance tested against some observed data. The 

idea of a likelihood measure is adapted from traditional statistical theory, where it 

measures the probability of the observational errors giving rise to the measured data, 

assuming that the given model structure is correct. In a hydrological context, the choice 

of the likelihood measure rests with the modeller and is a subjective choice, as the model 

structure and parameterisation are being tested for suitability in a particular context rather 

than absolute accuracy. Assumptions that errors are independent or conform to given 

distributions are also rejected. The only constraints on the likelihood measure are that it 

should be zero for models which are considered ‘non-behavioural’ (i.e. produce results 

too poor to contribute to the final prediction), and that it should increase monotonically 

with perceived ‘goodness-of-fit’ to the calibration data. The method can easily be 

extended to a multicriterion calibration by amending the likelihood measure accordingly 

(Gupta and Sorooshian, 1998). 

The model is then run many times using many different parameter sets (Monte Carlo 

simulations), and the likelihood value calculated for each one. These likelihood values 

are then normalised such that the sum of all the likelihood values calculated is unity. 

Finally the predictions of each behavioural model are weighted using the normalised 

likelihood value. A cumulative distribution can then be calculated for each prediction 

variable at each timestep, and hence quantiles as required (Equation 5.12).  
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Where Qt is the predicted flow (or other variable) at time t, q is the observed flow, Θi is 

the ith set of parameters for the model, L(Θi) is the likelihood value obtained when the 

model is run using these parameters, and Qt
i is the predicted flow at time t using these 

parameters. The empirical nature of the GLUE method allows the calculation of such 

quantiles despite the typically non-normal distribution of the set of flow predictions. 

The success of the methodology may be tested against the calibration data (or separate 

validation data in the case of split-sample testing) by plotting both the recorded flow, and 

quantiles at typically 90% or 95% certainty from the GLUE procedure. Where further 

calibration data are available, either from a different time period or from the 

measurement of an alternative variable, a test may be carried out to determine whether 

the uncertainty in the response would be constrained by use of the additional data. By 

repeating the methodology with a likelihood measure that combines the two sets of data, 

the updated prediction bounds may be plotted. A narrowing of the bounds represents an 

improved constraint of response, however this does not always occur, for example Lamb 

et al. (1998) found little improvement when using borehole data in addition to discharge 

data. 

5.3.2.2 Feasible Parameter Ranges 

A number of decisions must be made when carrying out the GLUE analysis. Assuming 

that the model structure has been fixed, feasible ranges must be identified for each model 

parameter, beyond which the parameter will not be tested. These should generally be set 

more widely than hydrological experience with the given parameter might suggest, as 

previous studies have found high likelihood values even with extreme parameter values 

(e.g. Beven and Freer, 2001; Duan et al., 1992) and the choice of narrow ranges may 

represent an unwarranted restriction of the search space (Xiong and O'Connor, 2000). 

5.3.2.3 Parameter Space Sampling Strategy 

Further to the definition of the bounds of the parameter space, the methodology to be 

used to sample this space must be decided. The most basic method is to use a uniform 

sampling strategy for each parameter independently. This strategy has been used in the 

majority of applications of the procedure to date due to its simplicity; however it may be 
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inefficient if there are large parts of the parameter space which do not produce any 

behavioural simulations. This could occur if the feasible parameter ranges have been set 

too wide, or could be due to interactions between the parameters. This inefficiency has 

led to various attempts to improve the sampling strategy, generally by using some prior 

information about the parameter space. This information could be in the form of 

mechanistic arguments, past experience of the model, or more commonly using an 

adaptive sampling strategy based on previous samples or an initial trial set of samples. 

Examples of this are the tree-structured strategy of Spear et al. (1994), the Guided Monte 

Carlo algorithm (Chen et al., 1997; Shorter and Rabitz, 1997), various methods of 

Markov Chain Monte Carlo e.g. the Shuffled Complex Evolution Metropolis algorithm 

(Vrugt et al., 2003), and the stochastic response surface method of Hossain et al. (2004). 

Marshall et al. (2004) provide a comparison of four different methods. 

5.3.2.4 Likelihood Measures 

Once samples have been taken from the parameter space, the model is run using each 

parameter set in turn. Outputs should then be made from the model to allow a comparison 

with the observed data available. Typically for a rainfall-runoff model this consists of 

simulated channel discharge. A method must then be chosen to compare the observed and 

simulated discharges and produce the monotonically increasing likelihood measure 

required by the GLUE method.  

Probably the most widely used likelihood measure is the R2 efficiency measure of Nash 

and Sutcliffe (1970) 

2

2

1
o

eE
σ
σ

−=  (5.13) 

Where σe
2 is the sum of squared errors (error variance) and σo

2 is the variance of the 

observations (here observed discharges). E has the value 1 for a perfect fit, 0 for a fit no 

better than a straight line fit through the mean of the data, and should be set to 0 for even 

worse fits where a negative value is produced. 

Although the sum of squared errors is a standard metric in statistics, it can have 

disadvantages in a hydrological setting. In particular, it only gives unbiased estimates of 
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the parameters if errors are independently identically distributed as N(0,σ2). This is a 

particular problem if errors are due to timing errors where hydrograph lag is incorrectly 

estimated: in this case errors will be correlated and very poor values of E may be found 

even if hydrograph shape is correct (Troutman, 1985). The sum of squared errors 

measure also biases the likelihood measure towards high flow periods where error 

variance is expected to be higher. This may be an advantage if peak flows are of 

particular interest to the modeller, however Sorooshian and Gupta (1995) proposed an 

alternative in the form of a ‘Heteroscedastic Maximum Likelihood Estimator’ which 

allows for changing error variance. It is also possible to bias the likelihood measure 

towards particular parts of the hydrograph by using transformations of the likelihood 

measure such as taking logs to accentuate recession periods, or using powers to increase 

the focus on flow peaks. Maximum likelihood estimators may also be developed for 

autocorrelated Gaussian error (Beven, 2001b; Sorooshian and Dracup, 1980). 

The choice of likelihood function is not limited to statistical measures such as those 

described above. It may instead be chosen to reflect the modeller’s perception of the 

importance of error form. An example of this is in the use of fuzzy measures, based on 

ideas from fuzzy set theory, which are particularly appropriate when observational data is 

scarce or uncertain. The measures are essentially a simple function of the error between 

observed and simulated data (this may be done separately for each timestep, with values 

then combined to give a likelihood measure for the whole series) and have been used in 

various hydrological applications (e.g. Aronica et al., 1998; Franks et al., 1998; Freer et 

al., 2004; Wealands et al., 2005). 
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5.4 Calibration and Validation 

5.4.1 Data 

The data available for the calibration of the rainfall-runoff model consists of rainfall and 

flow data from the Environment Agency, as detailed in Chapter 3. During the period 

1991-2005, 15-minute rainfall data is available from Elmdon, and 15-minute flow data is 

available from Linton. Both these records, however, contain extended periods of missing 

or corrupt data, unsuitable for use during calibration. The series were therefore processed 

to obtain four continuous and error-free sections of data which could be used for model 

calibration (Table 5.1). 

Series Start Month End Month Length 
1 Feb 1993 Jun 1994 1 Year 5 Months 
2 Jan 1995 Apr 1995 4 Months 
3 Nov 1995 Mar 1999 3 Years 5 Months 
4 Jul 1999 Aug 2005 6 Years 2 Months 

Table 5.1: Error-free periods of rainfall and flow data. 

In total there are 11 years and 4 months of data series available for calibration. The length 

of series required to effectively calibrate a model depends both on the complexity of the 

model (number of parameters and sensitivity of these parameters) and on the seasonal 

variability of the catchment response. Beven (2001b) suggests that for a simple 5-

parameter model, 15-20 hydrographs are typically required for a robust calibration. 

Others have found that a longer series was required, for example Ye et al. (1997b) 

deemed 2-3 years of data adequate; Hornberger et al. (1985) found 18 months of data 

insufficient to record the full range of catchment behaviour. In this case, the 2-store 

model requires 7 parameters, the 3-store model 9 parameters, and it is concluded that the 

length of data available is sufficient.  

Due to the strong seasonal baseflow signal in the flow data, it is important that the model 

is calibrated using continuous series of data covering multiple years of record, to allow 

the model solutions to reflect the seasonal catchment response in addition to the flashy 

stormflow response. This is achieved within the chosen model structure by a correct 

parameterisation of the f and τw parameters which control the response of the soil 
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moisture store, together with correct distribution of water volumes between quickflow 

and slowflow stores. Each of the four data sets are therefore input into the model as a 

whole, in preference to treating the individual seasons separately. The two longer datasets 

of three and six years respectively are particularly valuable in achieving this aim. 

5.4.2 Methodology 

5.4.2.1 Model Structure Identification 

A primary analysis involves the consideration of the model structure, with the aim of 

deciding the minimum complexity required. In the Linton catchment two structures were 

evaluated: the two-store and three-store transfer function models. The evaluation 

consisted of an initial period of testing to determine which structure was able to 

reproduce the catchment behaviour to the fullest extent within a well-conditioned 

framework. Standard methodology for using the IHACRES model suggests that a full 

parameter space search should be made for the f and τw parameters only, with the 

remaining parameters defined by an optimisation search method. This method greatly 

reduces the computational effort required as the search space is reduced from six 

dimensions to two. This technique would not be suitable for the current application as it 

does not recognise equifinality of solutions across transfer function parameters, which is 

important in capturing uncertainty in the model predictions; however the method can be 

used to give an overview of typical model success. For each of the two model structures, 

wide limits were initially chosen for the f and τw parameters (Table 5.2) in order to fully 

capture model response.  

Parameter Min Max 
f 0 0.5 

τw (days) 0.5 150 

Table 5.2: Initial parameter ranges. 

This 2d parameter space was then fully searched using the rivid function of the Captain 

Toolbox (Young et al., 2004) to produce an optimised solution for each (f, τw) pair. This 

function uses the Refined Instrumental Variable algorithm which provides robust, 

unbiased estimation of multivariate transfer function models. The optimisation algorithm 

was run once for a [2 2 d] model structure and once for a [3 3 d] model structure (refer to 
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Section 5.2.2 for explanation of notation). Where the denominator polynomial has real 

roots, these correspond to the 2 and 3-store models. The pure time delay d was allowed to 

vary between 0 and 12 hours. The solutions were then assessed for goodness-of-fit using 

the R2 efficiency measure. As explained previously, four data series of varied length are 

available for calibration; the results for each series are plotted in Figure 5.5. 
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Series 1: [3 3 d] Model 
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Series 2: [2 2 d] Model 
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Series 2: [3 3 d] Model 
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Series 3: [2 2 d] Model 
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Series 4: [2 2 d] Model 
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Series 4: [3 3 d] Model 

Fig 5.5: Optimised R2 values from a parameter search of f-tw space, using each of the 
four time series of data, fitted using the two-store [2 2 d] and three-store [3 3 d] models. 
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It is clear that there are significant differences in optimal parameterisation between the 

data series. In particular it proved difficult to find a satisfactory parameterisation for 

Series 3; note that the colour scale is adjusted for this series in Figure 5.5 above. Series 3 

spans the years 1996-1999, notable for extremely dry conditions. During the 1996-1997 

period particularly, flow seldom exceeded the 0.04 m3s-1 pump-supported level. The 

model struggled to simulate the lack of response to the limited winter rainfall; this is 

conjectured to be partly due to abstraction within the catchment which is not represented 

by the model. Although the parameter sets above consider each series separately, the 

model is designed to process multiple years of simulated rainfall, and therefore 

parameterisations must be found which are applicable across all series. This presents a 

more difficult problem, and highlights the difficulties of model selection within a 

catchment showing strong seasonal variation such as the Linton catchment. 

The differences in performance between the two-store and three-store models were 

compared using the graphs above. Use of the additional store does produce an 

improvement in optimum fit, however the increase in R2 value is typically small. In order 

to consider the improvement in the light of the parameterisation aims, i.e. to find 

parameterisations suitable for all series, the improvement in the average R2 across series 

by adding the third store is shown below in Figure 5.6.  
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Fig 5.6: Improvement in average R2 value using [3 3 d] model. 

The improvement in R2 of between 0.01 and 0.04 in the regions of interest was not felt to 

be sufficient justification for the addition of the extra parameters required for the three-

 184



store model. Over-parameterisation is an ever-present danger in hydrological modelling, 

often resulting in ill-conditioned models which fail to extract the information present in 

the data series available. This leads to a lack of stability in the model, typically resulting 

in poorer validation results despite better calibration performance in models with larger 

numbers of parameters (Perrin et al., 2001). This response is well demonstrated by an 

attempt to identify the pure time delay parameter in a trial application of the GLUE 

procedure in the Linton catchment. For the two and three store models, parameter sets are 

randomly sampled and tested against the data series available. For each set with an R2 

value greater than 0.6, the parameter d is plotted against the R2 value (for further details 

on this procedure, refer to Section 5.4.3.1). The results are shown in Figures 5.7 and 5.8. 
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Figure 5.7: Delay identification using the   2 
store model 
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Figure 5.8: Delay identification using the 3 
store model 

Figure 5.7 shows that using the 2-store model, the pure time delay is identified from the 

calibration data to within a range of around 4 hours. Although there is uncertainty within 

this range, information from the data series has been used to constrain the value within 

these bounds. The 3-store model has failed to identify such a constraint, and good fits are 

found up to the edge of the parameter space. This would typically be caused by other 

parameters compensating for poor values of delay, suggesting ill-conditioning of the 

model.  

In order to understand why the three-store model did not produce an obviously improved 

fit to the data over the two-store model, the contribution of each of the stores to the total 

discharge over a period of several months was considered. For each model structure, a 
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parameter set producing a high value of R2 was chosen, with similar value of shared 

parameters, and the model output as a combination of three flow sources was plotted 

against the recorded discharge (Figures 5.9 and 5.10). The plots show that the two-store 

model has been able to replicate the behaviour of the three-store model. This has been 

done by using a slow flow pathway with a smaller time constant, and redistributing the 

percentage of flow in each pathway. The reduced number of parameters has not 

prevented the model from representing both flood peaks and the seasonal cycle in 

baseflow, caused in the Linton catchment by variations in discharge from aquifers 

underlying the catchment. The result suggests that the flow processes throughout the 

catchment are homogeneous, and the data available does not justify separate 

representation of subcatchment areas. 

The two-store model is therefore be used for all further simulations in the catchment, as it 

provides similar predictive performance to the three-store model in a well-conditioned 

model structure.  
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Figure 5.10: Discharge separated by flow path for 3-month example period: Three-store model. 

Figure 5.9: Discharge separated by flow path for 3-month example period: Two-store model. 

 

 



5.4.2.2 Production of Behavioural Parameter Sets 

With the choice of model structure made, parameter values to control the rainfall-runoff 

model must next be identified. In order to capture the range of possible catchment 

behaviours identifiable from the rainfall-flow record, 1000 independently sampled 

parameter sets for the model were used. Each was required to produce a reasonable 

simulation of the flow record given the input rainfall record, and the level of similarity 

achieved was rated using a likelihood measure. 

The following procedure was used to produce the parameter sets. First, 1000 parameter 

sets were sampled according to the chosen feasible parameter ranges and sampling 

strategy. Any sets which did not meet specified criteria for parameter interaction were 

discarded. Each set was then used to reproduce a flow record for each of the rainfall 

records available. The chosen likelihood measure was then calculated to rank the 

performance (combined across record periods) for each parameter set. Any sets not 

achieving a reasonable standard were discarded; the remainder were recorded along with 

the likelihood value. This process was then repeated until 1000 parameter sets were 

retained and recorded. Each step of this process is explained in further detail below. 

5.4.2.3 Parameter Ranges and Sampling Strategy 

As detailed in Section 5.2, the two-store rainfall-runoff model has 7 parameters to be 

identified: c, f and τw for the non-linear rainfall transform, τq and τs the time constants for 

the fast and slow flow pathways in the routing transfer function, pq the proportion of flow 

in the fast pathway, and δ the pure time delay. In order to choose the initial parameter 

space for the parameters, a combination of knowledge of the model and catchment gained 

through the optimisation exercise undertaken in Section 5.4.2.1 was used. 

The parameters f and τw were subject to a full parameter space search during the trials to 

determine model structure. Although the initial ranges were chosen deliberately to be 

wide, in many cases good results were found up to the boundaries of the parameter space, 

as has been observed elsewhere in model calibration studies (Beven, 2001b). It was 

therefore decided to retain the original bounds, as there is no physical basis on which to 

restrict parameter values. The trial sampling procedure above may also be used to inform 
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the choice of ranges for the parameter c controlling the nonlinear store, and the 

parameters of the linear routing module. Knowledge of the optimised parameter values 

found for each (f, τw) pair provides some information on typical parameter values, 

although it is important to note that these records do not give us any information on the 

range of behavioural parameter values within a single (f, τw) pair. By considering the 

ranges observed in the trial procedure, and widening them to account for within-pair 

variability, the ranges were chosen as shown in Table 5.3. 
 

Parameter Minimum Maximum 
f 0 0.5 
τw 0.5 days 140 days 
c 1 mm 4000 mm 
pq 0 1 
τq 0 hours 20 hours 
τs 0.5 days 80 days 
d 0 hours 15 hours 

Table 5.3: Initial parameter ranges 

5.4.2.4 Likelihood Measure 

In order to associate each parameter set with a ‘degree-of-belief’ or likelihood measure, a 

comparison is made between the flow series predicted by the model using that parameter 

set, and the measured flow series. Given the wide range of options available in choosing 

a likelihood measure, it is essential to consider the aspects of fit which are most important 

for the purpose of the particular model application. Here, the aim of creating the rainfall-

runoff model is to provide long-term simulations of flow behaviour in response to 

rainfall, in order to consider the relationship between return period and flood magnitude 

in the Linton catchment. The likelihood measure chosen should therefore be biased 

towards a validation of model fit during high flow periods. This aim is achieved in two 

ways. First, the comparison between observed and predicted series is made only during 

the winter months October-March of each year of simulation. This measure was 

implemented in response to model trials which showed that due to the highly non-linear 

behaviour of the system between seasons, a likelihood measure that gave equal weight to 

summer and winter performance lead to optimal parameterisations which gave relatively 

poor performance in winter months. By biasing the validations towards high-flow 
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periods, significant improvements in winter flow fitting are achieved, and therefore 

significant improvements in annual flood peak estimation are made. Increased errors 

during summer periods as a result of this choice will not adversely affect high flow 

predictions as they were not found to cause erroneous simulation of significant flood 

peaks. It is also important to note that there is no conflict between this choice of 

likelihood measure and the crucial ability of the model to simulate inter-annual variability 

of baseflow levels, as the model is still parameterised using data series lasting multiple 

years, and is therefore tested in its ability to predict winter flows conditioned on summer 

rainfall totals. 

The second method by which model fit is biased towards correct prediction of flood 

peaks is in the choice of the Nash-Sutcliffe efficiency, R2 (as described in Section 

5.3.2.4) to give a likelihood value for each winter season. As previously described, this 

measure is biased towards high flow periods as these are likely to contain the greatest 

error magnitudes.  

The likelihood value for each series must then be combined to give a single likelihood 

value for the parameter set. The values are combined by a weighted average to give 

greater weighting to the longer data series. The weighted mean efficiency is preferred 

here over the commonly-used Bayes equation for updating likelihood measures, as this 

would bias the resulting likelihood value towards those of later series over those of earlier 

series. Although this can be a desirable characteristic when modelling catchments which 

show dynamic behaviour, here the system is not considered to have changed significantly 

during the period of the flow record. Although land-use changes and climate change 

could act to alter the catchment response, they are unlikely to produce important effects 

within the relatively short period of twelve years.   

If a particular parameter set performs poorly in predicting the recorded data, it should be 

classed as ‘non-behavioural’ and not used in future predictions. This is equivalent to 

setting the likelihood measure to zero. A cut-off value for the likelihood measure is 

therefore defined, and only models achieving better than this are retained. The 

requirement for specification of this threshold value has been seen has a weakness in the 

calibration structure as it requires a subjective decision which may influence the range of 
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behaviour produced by the model. The value chosen depends on both the accuracy 

required in the model, and the difficulty of the task in reproducing the recorded values. 

Typically rainfall-runoff models predicting complete years of data in a flashy upland 

catchment would be expected to achieve values of around 0.5-0.7. In this case the more 

difficult task of achieving good predictions in a groundwater-dominated catchment is 

balanced against the decision to validate on winter periods only; a mid range value of 0.6 

is therefore used. 

5.4.3 Results 

5.4.3.1 Parameter Ranges 

The parameter ranges required for the model were found using an iterative method. The 

initial ranges specified in Section 5.4.2.3 were used to produce the first batch of 

parameter sets. These sets were then used to predict the flow response for each of the data 

series, and the likelihood measure was then calculated by comparing each response with 

the recorded flow series. Only those series with a likelihood measure greater than 0.6 

were retained.  The sensitivity of the model to each parameter was then visualised using a 

‘dotty plot’: a one-dimensional representation of the response surface. Each simulation is 

represented by one dot on a graph showing the likelihood value against the parameter of 

interest (for examples see Figure 5.11). Where the parameter range has been set 

unnecessarily wide, no high values of the likelihood function will be found at the margins 

of the plot. In most cases however, high likelihood values will be found throughout the 

parameter range. This may be an indication that the parameter range is too narrow, or it 

may reflect interdependence between parameters; knowledge of the model must be used 

to determine the cause. The dotty plot visualisation was used to adjust the parameter 

ranges before resampling, so that further parameter sets were sampled from the portion of 

the parameter space showing behavioural results. The updated parameter ranges are 

shown in Table 5.4. 
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Parameter Minimum Maximum 
f 0 0.5 
τw 0.5 days 150 days 
c 1 mm 2500 mm 
pq 0 1 
τq 10 hours 20 hours 
τs 0.5 days 80 days 
d 0 hours 10 hours 

Table 5.4: Final parameter ranges. 

When 1000 behavioural samples had been retained (from an original sample size of 

200,000), these were again visualised using dotty plots (Figure 5.11). The dotty plots 

show behaviour typical of GLUE samples, with limited parameter sensitivity for the 

ranges sampled. The parameters f, τw and τs show little sensitivity with good values of R2 

throughout the parameter ranges. Parameter pq is constrained to the upper part of the 

range, showing that the model simulates the catchment behaviour well with a high 

proportion of flow in the quickflow pathway, despite the strong baseflow influence 

known to exist in the catchment. This is a surprising finding and may reflect the 

insensitivity of the R2 performance measure to errors in recession periods, together with 

the bias of the objective function towards winter periods when the baseflow component 

plays a less defining role. The quickflow time constant τq is also constrained to the higher 

values in its range. Parameter d, the pure time delay, is constrained to the central part of 

the range, showing high model sensitivity to this parameter. This may be expected as 

errors in time delay would cause autocorrelated timing errors in hydrograph predictions, 

which would lead to high error totals. 
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Figure 5.11: Dotty plots of 1000 behavioural parameter values vs R2
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5.4.3.2 Output Hydrographs 

The 1000 behavioural parameter sets, weighted by likelihood measure, were used to 

make discharge predictions in response to input rainfall series. At each timestep, the 

weighted cumulative distribution of discharge magnitude is found, and this is used to 

determine the upper and lower probability limits. The standard probability points of 0.05 

and 0.95 were used. Examples of the limits obtained are shown below in Figures 5.12 to 

5.14. 
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Figure 5.12: GLUE bounds for 2002/2003 hydrological year. 
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Figure 5.13: GLUE bounds for Winter 2002/2003 detail. 
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Figure 5.14: GLUE bounds for Winter 2000/2001 detail. 
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Figure 5.12 demonstrates the fit during a complete year. In general the fit is good, 

although the 5% and 95% bounds bracket the data better during the winter than during 

the summer; in recession periods the model predictions are generally slightly too low. 

This is likely to be due to the calibration strategy which was weighted towards high 

winter flows in response to the intended use of the model for flood peak prediction. There 

are also discrepancies at the start and end of the winter season where some realisations of 

the model predict high flows that did not occur. This would typically be due to incorrect 

soil moisture status within the model; these parameter sets predict quicker wetting up or 

slower drying out of the soil matrix than actually occurred, and demonstrate the difficulty 

of consistently good discharge prediction in catchments displaying a highly non-linear 

response to rainfall. 

Figure 5.13 shows a close-up of the 2002/2003 year described above, in order that the 

hydrograph fit can be examined in more detail. Although the model bounds bracket the 

data for much of the series, the predictions are generally low compared with the recorded 

flow, in both recession and peak periods. This suggests that the models are not predicting 

sufficiently high soil moisture levels during the particular season. To verify this, detail 

from an alternative winter season where the catchment was much wetter (2000/2001) is 

plotted in Figure 5.14. In this, model predictions show improved accuracy in both high 

and low flow periods, suggesting that the model has been able to make an accurate 

prediction of seasonal wetness conditions. It is promising to note that in both cases, the 

highest flood peak was predicted well by the model ensemble, as it is the annual 

maximum from each year that is used in further statistical analysis. 

5.4.3.3 Prediction of annual maxima 

In the light of the intended model use, for predicting the frequency of occurrence of 

floods of different magnitudes over long simulation periods, it is important to validate the 

model in terms of reproduction of discharge extremes in addition to the prediction of 

hydrographs. As noted in the previous paragraph, yearly extremes appear to be bracketed 

well by the discharge uncertainty bounds. However, this method of plotting the flows 

does not show the cumulative distribution of annual maxima when individual series are 

considered separately; previous studies suggest that different model parameterisations 
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often record maxima from different rainfall events (Lamb, 1999). The model 

performance was therefore tested by comparing observed annual extremes with the 

uncertainty bounds of modelled annual extremes (Figure 5.15). This comparison is 

necessarily limited by the short period of data available, however it affords a simple but 

useful check on model behaviour. 
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Figure 5.15: Comparison of observed and modelled annual flow maxima, using 10 years 
of gauged flow data. 

Figure 5.15 shows that the model performs well in comparison to the observed extremes 

for the lower return periods, with observations correctly bracketed by the uncertainty 

bounds of the model. However for higher return periods, the model predicts higher 

discharges than those present in the record. This is not unexpected, and in fact is an 

encouraging result because the gauge at Linton is known to drown at water levels above 

0.46 m, and therefore records high flows inaccurately, typically recording flows no 

higher than 5 m3s-1 even during extreme events. Figure 5.16 below demonstrates the 

response during a flood peak; the model is able to predict the extreme discharge despite 

missing data where the gauge malfunctioned. Given the knowledge of this problem with 

the gauged flows, the model performance is accepted as satisfactory. 
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Figure 5.16: GLUE bounds during event with overtopped gauge 
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5.5 Discussion and Conclusions 

This chapter has described the largely successful application and testing of a rainfall-

runoff model for the Linton catchment, while raising many issues relating to the choice 

and calibration of the model. The existence of equifinality in model structure and 

parameterisations was considered, together with the extent to which it can be efficiently 

incorporated within an inclusive modelling method. The succession of choices that must 

necessarily be made during a modelling procedure each have their own influence on the 

final result and introduce bias tied to the modeller’s understanding of the catchment. 

Above all, the method has emphasised that there are no right answers in model choice, 

and decisions must be made in relation to the aims and objectives of the study. 

From the start, the presumption of an optimum model structure and parameter set was 

rejected in favour of an acceptance of equifinality. The decision was felt necessary due to 

the conscious simplifications made in representing the layers of complexity present in the 

true catchment by a model designed to reproduce only stream discharge. Proxy 

representations of unmodelled processes and effective parameters acting at scales far 

removed from those measured remove the possibility of model parameterisation direct 

from physical catchment characteristics. There are, however, limits to the number of 

possible catchment representations that can be efficiently included within the GLUE 

method for investigating and integrating equifinality. As each uncertainty in model 

structure and parameterisation adds another dimension to the search space, computational 

effort required to evaluate the model predictions increases exponentially. After 

investigation of model results using two different model structures representing different 

conceptualisations of dominant processes, the decision was therefore made to fix 

structure within the procedure, and to consider only the parameterisation of the model as 

subject to equifinality. The need to accept multiple parameter sets was highlighted by the 

wide range of parameter values producing high quality model simulations, as evidenced 

by visualisations of the behavioural subset of the parameter space using dotty plots. The 

practical need to restrict application of uncertainty estimation within computational limits 

is an ever-present consideration and a subject that is returned to in the Chapter 7. 
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The dependence of the modelling results on the multitude of choices made during model 

development brought to attention the judgements which must be made based on the 

hydrologist’s experience and the aims of the study; and hence the importance of 

catchment knowledge and process understanding in order to optimise results. The 

threshold level at which simulations are considered behavioural has no grounding in any 

physical cut-off point and yet has a controlling effect on the range of behaviour 

considered possible within the catchment. The choice of likelihood measure again is 

subjective and yet essential in differentiating behavioural from non-behavioural 

simulations. This may be perceived as an advantage in allowing the hydrologist to tailor 

the model behaviour to the aims of the application, however it may introduce bias into the 

extent to which different processes are properly represented by the model. The difficulty 

of making these decisions was highlighted by Beven (1987) who found that different 

modelling objectives - continuous simulations versus flood peak estimation - led to 

different parameter choices and differing parameter sensitivity. Although Cameron et al. 

(2000) showed that by accepting equifinality, multiple objectives may be met 

simultaneously, there remain many viable models of the catchment which are excluded.   

In the current study, such choices were typified by the decision to bias the model 

parameterisations towards the winter periods where it was considered most important to 

achieve correct simulation of flood peaks. This inevitably led to compromises in model 

accuracy during the remainder of the yearly cycle; in particular irregularities were found 

during the wetting up and drying out periods in early autumn and spring respectively. 

This finding reflects results in other studies of continuous simulation. Cameron et al. 

(2000) found difficulties in parameterisation of TOPMODEL such that flood peaks which 

followed a prolonged dry spell were properly simulated; similar results were also 

indicated by Brasington and Richards (1998) and Lamb (1999).  

In the Linton catchment, the problems of modelling groundwater-dominated river 

discharges were felt to make such choices particularly important. Other studies (e.g. 

Lamb, 1999) have commented on the difficultly of representing such hydrological 

regimes, and the need for manual adjustment of parameters in addition to standard 

optimisation techniques to reflect the hydrologist’s perception of model success. Errors 

were postulated to be due to inaccurate representation of the dynamics of recharge to the 
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slow-flow store; made more probable in the Linton catchment due to known abstractions 

of groundwater for drinking water, a process not included in the model. While it would 

be possible to introduce extra components into the model in an attempt to represent this 

process (and the many others ignored as a result of the simple model structure) there is a 

danger that the resulting additional parameters would cause the model to become ill-

conditioned. This was demonstrated when the addition of two extra parameters during the 

trial of the three-store model caused reduced identifiability of model parameters. 

The above discussion has emphasised the restrictions that must be placed upon 

uncertainty estimation, and gone some way to demonstrating the ambitious nature of an 

attempt to represent equifinality within an end-to-end modelling structure. It has also 

given an example the uniqueness of any individual catchment and model application, and 

the need therefore to be prepared to adapt standard techniques of modelling and 

likelihood evaluation in response. Despite these considerations, it was found possible to 

produce a catchment model that was well-conditioned and able to reproduce catchment 

responses in terms of both hydrograph simulation and flood frequency estimation, while 

including the perceived dominant sources of uncertainty.   
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Chap t e r  6  

URBAN FLOODPLAIN INUNDATION MODELLING 

 

Abstract 

A Floodplain inundation model is required as part of the end-to-end flood risk assessment 

framework in order to translate upstream discharge predictions into simulations of flood 

wave progression along the channel and associated inundation patterns along the river 

corridor including urbanised areas. This chapter describes the formulation of the 

inundation model and its application to the study reach at Linton on the River Granta. 

This application reflects the wider expectations of recent years that floodplain inundation 

models should be able to provide simulations of flood events over complex urban terrain. 

The data to parameterise the complex topography of such landscapes is now frequently 

available through airborne LIDAR scanning which can be used to produce DEMs of 

resolution 1 m or better. However, computational constraints often preclude model 

applications at such high resolution. This chapter therefore explores two strategies that 

attempt to address this mismatch between model and data resolution in an effort to 

improve urban flood forecasts. The first explores the use of high resolution data directly 

within a reduced-complexity model structure which couples a 1d channel model to an 

efficient 2d raster storage cell floodplain representation. The second approach seeks to 

further reduce the computational overhead of this raster method by employing a sub-grid 

parameterisation to represent the effect of buildings and micro-relief on flow pathways 

and floodplain storage, while allowing model application at coarse spatial resolution. 

The two strategies are tested through a reconstruction of the October 2001 flood event in 

Linton. Results from both approaches are encouraging, with the spatial pattern of 

inundation and flood wave propagation matching observations well. The sub-grid 

parameterisation is shown to achieve accuracy close to that of a full high resolution 

implementation, while reducing model run-times by an order of magnitude. 
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6.1 Introduction 

A Floodplain inundation model forms the final link in the chain of coupled models used 

to simulate the propagation of floodwater through the Linton catchment. It is required in 

order to translate discharge predictions at the gauging site upstream of the town into 

simulations of flood wave progression along the channel and associated inundation 

patterns along the river corridor and within the urbanised area. 

Significant recent advances in floodplain inundation modelling have been achieved by 

directly coupling 1d channel hydraulic models with 2d raster storage cell approximation 

for floodplain flows (e.g., Bates and De Roo, 2000). The strengths of this reduced-

complexity model structure derive from its explicit dependence on a regular gridded 

digital elevation model (DEM) to parameterise flows through riparian areas. This 

approach offers order of magnitude gains in computational efficiency over more complex 

finite element and volume codes, and so enables a more critical examination of parameter 

and structural model sensitivities and predictive uncertainty using Monte Carlo methods 

(Aronica, et al., 2002). 

Previous applications of this reduced-complexity framework have generally used mid-

range grid scales of 25 – 250  m, with the aim of simulating flood wave propagation and 

inundation over  long (101-102 km) river reaches (Bates and De Roo, 2000; Horritt and 

Bates, 2001b). These grid scales enable the use of medium-resolution digital elevation 

data from digitised contour data, air stereo-photogrammetry or other sources. However, 

results from models run at such coarse resolution may suffer from inaccuracies due to the 

umodelled effects of detailed floodplain geometry below the grid scale. Large cell sizes 

have forced the use of weakly constrained floodplain roughness parameters as a substitute 

for the combined effects of vegetation and structures (Bates et al., 1998; Horritt, 2000; 

Horritt and Bates, 2001b; Mason et al., 2003). Although computational constraints have 

previously limited model resolutions to these mid-range scales, continuing advances in 

computer resources now offer the potential to apply such models at finer spatial scales 

where the geometrical complexity of the built environment may be explicitly modelled. If 

successful, this would enable an extension of the 2d modelling approach to urban 
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landscapes where buildings may play a large part in constricting and directing water 

movement, and where flood risk is most acutely realized. 

Until recently, application of high resolution models at the floodplain scale was also 

limited by the lack of quality survey data. Increasingly, however, airborne laser altimetry 

(LIDAR) is being used to provide DEMs at very high spatial resolutions (0.5 – 2 m) with 

precision of around 0.1 m. Although this data source has been used for rainfall-runoff 

modelling (Lane et al., 2004), and coarse-scale flood inundation modelling with finite-

element schemes (Bates et al., 2003; French, 2003; Marks and Bates, 2000; Mason et al., 

2003), it has yet to be used within a reduced-complexity raster scheme to allow 

representation of urban topography at the smallest grid scales. Building on the 

opportunities presented by this emerging data source, this chapter explores two 

contrasting approaches to modelling urban flood hydraulics using reduced complexity 

methods parameterised with airborne LIDAR (see Sections 6.1.1 and 6.1.2). The two 

modelling methods are tested through application to the Linton catchment in the context 

of a reconstruction of the flood of October 2001. Validation is carried out using 

hydrograph records and distributed inundation depth data within a multi-criteria 

approach, to allow verification of estimated channel wave attenuation and flood outline. 

Comparisons are made of the running times and accuracy achieved in each case. The 

final aim of the chapter is to make an informed choice of the most suitable model 

structure, scale and parameterisation for use within the end-to-end modelling framework. 

6.1.1 Reduced Complexity Modelling 

The first model developed here uses the simple combined 1d channel and 2d raster 

scheme at a 2 m grid resolution, which allows explicit representation of buildings in the 

topographic boundary condition. Application of the raster method at this scale requires a 

number of modifications to existing approaches (e.g., Bates and Horritt, 2000), including 

a new channel-floodplain cell mapping routine, revised and improved stability 

procedures, and adaptive time-stepping. When applying the model at this resolution, two 

particular aspects of its performance should be considered. First, an assessment must be 

made of the model success in representation of the governing physics. The computational 

gains in raster modelling arise largely by adopting a uniform flow approximation for 

 203



floodplain flows in which gravity and frictional forces are assumed to dominate the 

momentum balance. While this may be reasonable for slow flows over smooth, low 

gradient rural floodplains, complex urban flows are likely to comprise unsteady and 

rapidly varying regions. It is therefore possible that neglecting the pressure and inertial 

terms of the momentum equation may lead to erroneous flow paths, velocity and depth 

distributions, and so model ability to reproduce inundation behaviour must be verified. 

Second, the operational efficiency of the model should be assessed when it is applied at 

high resolutions to large model domains which may contain upwards of 106-107 cells. 

6.1.2 Sub-Grid Scale Modelling 

The wealth of terrain information contained within a LIDAR scan of a river reach brings 

into focus a situation increasingly being found in hydrological modelling: the availability 

of parameterisation data of smaller scale and larger extent than it is computationally 

feasible to include in a simulation. This may be contrasted with the historical situation 

where model complexity was often limited by the data available. In response to this 

reversal, methods of sub-grid parameterisation are becoming increasingly popular; 

Chapter 2 explored their potential ability to improve the behaviourability of model 

response. Although traditionally any treatment of sub-grid variability might have been 

considered as a method of compensating for unmeasured local heterogeneity, it may 

instead be viewed as an opportunity to include additional observed data into the model 

structure in an efficient way. Sub-grid methods have been applied in various forms, for 

example to resolve issues in partially-wet cells at the inundation edge zone (Bates and 

Hervouet, 1999; Defina, 2000; Defina et al., 1994; Hervouet and Janin, 1994); to identify 

vegetation and include the information through a frictional coefficient (Mason et al., 

2003); or as part of a more complex scheme to modify the full shallow water equations to 

take into account small-scale ground irregularities (Defina, 2000).  

Following this approach, the second model developed here uses the concept of ‘cell 

porosity’ to allow the use of sub-grid topographic information within a coarse resolution 

model. The porosity function quantifies the percentage of the assumed cell volume that is 

available for water storage after accounting for sub-grid features; similarly modified 

values of cell boundary cross-section area and wetted perimeter are also defined. By 
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using this information to adjust the continuity and momentum equations, it may be used 

to inform model behaviour in terms of preferential flow directions and flow volumes in a 

way that is not possible using a simple roughness coefficient. The method is designed to 

reflect the first order controls on flow conveyance while enabling simulations to be 

carried out at a computationally efficient resolution. Yu and Lane (2006b) demonstrated 

the potential of the porosity concept by using sub-grid scale information at a resolution 

half that of the model. By allowing more extensive porosity information to be included, 

this paper shows that a detailed representation of structures on the floodplain can be 

incorporated within a model running at an efficient scale 
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6.2 Modelling and Methods 

6.2.1 Developing the Raster Storage Cell Approximation 

6.2.1.1 Channel Wave Treatment 

The basic reduced complexity model used here couples a 1d channel model with a 2d 

floodplain model. The channel model uses the kinematic approximation to the Saint-

Venant equations, which describe one-dimensional unsteady open channel flow. They 

consist of a continuity equation and a momentum equation, both partial differential 

equations written below in their Conservation form (Equations 6.1 and 6.2). Variables 

used are: Q, flow; A, cross-sectional area; t, time; x, horizontal position; y, vertical 

position; g, gravity; S0, bed slope; Sf, friction slope. 

Continuity Equation: 0=
∂
∂

+
∂
∂

t
A

x
Q  (6.1) 

Momentum Equation: 
{

0)(11
0

Pr

2

=−−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅+
∂
∂
⋅

321321
4434421321

Term
Force
Friction

f

Term
Force
Gravity

Term
Force

essure

Term
onAccelerati

Convective
Term

onAccelerati
Local

SSg
x
yg

A
Q

xAt
Q

A
 (6.2) 

The equations can be simplified by using the full continuity equation, but a reduced form 

of the momentum equation. The kinematic approximation uses only the gravity and 

friction force terms, neglecting pressure and acceleration terms. This simplification 

therefore represents flow controlled by opposing gravitational and frictional forces, and 

does not allow backwater effects where level or velocity changes may propagate 

upstream. 

The kinematic wave equations may be solved analytically for inbank flows, however 

when overbank flow occurs an analytic solution is no longer possible. Instead, a 

numerical solution is used, applying the finite difference form of the equations (Chow et 

al., 1988). This is achieved by combining the continuity and momentum equation to 

produce a single equation with Q as the only dependant variable. By using Manning’s 

Equation to relate S0 to Q and A, Equation 6.3 can be derived. In the equation, n is 
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Manning’s roughness, P is the wetted perimeter and q is the lateral flow between the 

channel and the floodplain. 
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Equation 6.3: Kinematic Wave Expressed as Single Equation 

This equation may then be solved numerically to find Q(x,t) for each value of x 

(horizontal distance along the channel) and t (time). The data requirements for this 

channel model are channel slope, channel width and channel depth, provided at each 

increment of horizontal distance along the channel. 

6.2.1.2 Floodplain Storage Cell Methodology 

The floodplain model uses a raster cell approach that has been popularised by Bates and 

De Roo (2000) and De Roo et al. (2000) with their model LISFLOOD-FP; similar ideas 

have also been used by Estrela and Quintas (1994) and Romanowicz et al. (1996), all 

building on methods suggested by Cunge et al. (1976). This type of model has been 

shown to be useful in practical scenarios (for example land-use change predictions: De 

Roo et al., 2001; De Roo et al., 2003), and is particularly prized for its ability to produce 

inundation predictions at a similar level of accuracy to finite element codes while running 

an order of magnitude more quickly (Aronica et al., 2002; Horritt and Bates, 2001b).  

The floodplain model uses numerical discretisation in space and time, as with the channel 

model. The floodplain is treated as a grid of square cells, with flow allowed between 4-

connected cells at each time step. As in the channel model, continuity and momentum 

equations are solved to calculate the flow rate. The continuity equation relates flow 

across cell boundaries to the volume stored in the cell (Equation 6.4); the momentum 

equation uses Manning’s Law to relate flux to surface slope and hydraulic radius 

(Equation 6.5). 
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Where hi,j is water depth at cell (i,j), hflow is free water depth between two cells, Δx and 

Δy are the cell dimensions, n is Manning’s friction coefficient, and Qx and Qy are the 

flow rates in two directions between cells. The flow between two adjacent cells is 

illustrated in Figure 6.1. 

 
Figure 6.1: Variables for calculation of flow between adjacent floodplain cells 

In order to implement these equations within the model, the volume of water stored in 

each cell is recorded at a given time step. The momentum equation is then used to 

calculate flow between each two adjacent cells. The continuity equation uses these flow 

values to update the volume of each cell in preparation for the next time step. Where a 

floodplain cell contains a channel boundary, this is included as an extra term in the 

continuity equation, with flow controlled by the same momentum equation. 

6.2.1.3 Improving Model Function and Stability 

The numerical approximations to the differential equations used in the raster cell 

approach make the model vulnerable to errors caused by discretisation of the processes in 

time. Theoretical flow magnitudes are calculated at the start of each time step and 

assumed to be constant over the time step. In practice this is not always a good 

assumption, especially in areas of steep gradient or high water depth where flow rate is 

high. In these cases, flow rate would decrease rapidly during the time step as surface 

gradient decreased. One result of the simplification is that during the drying process, 
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more water may be calculated to leave a cell than was originally contained within it. In 

order to prevent this, flows are scaled down appropriately. 

Another manifestation of the same overprediction of flow is that when flux between 

floodplain cells is controlled only by the momentum equation above, instabilities occur in 

areas of high water depth. This is due to excessive flow volumes which lead to a surface 

slope which reverses at each time step, creating unstable oscillations in water depth and a 

characteristic ‘chequerboard’ pattern visible on the simulated floodplain. Several 

solutions have been proposed to this problem. In the version of LISFLOOD-FP described 

by Bates and De Roo (2000), a flow limiter was implemented to curb oscillations 

between neighbouring cells. This was achieved by restricting the change in depth of a cell 

such that no flow directions would be reversed in the following time step, using the 

following restriction to the flow calculated using Manning’s Equation: 
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Hunter et al. (2004) report anecdotal evidence from authors of other storage cell codes 

that such a flow limiter is generally required to prevent numerical instability.  

Application of a flow limiter has, however, been shown to give rise to auxillary 

complications, as demonstrated by Hunter et al. (2004) who showed that it caused 

underprediction of inundation front velocity and flood volume, and inaccuracies in shape 

of wetting front. Bradbrook et al. (2004) proposed an alternative solution by controlling 

time steps using a Courant-Friedrichs-Levy (CFL) condition applied over the whole 

floodplain. The CFL condition requires that the model time step be less than the time 

required for a wave to travel the length of one grid cell, and is used, usually in the context 

of channel flow, to improve stability by prevent erroneous accumulation of water within a 

cell. However, the condition does not ensure stability and despite this measure 

oscillations still occurred in areas of deep water and in areas of shallow surface slope. In 

a similar vein, Hunter et al. (2004) define time-steps based on a stability analysis of a 

simplification of the continuity and momentum equations, and combine this with a linear 

scheme for near-zero free surface gradients. This method was shown to greatly improve 

inundation and drying behaviours, however it resulted in extremely small time steps; a 
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condition which could prove a severe complication for the high resolution applications 

proposed here. 

A new solution is therefore sought, which would reduce problems with inundation front 

behaviour while retaining the model efficiency which is seen as one of the most 

important properties of the storage cell methodology. This solution is implemented as a 

combination of several methods. Most importantly, the flow limiter is improved to 

consider multiple outflows from a single cell to several neighbouring cells as dependant 

processes. By coupling the flow directions, the flow limiter can be applied in a more 

realistic way which recognises the interaction of flow paths by proportional scaling of 

each flow direction. The cell outflow limit is calculated such that in no direction will the 

flow be reversed in the following time step. However, where previous methods applied 

an equal upper limit in each direction, the maximum total outflow is instead imposed 

using individual limits scaled according to relative flow volumes in each direction. This 

condition was subject to a modification introduced to avoid neighbouring cells in 

equilibrium preventing flow in a perpendicular direction, by removing equilibrium pairs 

from the calculation of minimum slope. The additional condition that the volume of water 

leaving any cell must be no greater than the volume of water stored in the cell is also 

retained. 
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Where Hx
i,j = water surface elevation change between neighbouring cells in x-direction. 

In tests, the use of this limiter was found to ensure model stability while retaining 

behavioural flow routing. It is important, however, that the limiter is not used to force 

stability when inappropriately long time steps are used. Therefore a complementary 

measure is to replace the fixed time step used by Bates and De Roo (2000) by one 

calculated by applying the CFL condition to channel flow. This does not ensure 

unconditional stability (i.e. in the case where floodplain flow celerity might exceed that 

of the channel peak), but by linking the time step to channel flows, it provides major 
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computational efficiencies by avoiding a search of the entire floodplain. This represents a 

significant saving when the model is applied to large model domains. The method 

improves stability during the flood peak by constraining the time step to the region of 

typically highest velocities, but allows for extended time steps during low flows. Figure 

6.2 illustrates the typical pattern of changing time step obtained through this simple 

procedure in a flood hydrograph. 
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Figure 6.2: Adaptive time-stepping through a flood hydrograph simulation by applying 
the CFL condition to channel flows. 

A final improvement is to the drying treatment: using the original LISFLOOD-FP code, 

water continues to advance rather than recede during the drying phase (Hunter et al., 

2004). To counter this, the start of a drying phase is imposed on edge cells which are 

identified by a threshold depth and inflow/outflow paths as being in the transitional flow 

reversal stage. Taken together, these changes to the model are intended to produce 

improvements in dynamic behaviour without compromising efficiency. 

The steps described above represent solutions which enforce stability in a model which 

would otherwise show numerical instability. Although the intention is only that unwanted 

numerical artefacts are removed from model results, the reality is that the exact form of 

flow limiter used can have an important impact on model predictions due to effects such 

as altered shape of wetting front. Trials carried out using alternative forms of flow limiter 

demonstrated that the choice of limiter acts in the same way as an additional parameter of 

the model, reducing or increasing the flood envelope. Different methods of coupling the 

perpendicular flows within the limiter also had the potential to change the flow paths 

predicted by the model. This extra ‘parameter’ additionally interacted with the other 
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model parameters; thus if the limiter was changed, the channel friction value required for 

optimum predictions might also need to be changed. Although the choice of the limiter 

has traditionally been treated as a minor part of 2d raster storage cell modelling, often 

unreported in journal articles describing model developments and applications, these 

results highlight its fundamental role in the model.  

6.2.1.4 Floodplain: Channel Coupling 

Running the model at high resolution may also necessitate an updating of the treatment of 

the relationship between channel and floodplain. Previous applications of the raster cell 

code have generally used cell sizes of similar width to the channel, and therefore defined 

the channel as a chain of cells. The extreme case of channel width much smaller than grid 

spacing was considered by the ‘Near Channel Floodplain Storage’ model of Hall et al. 

(2005), however their representation is only appropriate where the channel width is 

negligible compared to cell width. Using a high resolution model on a headwater 

catchment with a narrow channel brings the possibility of channel width significantly 

smaller or greater than cell width, without being negligible. Two versions of the model 

were therefore developed. The first uses a channel width smaller than cell width, and 

records a series of floodplain cells that contain channel sections (Figure 6.3). In each of 

these cells, the percentage of the cell that is occupied by the channel is used to define a 

volume:depth ratio as water enters the cell.  

 
Figure 6.3: Floodplain Cell Containing Channel Section. Arrows demonstrate flow 

between floodplain and embedded channel. 

 212



In the second version, the channel width is greater than the cell width, and the channel is 

defined by a matrix of cells. Each cell in the outer channel is mapped to a channel 

centreline cell (Figure 6.4) which is used to route flow along the channel, and to hold a 

depth value for water in the channel. Flow between channel and floodplain can take place 

at any boundary between the two cell types.  

 
Figure 6.4: Mapping channel-floodplain boundary cells to channel centreline.  

Arrows represent flow between channel and floodplain 

6.2.2 Model using Sub-Grid Scale Porosity Information  

Section 6.2.1.1 above describes the way in which cells interact during the flood process, 

dependant on the water surface slope and depth of free water surface. Previously the 

model has been run using terrain elevation values from a bare-earth DEM at typical grid-

scales of 101 – 102 m. High resolution modelling at scales of 100 m provides the 

opportunity to use a DEM which explicitly includes floodplain structures represented as 

elevated grid cells, but incurs a penalty in terms of model running time. The reason for 

the increase is twofold: not only is the number of active gridcells increased, but also the 

model time step must be decreased for a smaller grid size as prescribed by the CFL 

Condition. The second aim of the model development process was therefore to extend the 

basic model structure to allow sub-grid scale information to be used in an efficient and 

meaningful way within a model with coarser grid spacing. This would allow the 

important effects of terrain complexity and structures within the cell to be represented 
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without the corresponding increase in running time. Figure 6.5 shows the typical 

information available from within a grid cell, here assuming that DEM information at a 2 

m scale is used within a 10 m grid cell, although this methodology would be suitable for 

any combination of values.  
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Figure 6.5: Schematic representation of micro-topography within a coarse model grid 

cell. 

The model attempts to use the sub-grid scale information to improve the flow routing 

behaviour. Avoiding the complexity of analytical solutions of flow around topographical 

features (e.g. Bradford and Sanders, 2002; Shige-Eda and Akiyama, 2003), the objective 

is to modify only the two main controls: direction and rate of flow between cells. Rate of 

flow is controlled by the absolute and relative depths of water in neighbouring cells, 

which in turn can be calculated more accurately the more information is available on the 

cell microtopography. The 2 m DEM is used to specify the lowest point in each cell, at 

which water begins to enter the cell. Above that, a volume:depth relationship is created 

based on the percentage of the cell volume which is above ground surface and hence 

available for water storage. This percentage is termed the cell ‘porosity’; note that it is a 

function of the water depth in the cell as at higher depths the blocking effect of the cell 

microtopography is reduced. Figures 6.6 and 6.7 below demonstrate the pattern of 

flooding in a simple porous cell with grid size 2 m and topographical information at 1 m 

scale.  
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Figure 6.6: Simple example of 2 m cell with 
nested 1 m micro-DEM 

 
Figure 6.7: Schematic representation of 

progressive inundation 

The volume:depth relationship is created using linear interpolation between values 

calculated at discrete depth values. The relationship for the example cell constructed in 

Figure 6.6 is shown graphically in Figure 6.8 below. In order to use the relationship 

within the model, the porosity value for each cell is calculated at a range of depths and 

stored in a lookup table. 
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Figure 6.8: Volume:Depth and Porosity:Depth relationships for example cell of Figure 
6.6 
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The changing volume:depth relationship as water moves between cells also requires a 

corresponding revision of the flow limiter described in Equation 6.7, to give:  

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅+++
ΔΔ⋅⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΔΔ

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∗
+

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++

=

⋅⋅⋅⋅

−−

⋅⋅⋅⋅⋅⋅⋅

⋅⋅

−−

444444 3444444 21

4444444 34444444 21
44444 344444 21

cellemptytorequiredOutflow

j
y

ji
y

ji
x

ji
x

jiji
x

reversedisgradientsurfacebeforeoutflowtotalMax

OC

ji
x

ji

flowofoportion

j
y

ji
y

ji
x

ji
x

ji
xji

x

ji
x

tQQQQ
yxhQ

yx

PFlowsNumP

H
QQQQ

QQ

Q

δ)(

,

.
11min,

min

1,1,,1,

,,

,

,

Pr

1,1,,1,

,
,

,  (6.8) 

Where PC and PO are the porosities at the current depth for the central and outflow cells, 

and Hi,j is water surface height difference between central cell and outflow cell. The 

formula uses the approximation that cell porosity remains constant during the time step, 

i.e. that insufficient depth change occurs to significantly alter porosity. 

With more accurate depth knowledge, the direction in which water flows can also be 

controlled by the sub-grid parameterisation. A clear example of this would occur in a 

sloping cell, where shallow water depths allow flow over only the lowest boundaries 

(Figure 6.9).  

 

Figure 6.9: Example Part-Flooded Cell with Boundary Cross-Sections Illustrated 
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The momentum equation for flow between cells requires the cross-sectional area and 

wetted perimeter of each boundary. Two methods of providing this information were 

investigated. The first was to use a look-up table approach, as for the porosity values, 

where the two values are each specified for a range of depths. The second was a 

simplified approach, designed to remove the need to store multiple large arrays of values 

by using porosity as a proxy variable for cross-sectional area and wetted perimeter. The 

porosity was used to estimate the number of sub-cells providing no water storage volume, 

i.e. those that represent a structure on the floodplain. All other sub-cells are assumed 

empty. The ‘full’ sub-cells are then assumed to have a random distribution within the grid 

cell, and the average values for cross-sectional area and wetted perimeter are calculated. 

To test the validity of the simplifying assumptions, the method was used to calculate 

these values, and they were compared against the true values for each cell (Figures 6.10 

and 6.11).  

 
Figure 6.10: Comparison of True and 

Estimated Cross-Sectional Area 
Figure 6.11: Comparison of True and 

Estimated Wetted Perimeter 

The graphs show a weak correlation between true and estimated values of cross-sectional 

area and wetted perimeter. However, due to wide spread of values around the 1:1 line, the 

simplification was not felt to be sufficiently accurate for use within the model. The full 

look-up tables were therefore stored for each parameter. 
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6.3 Data Collection and Processing for Test Applications 

6.3.1 Upper Granta Catchment 

In order to explore the two approaches to urban flood simulation, a series of numerical 

experiments were undertaken, based on a reconstruction of the October 2001 flood event 

on the River Granta study site (Chapter 3). In order to perform multiple simulations for 

calibration and validation, it is important to reduce the model running time as far as 

possible, and therefore a relatively short reach of approximately 2 km is used. An aerial 

photograph and map of buildings and features on the floodplain are shown in Figures 

6.15 and 6.16. The following sections describe the collection and processing of the input 

data required for the model, including topographical information, channel structure 

description and flow boundary conditions. The collection of calibration and validation 

data in the form of observed hydrographs from the Linton and Babraham flow gauging 

stations, and inundation extent and depth data from a residents’ survey, is described in 

full in Chapter 3. 

6.3.2 Topographical Data 

6.3.2.1 Bare-Earth Elevation Model 

An airborne LIDAR survey acquired in 2000 by the UK Environment Agency was used 

to derive both a 2 m DSM (Digital Surface Model) and a 10 m bare earth DEM as the 

boundary conditions for the high resolution and porosity models respectively. The 2 m 

resolution of the DSM was chosen to enable accurate representation of the urban area at a 

practical, if time-consuming, resolution for simulation. Using a 10 m grid scale, the 

‘porosity’ model offers a more efficient representation, but at the expense of detail which 

must be recaptured from the sub-grid parameterisation. A model at 10 m grid resolution 

without sub-grid scale information is also used as a control to test against the models 

using high-resolution information. 

The resolution of the raw point cloud is suitable to produce a digital elevation model of 

grid sizes 1 m upwards. However, the complex urban terrain is not well represented by an 

interpolation direct from the raw points, particularly due to the lack of differentiation 
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between permeable areas of tall vegetation and impermeable buildings, as shown in 

Figure 6.12. 

 
Figure 6.12: Raw LIDAR image of the Linton Area 

Surface models were therefore derived by first processing the raw points to produce a 

bare-earth model, and then superimposing known floodplain structures onto this (Section 

6.3.2.2). In order to create the bare-earth model, the point cloud was processed to remove 

all objects from the floodplain. This can often be achieved by using only the last-return 

points from the LIDAR data set which represent reflections from the ground surface 

rather than elevated objects. However in this case only single-return data was available, 

and hence a filtering algorithm was used as an alternative.  

The algorithm first interpolates between recorded points to produce an elevation grid. 

Each grid cell is then considered as the centre of a moving window of grid cells. The 

average elevation value for the window is calculated, and if the central cell elevation 

exceeds this value by more than a specified threshold, any points within the cell are 

deleted. In the case of large structures, the algorithm will only remove edge cells and 

must therefore be iterated until the whole structure has been erased. Figure 6.13 shows 

the removal of a structure using a sequence of iterations. 
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Figure 6.13: Removal of a floodplain structure through iterative filtering: Five 

successive iterations showing the interpolated gridded DSM at each stage. 

When the iteration process is complete, the final set of LIDAR points is interpolated 

using local cubic splines to give regular elevation grids at the 2 m and 10 m scales 

required. An image of the resulting bare-earth terrain model is shown below in Figure 

6.14. Slight ‘blockiness’ can be seen in some parts of the landscape, especially within the 

urban area, due to interpolation between sparse point returns from the ground surface. 

However, in general the method was successful in returning an accurate bare-earth terrain 

model. 

 

Figure 6.14: Filtered LIDAR image of the Linton area  

 220



 221

6.3.2.2 Floodplain Structures 

The 2 m DSM requires that structures on the floodplain should be superimposed onto the 

bare-earth model (this step is not required for the 10 m model where the porosity 

methodology is be used as an alternative). This method allows improved surface 

representation over use of the raw LIDAR points as only impermeable structures that 

have the effect of blocking flow pathways are considered. Data is available from the 

1:2500 vector street plans taken from the UK Ordnance Survey Land-Line.Plus data set: 

detailed digitalised surveys of natural and man-made features. The Land-Line map, 

together with the corresponding area as an aerial photograph, are shown in Figures 6.15 

and 6.16. 



 
Figure 6.15: Land-Line.Plus surveyed data for Linton, buildings extracted as polygons 
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Figure 6.16: Aerial Photograph of Linton

 



Building outlines were extracted from the Land-Line map, and these were used to build 

polygon features in ArcView (Figure 6.15). In turn these were transformed into a grid 

with the required cell size. Grid cells containing a building were given an arbitrary height 

value of 10 m; exact height data was not required as simulated floods do not overtop 

buildings. However if necessary for future applications, building heights could be 

extracted by resampling the original LIDAR point cloud. Other cells were given a height 

of zero. The building grid was then added to the terrain grid to form the topographical 

boundary condition for the model, as shown in Figure 6.17: 

 

Figure 6.17: Topographical Model Boundary Condition, with 10x Vertical Exaggeration 
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6.3.2.3 Porosity Information  

For the model implementation at 10 m scale using the porosity treatment, the DEM at 2 

m scale is used in conjunction with that at 10 m to calculate the sub-grid scale 

information look-up tables for porosity, cross-sectional area and wetted perimeter, for 

each cell and boundary, at the following sequence of depths (all in metres): 

[0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 

Depth intervals are smaller at lower depths in order to allow sufficient representation of 

topographical complexity. At higher depths porosity is influenced mainly by the presence 

or absence of man-made structures and hence shows less variation with height, allowing 

wider depth intervals. This pattern is illustrated in Figure 6.18, which shows porosity 

values mapped over the study area at a range of depths. At low depths, porosity is 

controlled by ground surface topography, demonstrated by the distinctive pale signature 

of the smoother land of the floodplain, the rougher land though the built-up area showing 

as darker tones. At high depths, the influence of the ground surface shape is reduced, and 

only buildings are apparent in the porosity map. 
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Figure 6.18: Porosity values over the model domain mapped at increasing depth. 
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6.3.3 Channel Structure 

The model requires specification of channel width and bankfull depth. The Land-

Line.Plus maps include vector data for both banks of the channel and were therefore used 

to specify channel width. This analysis was carried out in ArcView by creating a 

sequence of points along the channel centreline and then associating these with the 

shortest distance to each of the bank lines. The width vector interpolated to the 2 m grid 

is plotted in Figure 6.19, the 10 m vector was created similarly. 
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Figure 6.19: Channel width 

Channel bankfull depths were available from surveyed cross sections taken at 200 m or 

better intervals, including sections at all channel structures e.g. bridges, fords. Bankfull 

depths are interpolated between these points to give values for each channel cell (Figure 

6.20). 
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Figure 6.20: Channel bankfull depth 
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6.3.4 Channel Boundary Flow Conditions 

Flow data is available at the upper and lower points of a 10 km reach surrounding Linton, 

from the Environment Agency gauging stations at Linton and Babraham. Stage and 

discharge are recorded at a 15 minute time step. This reach is too long to be modelled 

efficiently at the high resolutions considered in this study, a common problem when 

undertaking complex urban applications of flow models. To overcome this, a one-way 

nested catchment method is used, with a low-resolution model application at the reach 

scale producing channel flow records which serve as boundary conditions for an inner 

high-resolution application. This one-way nesting methodology is commonly used in 

distributed hydrological models which require meteorological boundary conditions, (e.g. 

Kleinn et al., 2005; Wood et al., 2004) or regional climate models set within a general 

circulation model (e.g. Cocke and LaRow, 2000; Leung and Ghan, 1999). It can also be 

used when sensitivity analysis shows that particular regions of the model area are 

important to model results and therefore warrant more detailed treatment (Hall et al., 

2005). 

The nested catchments areas are shown in Figure 6.21 below. The map shows that in this 

case, the upstream limit of the inner model area coincides with that of the outer. 

Therefore the outer model is required to provide the downstream boundary condition 

only. 
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Figure 6.21: Nested Flow Modelling Areas 

The values of the roughness parameters for channel and floodplain areas are not known 

and these were therefore treated as calibration coefficients, a methodology used by 

Horritt and Bates (2001b). The outer model was calibrated with respect to the 

downstream hydrograph only; this is considered sufficient as the only output required 

from this model application is the channel flow at the downstream point of the urban 

area. 
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Figure 6.22: Comparison of modelled hydrographs, using a range of channel (n(ch)) and 

floodplain (n(fl)) friction coefficients  (Manning’s n, m-1/3s), demonstrates the 

insensitivity of the model to floodplain friction 
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Figure 6.23: Calibration of the channel friction coefficient (Manning’s n, m-1/3s) by 

matching observed and modelled flood wave propagation at the reach scale 
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The model was found to be insensitive to floodplain friction (Figure 6.22), an effect 

which is conjectured to be due to the flow limiter required (Hunter et al., 2004) and is 

common in storage cells schemes (Hall et al., 2005; Romanowicz and Beven, 2003). 

Models which do not use this limiter are generally responsive to the friction coefficient, 

but may still find issues of equifinality during calibration (Pappenberger et al., 2005). 

The model was therefore calibrated using the channel friction parameter alone. If the 

optimal value is chosen using the R2 measure, the accuracy of prediction of peak 

discharge and lag may be compromised in order to minimise errors in the shape of the 

rising and falling limbs of the hydrograph. In this study, the importance of prediction of 

peak magnitude and timing was felt to override that of hydrograph shape; therefore a 

performance measure based only on success in prediction of the flood peak is used. This 

type of approach was suggested by Lamb (1999), who experimented with measures based 

on both peak magnitude and lag error, and on magnitude error only. Here, the 

performance measure chosen was based on both magnitude and lag, as both are felt to be 

important in the context of flood warning provision; however it is clear from Figure 6.23 

that optimal performance in both is achieved simultaneously using n = 0.023 m-1/3s. 

Channel flow at the downstream boundary of the inner model area was duly recorded to 

provide the boundary condition for the inner model, this is shown in Figure 6.24. A 

worthwhile extension of the current work would be to include uncertainty bounds on the 

boundary condition calculated from the reach-scale model. 
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Figure 6.24: Channel Flow Lower Boundary Condition for the Inner Model 
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6.3.5 Non-Channel Boundaries 

Boundary conditions must also be imposed for those parts of the floodplain not 

designated as channel cells. Previous studies have used various methods to do this, a 

popular solution being to use the no-flow (free-slip) boundary condition at all points 

except the prescribed channel (Vionnet et al., 2004). This however can lead to pooling at 

the downstream boundary of the modelled area, and various alternatives have been used 

such as imposition of water surface elevation (Hardy et al., 2000; Horritt and Bates, 

2002), use of coupled models along the reach (Tucciarelli and Termini, 2000), or first 

order (or higher) extrapolation from neighbouring cells (Beffa and Connell, 2001). The 

last method, using first-order extrapolation, was chosen for the application to Linton. 

When the floodplain is near the headwaters of the catchment, the contribution of lateral 

inflow into the channel is significant compared to the channel input, even when there are 

no major tributaries in the reach. The model caters for this by allowing a source term at 

each channel cell. In the absence of any other information, the flow rate for each cell is 

calibrated from the volume change between upstream and downstream hydrographs, 

distributed evenly along the channel during the main flood peak. Trials were carried out 

into the effects of allowing variable lateral flows, however no significant effects on 

simulation predictions were found. The lateral inflow rate hence becomes the final 

boundary condition for the model. 

 232



6.4 Model Testing and Results 

Using the boundary conditions described above, three versions of the model were tested 

in their ability to simulate urban flooding in Linton. In addition to the 2 m DSM and 10 m 

porosity models, this included a further, baseline, model run at a 10 m resolution using a 

bare earth DEM with no porosity information. The details of the model and simulation 

characteristics are given in Table 6.1. 

Model Type Grid Scale 
(m) 

Sub-grid 
Parameterisation

Grid Size 
(x,y) 

Baseline 10 No 144 x 120 

Porosity 10 Yes 144 x 120 

Urban DSM 2 No 720 x 600 

Table 6.1: Details of the three model structures and applications 

6.4.1 Validation Methodology and Statistics 

Validation studies of floodplain inundation models have highlighted the importance of 

evaluating model response in terms of both the dynamics of flood wave propagation and 

the spatially distributed pattern of inundation. For this study, only one key sensitive 

parameter was explored, the channel friction coefficient. For a range of values of this 

parameter, the predictive performance of the model was therefore evaluated in terms of 

downstream hydrograph fit, the spatial pattern of inundation and additionally by a metric 

which combines these two characteristics. 

6.4.1.1 Validation by inundation extent and depth 

Conventionally, the accuracy of predicted inundation extent is measured through a 

comparison of mapped and modelled flood boundaries (e.g. Bates and De Roo, 2000; 

Bradbrook et al., 2004). In effect this is a binary validation, as accuracy in flood depth 

prediction is not considered. In this study, such a binary analysis could be carried out by 

comparing those houses reported flooded compared to those that the simulation suggested 

would flood. However, because the observations are limited to the ‘flooded’ observed 
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condition, this would lead to a maximally wet simulation being preferred. Instead, it is 

possible to take advantage of the extra information gathered during the survey of 

residents by validating on depth of flooding as well as extent. Although this could be 

achieved using a traditional least squares analysis, it was felt to be important to recognise 

that when using data points based on a questionnaire to residents, there is significant 

scope for errors in estimation/memory of flood depth. A technique designed to 

incorporate this uncertainty is the use of a fuzzy goodness of fit measure (Freer et al., 

2004; Seibert and McDonnell, 2002). Each flooded building is given a score between 0 

and 1 depending on quality of fit between simulated maximum flood depth adjacent to 

each building and reported flood depth. 1 indicates a perfect fit; here this was taken to be 

within 10 cm of reported flood level. This then decreases linearly down to 0 for an 

incorrect fit, here taken to be more than 50 cm discrepancy in flood levels (Figure 6.25). 

Finally, the mean of the individual fuzzy scores was taken to give the overall score.  

 

Figure 6.25: Fuzzy Performance Measure for Inundation Depths 

When validating model results by inundation extent and depth, all simulation results 

should be expressed at the highest resolution grid scale. Horritt and Bates (2001a) found, 

in an application of LISFLOOD-FP to a reach of the River Severn, that model predictions 

were near identical at all grid scales under 250 m when the simulated water surface was 

mapped back over a high resolution terrain model. This result is thought to be less likely 

to reoccur at higher resolutions where small-scale terrain features such as levees have an 

enhanced influence on the model; however it should not be dismissed. Therefore in order 

to test all three model implementations against the same criteria, the simulated water 

levels from the two 10 m models (with and without porosity information) were mapped 

onto the 2 m DSM, using bilinear interpolation incorporating additional edge treatments 

 234



to produce smooth water surfaces. It was then these high-resolution water depth matrices 

that were compared with the observed depths to produce the validation score. 

6.4.1.2 Validation on Downstream Hydrograph 

The Nash-Sutcliffe R2 measure was initially considered for validation of the downstream 

hydrograph, however it was found to be unsuccessful in differentiating hydrograph fit 

based on a single storm, particularly due to autocorrelation of errors. Instead, benefiting 

from the observation that the simulated hydrographs have a consistent form, a linear 

combination of peak magnitude and lag errors (shown in Figure 6.26) is used to give an 

intuitive goodness-of-fit measure.  
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Figure 6.26: Example of Magnitude and Lag Errors 

First, absolute peak and lag errors are independently linearly rescaled to lie within the 

interval [0,1] such that 0 indicates the worst result from the sets of simulations, 1 the best. 

These two rescaled values are then combined to give a hydrograph validation score: 

Validation Score = 0.5 * (Magnitude' + Lag') (6.9) 

6.4.1.3 Multi-criteria Validation 

The final objective is to combine validation measures for model performance in 

simulating inundation and downstream hydrograph. This enables the models to be judged 

according to their ability to represent the whole floodplain process correctly and therefore 
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to score highly against multiple validation criteria simultaneously, without needing to be 

recalibrated separately according to the particular flood characteristics to be modelled.  

Any dual calibration is likely to be a trade-off between different responses, as 

demonstrated by the ‘Pareto Set’ concept of Gupta et al. (1998), but can, in some cases, 

improve the identifiability of model parameters (Kuczera and Mroczkowski, 1998). To 

try and make some comparison between different members of the Pareto Set, one option 

is to combine the validation criteria into a single goodness-of-fit index (Beven, 1993; 

Beven, 2000) for example using Bayesian updating, weighted mean or fuzzy set 

operations. Here a linear mapping of the response spaces is used for a comparison of 

available parameter sets with hydrograph and inundation data given equal weight. The 

general formula for k criteria is shown below, for this application k=2. 
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with data sets Yk , parameter sets Θ , likelihood L() 

This formula was used to combine the fuzzy measure for performance in simulating 

inundation extent and depth, and the combined measure for performance in simulating 

hydrograph peak magnitude and timing. 
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6.4.2 Results 

6.4.2.1 Validation by inundation extent and depth 

Model simulations were carried out for the channel friction coefficient, Manning’s n, 

over the range 0.02-0.06 m-1/3s. Plots showing the maximum flood extent for each case 

are shown in Figure 6.27. A preliminary comparison of the performance across model 

type and channel friction parameter is made by plotting modelled against reported flood 

depth for each inundated buildings (Figure 6.28). 

Visual inspection shows that the best results are obtained for values of n around 0.05/0.06 

m-1/3s, higher than field observations for a fine gravel, low sinuosity, relatively clean 

channel might suggest (Chow et al., 1988). This may reflect a combination of factors 

including error in upstream hydrograph record, alternative flow sources such as overland 

flow, groundwater breach of cellars, as well as model process error leading to channel 

roughness parameterisation compensating for unmodelled processes. First impressions 

also suggest that the models run at 2 m and 10 m with porosity information are less prone 

to outliers than the baseline 10 m model. To make a structured comparison, the fuzzy 

scores for inundation validation, outlined in section 6.4.1.1, are plotted in Figure 6.29. 

This comparison shows that fit improves with channel roughness for all three models, 

with the scores from the baseline 10 m model dropping below those of the models using 

high resolution data for the higher values of the channel friction parameter. This drop in 

performance is due to overflooding in some areas, demonstrated in the outlying points in 

Figure 6.29(C). The houses represented by these outliers are circled in the Figure 6.30, 

which shows the wider flood envelope associated with the baseline 10 m model 

compared to the 10 m porosity model. The wider and smoother outline reflects increased 

volumes of water on the floodplain, and a loss of the boundary detail achieved in the 10 

m porosity model due to the improved specification of flow pathways and preferential 

flow directions. 
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Figure 6.27:  Floodplain Inundation in the urban model domain around Linton. Figures 

show results for the three model structures; A) High resolution 2 m model; B) 10 m 
model with porosity treatment; C) 10 m model without porosity 
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Figure 6.28: Observed and predicted maximum flood depths in reporting households, 

conducted for channel Manning’s n between 0.03-0.06 m-1/3s. Results are presented for 
the three model structures; A) High resolution 2 m model; B) 10 m model with porosity 

treatment; C) 10 m model without porosity. 
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Fig 6.29: Fuzzy validation score for the three model structures varying with channel 

roughness 
 

150 200 250 300 350 400 450

100

150

200

250

300

No Flood    Flood (10m Porous) Flood (10m) 

 

Fig 6.30: Maximum flood envelopes predicted for the two 10 m models, with and without 
porosity information. Circle shows properties where depth is severely overestimated in 

the latter case. 
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6.4.2.2 Validation on Downstream Hydrograph 

The model is also calibrated on downstream hydrograph data. Figure 6.31 shows the 

simulated hydrographs for the three model structures run with channel roughness values 

from n = 0.02 m-1/3s to n = 0.06 m-1/3s. In each case the downstream boundary condition 

derived from the outer model is plotted for comparison. The optimum value of channel 

friction to achieve a good fit to the downstream hydrograph varies with the model 

structure, but is always in the range n = 0.02 m-1/3s to n = 0.04 m-1/3s. At higher values of 

n, all models overestimate the lag time, however while the ‘2 m’ and ‘10 m with porosity’ 

models achieve a reasonable representation of hydrograph shape and magnitude, the 

baseline 10 m model greatly overestimates the attenuation occurring in the reach.  

The hydrograph validation scores (described in Section 6.4.1.2) are plotted in Figure 

6.32. The 2 m model and the 10 m model with porosity are both able to achieve high 

scores across a wide range of channel friction coefficients; however the baseline 10 m 

model is unable to make good predictions for higher values of n due to over-attenuation 

of the flood wave, and hence has a much more restricted behavioural parameter space. 

The over-attenuated hydrograph indicates that excess water is being routed onto the 

floodplain, as shown by the spatial model responses discussed above. This again 

demonstrates the importance of porosity information in restricting and directing flow. An 

examination of the evolving channel breach points showed that these were very similar 

with or without porosity information; however the volumes able to flow through the 

breach points were much greater when porosity information was not used. Figure 6.33 

shows typical differences in flood volumes when porosity information is introduced into 

the model, through a series of snapshots of flood depth during rising limb, flood and 

recession. 
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Fig 6.31: Flood wave routing performance, shown for Manning’s  n = 0.02 – 0.06 m-1/3s. 
Results are presented for the three model structures: A) High resolution 2 m model, B) 10 

m model with porosity treatment, C) 10 m model without porosity. 
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Fig 6.32: Validation using Combined Peak/Lag Hydrograph Measure 
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Figure 6.33: Snapshots of the inundation pattern predicted by the 10 m codes, without 
(A) and with (B) porosity information. The ‘blocking’ effect of sub-grid topography is 

shown in the discontinuous and irregular pattern of floodplain depths. Inundation depths 
are references to the attached greyscale legend. 
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6.4.2.3 Multi-criteria Validation 

The combined likelihood measure, incorporating both aspects of predictive performance 

(Section 6.4.1.3), is plotted against the channel roughness parameter for each of the three 

models (Figure 6.34).  
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Fig 6.34: Validation using Combination of Fuzzy Inundation measure and Peak/Lag 

Hydrograph Measure 

Such a comparison suggests that the 2 m and 10 m porosity models give a similarly good 

fit to recorded inundation levels using channel roughness of around 0.05 m-1/3s, while the 

baseline 10 m model gives a poorer fit peaking at channel roughness 0.03 m-1/3s. This 

reflects the inability of the 10 m model to produce realistic predictions for both 

downstream hydrograph and inundation extent for the same value of the channel friction 

parameter. 
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6.5 Discussion 

This case study has established the potential of including explicit porosity information as 

an alternative to full high-resolution topographical data within a raster storage cell 

floodplain inundation model. In tests against the baseline 10 m model, the full 2 m 

implementation and the 10 m model with porosity information were found to behave very 

similarly, and with greater predictive power and robustness. The downstream 

hydrographs derived from the two models were almost identical, and the distributions of 

depths were also very similar. The main differences were found for low values of channel 

friction where the 10m model with porosity gave lower water depths. 

A study of the improvements in performance when using high-resolution data is therefore 

made for the two models together. First, improvements in inundation prediction are 

considered. It was found to be important to validate on depth as well as inundation extent, 

as although flood outlines from the baseline 10 m model were approximately correct, the 

model made significant overprediction of flood depth in some places, where the models 

with high-resolution topography were able to provide accurate simulations. A similar 

finding has been made in several other studies. Bates and De Roo (2000) used the 

LISFLOOD_FP model to simulate a flood event on the River Meuse at resolutions of 25 

m, 50 m and 100 m. They found that at the lowest resolution, flood depths were 

significantly overestimated, and suggested that this was due to the smoothing out of levee 

structures which allowed more water onto the floodplain. Yu and Lane (2006a) also 

found an increase in flood extent and depth with grid size, using the JFLOW model, and 

associated this with the smoothing effect of mesh coarsening together with poorer 

representation of surface routing processes. Tarrant et al. (2005) compared models run at 

three scales and found more complex behaviour, concluding that individual flow 

pathways may open or close depending on the particular choice of grid size. In this study, 

depth overestimation associated with larger grid size was found to particularly affect 

houses near to the inundation boundary. This finding adds increased weight to the 

suggestion by Hunter et al. (2004) that model conditioning on flood outline only may not 

be sufficient to fully capture the model’s ability to replicate the flood event.  

 245



Improvements in inundation prediction are linked directly to improvements in 

downstream hydrograph prediction, as the impeded inundation on the floodplain prevents 

excess water leaving the channel and therefore provides an accurate estimation of within-

channel flow. When a multi-criteria validation is carried out, the results suggest that 

different model implementations may require substantially different channel roughness 

coefficients to provide the optimal fit: the 10 m baseline model peaks at n = 0.03 m-1/3s , 

while the high-resolution models peak at n = 0.05 m-1/3s. This change in model behaviour 

according to grid size, and subsequent need for re-calibration, has been recognised in 

several other studies and, in addition to the effects of coarsened DEM representation 

described in the previous paragraph, has also been attributed to the fact that a finer grid 

size leads to an increase in channel flow velocities (Connell et al., 1998; Nicholas and 

Mitchell, 2003).  

In the light of these findings, it is reasonable to compare the ‘best’ result in terms of 

goodness-of-fit measure for the three implementations, and recognise that roughness 

coefficients may not be transferable because they are ‘effective’ parameters designed to 

represent a model characteristic at the grid scale, and not absolute quantities. They may 

also compensate for other inadequacies in the model and therefore represent the 

combined behaviour of several aspects of the conceptual floodplain model. However, it 

remains clear that by including high-resolution topographical information, the model’s 

performance in terms of the combined validation measure is much improved, 

demonstrating an enhanced ability to make simultaneous accurate predictions of 

downstream hydrograph and floodplain inundation. The baseline 10 m model is unable to 

do this due to over-attenuation of channel hydrograph at high values of Manning’s n. 

These results help to explain the similarity of results from the 2 m model and the 10 m 

model with porosity information. The improvement in performance may be considered in 

terms of flow pathway definition. Inclusion of information on the porosity of each cell 

allows flow volume and direction to be controlled in a manner similar to that allowed in 

the higher resolution implementation. This is the concept referred to by Lane (2005) as 

flow ‘blockage’. Models including porosity information are therefore able to provide a 

much more realistic simulation of flood extent evolution, and therefore also improve 

accuracy of in-channel floodwave attenuation by improving estimation of the volume of 
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water stored on the floodplain. This finding agrees with that of Yu and Lane (2006b) who 

demonstrate the effects of flowpath blockage in reducing the speed of inundation and 

maximum inundated area in a simulation of the November 2000 flood event on the River 

Ouse in Yorkshire.  

This is a very encouraging result, as by using a 10 m model resolution with porosity 

information instead of the full 2 m DEM, the model running time is reduced to 

approximately 1/38 of its former value. Model running times using the optimal channel 

friction n = 0.05 m-1/3s are shown in Table 6.2. This saving has been made without 

significant loss of accuracy when simulating flood propagation through complex natural 

and urban terrain. 

Model Type Running Time (mins) 

10 m grid 80.4 

10 m with Porosity 235.0 

2 m grid 9016.3 

Table 6.2: Execution times for the three model structures, benchmarked on a Pentium 4, 
3.2 MHz PC with 1.5GB RAM, based on simulations with the optimal channel friction 

coefficient, n = 0.05 m-1/3s. 
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6.6 Conclusion 

This chapter presents new approaches to the use of high-resolution calibration data within 

a 2d floodplain inundation model. Increasingly, airborne mapping of floodplain 

topography produces DEMs at a higher resolution than computational resources allow to 

be used in typical current model structures. A solution is therefore sought in the use of 

reduced-complexity modelling. The data was used in two ways: firstly through a full 

high-resolution implementation, and secondly by inclusion as porosity information within 

a model running at a lower resolution. The porosity information was used via calibrated 

relationships between water depth in each cell and values of parameters describing cell 

porosity, boundary cross-sectional area and wetted perimeter.  

This methodology was included in a model built to provide a compromise between 

performance and stability. Model time step was controlled by the use of the CFL 

condition applied to the channel cells where water velocity is expected to be fastest, and a 

2d coupled flow limiter was used to prevent instability. The model was then applied to a 

section of the River Granta, where the town of Linton is surrounded by a largely rural 

floodplain with rolling topography. 

Applications of the model to the urban area demonstrated the potential of including 

explicit porosity information within a raster storage cell floodplain inundation model. A 

model run at 10 m grid scale with porosity information derived from a 2 m DEM is able 

to mimic the inundation and flow characteristics shown by a full application of the model 

at 2 m resolution, while decreasing model simulation time to approximately 1/38 of the 

original. This is in contrast to the 10 m model without porosity information which shows 

a much poorer performance when validated against downstream hydrograph and 

inundation data. The successful application of the porosity model is particularly 

encouraging in that it offers scope to improve flood forecasts in urban areas by simply 

accounting for the effects of flow blocking on conveyance, without the need to 

incorporate more complex non-linear terms in the momentum equation. The 10 m model 

with porosity was therefore chosen for further use in the end-to-end flood risk assessment 

framework. 
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Chap t e r  7  

AN END-TO-END FLOOD RISK ASSESSMENT FRAMEWORK 

 

Abstract 

In Chapter 1 the case was presented for an ‘End-to-End’ modelling strategy: the creation 

of a coupled system of models to allow continuous simulation methodology to be used to 

predict the magnitude and simulate the effects of high return period flood events. This 

chapter brings together the rainfall, rainfall-runoff and hydraulic models described in the 

previous three chapters to create such a system. It is then tested through an application to 

the catchment of the River Granta upstream and including the small town of Linton (UK 

National Grid Ref. TL 560469). 

The model chain is subject to stochasticity and parameter uncertainty, and hence the 

variables used to pass data between models are also uncertain. Therefore in order to 

produce robust estimates of flood risk, uncertainties must be propagated through the 

model chain. It is also important that their effects be quantified in terms of variables 

relevant to the end user such as spatial inundation extent or number of properties flooded. 

Methods to allow the propagation and quantification of uncertainty within a 

computationally efficient framework are established and applied to the Granta catchment.  

Results are considered in terms of their implications for successful floodplain 

management, and compared against the deterministic methodology more commonly in 

use for flood risk assessment applications. The provenance of predictive uncertainty is 

also considered in order to identify those areas where future effort in terms of data 

collection or model refinement might best be directed in order to narrow the prediction 

bounds and produce a more precise forecast.   
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7.1 Introduction 

In order to provide the long-term flood frequency prediction capabilities required for 

strategic planning applications, the rainfall simulation, rainfall-runoff and floodplain 

hydraulics models described in the preceding chapters are coupled together to form a 

model chain. This chain allows the simulation of catchment rainfall to be transformed 

into runoff series and then statistically decomposed. Relevant characteristics are used to 

prescribe input into the floodplain hydraulic model to simulate inundation response. As 

described in Chapter 1, continuous simulation provides a powerful new approach for 

flood frequency estimation, which has only recently become practical for widespread 

application as a result of recent improvements in computing power. The benefits 

achieved by removing the simplifying assumptions of the alternative design event or 

derived distribution approaches have led to its increasingly uptake as a standard 

technique in flood risk analysis applications (Lamb, 1999). 

The hydrological literature contains many examples of the use of continuous simulation. 

Boughton and Droop (2003) provide a review of its application in design flood 

estimation, and reflect the majority of studies which restrict model coupling to rainfall 

and rainfall-runoff models. These studies divide into those which use observed rainfall 

data (e.g. Chetty and Smithers, 2005; Maskey et al., 2004; Pandit and Gopalakrishnan, 

1996) and those which use a stochastic simulation of rainfall input (e.g. Franchini et al., 

2000; Hashemi et al., 2000; Onof et al., 1996). Applications which go further to couple 

hydraulic models are rarer but include applications to design of structural floodplain 

defence measures (Hsieh et al., 2006) and flood mapping studies (Faulkner and Wass, 

2005). Typically, simple coupling takes place in terms of channel discharge, but this has 

been extended to include full hillslope-floodplain coupling (Charlton, 1999).     

As equifinality of model structures and parameters has become accepted in hydrological 

modelling, applications of continuous simulation have reflected this in regular inclusion 

of uncertainty analyses carried out using Monte Carlo simulation. There have been 

extensive studies using stochastic rainfall simulations linked to TOPMODEL (Blazkova 

and Beven, 2002; Blazkova and Beven, 2004; Cameron et al., 2000) although a variety of 
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other rainfall runoff models have also been used (Kuchment and Gelfan, 2002; Lamb, 

1999). Uncertainty estimation for predictions in ungauged catchments has also been 

carried out (Lamb and Kay, 2004).  

The potential for the use of coupled models in event-based simulation is also significant, 

both in terms of hindcasting historical flood events and in operational forecasting to 

improve lead times by using meteorological forecasts. Numerical weather prediction 

(NWP) models have now also been used to provide ensemble forecasts to drive rainfall-

runoff and hydraulic models. In this case, uncertainty is typically considered only in the 

weather prediction models (Bartholmes and Todini, 2005; Gouweleeuw et al., 2005), 

reflecting a perception that errors in these models dominate over errors in the structure or 

parameterisation of the coupled catchment models (Jasper et al., 2002). This is often due 

to a failure to resolve convective cells at resolutions comparable with rainfall-runoff 

models.  

The European Flood Forecasting System (De Roo et al., 2003) aims to provide a structure 

within which different combinations of models can be used to provide probabilistic 

forecasts in response to medium-range weather forecasts. This system has trialled the 

feasibility of including uncertainty estimation in such forecasts; early applications limited 

uncertainty modelling to the NWP models for efficiency reasons (Pappenberger et al., 

1999), but noted that “a major research challenge should be the development of 

computationally tractable techniques to analyse how uncertainties cascade through a 

chain of linked non-linear models” (De Roo et al., 2003). Despite the simplification, 

these studies found that computational limits imposed a necessarily small ensemble of 

precipitation inputs. Efforts were made to choose those ensemble members “most 

significant” for the prediction using a measure of distance in the parameter space (Sattler 

and Feddersen, 1999), and again to constrain numbers of simulations required by 

grouping similar hydrographs (Pappenberger et al., 1999). More recent work has 

succeeded in considering uncertainty in NWP, rainfall-runoff and inundation models 

within a GLUE framework, again using concepts of functional similarity in parameter 

sets to reduce the number of simulations required (Pappenberger et al., 2005). 

Nonetheless, this study found computer power to form the major limiting factor 

preventing a full uncertainty analysis. 
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This chapter outlines an extension of the continuous simulation methodology used in 

previous studies, designed to consider the impact of predictive uncertainty directly on the 

pattern and probability of floodplain inundation. GLUE is used to cascade uncertainties 

through this non-linear system, considering at each model stage the dominant 

uncertainties in model parameterisation, initial conditions, boundary conditions or 

observed data and therefore the key uncertainties in model function. Experimentation is 

used to identify components of the system which are particular subject to associated 

uncertainty and therefore towards which future effort might best be directed in order to 

tighten uncertainty bounds. 

Using this technique, a framework is created which allows knowledge of model 

shortcomings and associated equifinality to be assimilated into a practical flood risk 

assessment method. Particular importance is placed on the need to integrate uncertainty 

estimates into easily understandable model predictions, useful to the end-user 

communities such as planning authorities, engineers and the general public.  

 

 253



7.2 A Flood Magnitude and Inundation Frequency Analysis for Linton 

This section sets out an application of the end-to-end forecasting methodology. An 

efficient system for model coupling and uncertainty propagation is established, and then 

used to analyse of the frequency characteristics of the discharge of the River Granta at 

Linton. These are then extended to evaluate the concomitant patterns of flood routing and 

inundation distribution.   

7.2.1 Using GLUE in End-to-End Hydrological Modelling 

The GLUE technique was introduced in Chapter 5 as a tool for investigation of model 

response and associated uncertainty, when equifinality of model structure or 

parameterisation is likely to be significant. The advantages of the technique lie in the 

ability to make predictions of uncertainties in highly non-linear systems where the 

assumptions of traditional statistical techniques prove too restrictive. By using Monte 

Carlo sampling of the model structure and/or parameter space, rejecting non-behavioural 

simulations, and rating behavioural simulations by using an objective measure of fit with 

respect to some validation data, quantiles of the model output variables may be produced. 

Generally, upper and lower confidence bounds at the 90% or 95% level would be used to 

specify the predicted model output. 

It is important to note that when estimating the upper (and similarly lower) confidence 

limits using GLUE, the discharge predictions at each timestep do not simply relate to a 

single set of parameter values and cannot therefore be related to a single model 

realisation. This implies that when applying GLUE to two or more coupled models, 

uncertainty bounds cannot be cascaded through the model series by treating uncertainty 

bounds for output timeseries as a prediction relating to a single parameter set that may be 

input into the following model. Instead, results relating to each parameter set must be 

propagated through the model chain individually to produce frequency distributions for 

parameters of interest. 

 254



7.2.2 Efficiency in End-to-End modelling 

As discussed in the introduction, the computational demands of applying GLUE to a 

chain of coupled models present serious constraints on the number of dimensions over 

which uncertainty can be considered. Decisions therefore had to be made in order to 

restrict the scope of the analysis, balancing the efficiency of the system against the extent 

and accuracy of the results. 

7.2.2.1 Length of Simulations 

Beven (2000) suggests that, ideally, a T-year event should be estimated using a period of 

data 10T years in length to ensure robust identification. In practice, much shorter series 

are considered sufficient or used out of expediency: the Flood Estimation Handbook 

(Robson and Reed, 1999) recommends a series of length 2T years or greater. The aim 

here is to produce predictions at a range of return periods applicable to typical flood risk 

planning studies. In particular, estimation of the return period of the 2001 event would be 

useful, as such key recent historical events have formed the basis of planning policy. 

Initial estimates of this figure vary wildly from 50-100 years suggested by local residents 

in response to collective memory of past catchment behaviour, to 400 years suggested by 

a study commissioned by the Environment Agency (Halcrow, 2004). The simulation 

period was therefore chosen to be 1000 years, sufficient for a reasonably robust estimate 

of floods up to a 400-year return period, and allowing tentative estimation of the 

magnitude of a 1000-year flood. 

7.2.2.2 Coupling of Rainfall and Rainfall-Runoff Models 

The rainfall simulation model has been derived using empirical data rather than fitted 

parameters, and therefore parameter uncertainty is not present within the model. Instead, 

the perceived uncertainty in a 1000-year simulation of catchment rainfall relates to the 

inherent stochasticity of the model. One realisation of a 1000-year series represents only 

a single possible outcome: other realisations may yield different estimates of flood 

magnitudes relating to return periods of interest. However, as no judgement is made as to 

which realisation may most accurately represent future conditions, each simulation is 

assigned the same weight in the uncertainty estimation procedure. In choosing the 

 255



method of coupling the rainfall and rainfall-runoff methods, two sources of uncertainty 

are therefore considered: the uncertainty in realisation of rainfall series, and the 

uncertainty of choice of rainfall-runoff model parameters.  

The most comprehensive approach to uncertainty estimation would be to consider these 

two sources of uncertainty as a two-dimensional parameter space and searching 

systematically, i.e. every rainfall realisation coupled with every parameter set. This 

strategy would, however, lead to 106 model simulations each of 1000 years, and thus be 

extreme costly in computational terms. An alternative approach, used by Cameron et al. 

(1999), considers the rainfall realisation and rainfall-runoff model parameter sets 

together, and creates a joint set of Monte Carlo samples which contain independent 

random selections. This results in less dense sampling of the parameter space, but reduces 

the computational overhead by a factor of 1000. Cumulative distribution functions of 

variables sampled from the output runoff series are still specified by a 1000-point curve 

(i.e. 1000 independent realisations) using this methodology, which is deemed to provide 

sufficiently accurate representation to justify interpolation between points of the curve. 

The joint Monte Carlo sample must be assigned a performance weighting in order to 

create the required distributions: the weighting associated with the rainfall-runoff model 

parameter set are used for this purpose since the weightings of the rainfall simulations are 

deemed to be equal. 

7.2.2.3 Coupling of Rainfall-Runoff and Floodplain Hydraulic Models 

The rainfall-runoff model is used to process each series of simulated rainfall to yield an 

estimate of the associated channel discharge at the gauging station upstream of Linton 

which forms the upstream boundary of the inundation model. The rainfall-runoff and 

inundation models must be coupled in such a way as to allow the uncertainty associated 

with the multiple realisations of the discharge series to be represented in the input to the 

floodplain hydraulic model. 

This decision must be made in terms of the specific requirements of the analysis. Here the 

aim is to use the hydraulic model to extend the flood frequency analysis to include 

inundation extent estimation at various return periods, which specify the uncertainty 

associated with the predictions. The most complete technique for estimating uncertainty 
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in inundation predictions would be to route the discharge predicted by each rainfall 

simulation / rainfall-runoff model combination through the floodplain hydraulic model. 

This would allow the creation of frequency distributions for inundation at each grid cell. 

Unfortunately this is clearly not a practical proposition since the floodplain hydraulic 

model typically has a running time of around one hour per day of simulated time at a 

gridscale of 10 m, longer for higher resolutions (see Section 6.5).  

However, by careful choice of assumptions with regard to the flow behaviour at the site, 

efficient methods for estimation of inundation frequency are possible. Here, an approach 

based on three key assumptions is proposed.  

• First, it is assumed that the inundation extent related to a particular flow event is 

independent of flow conditions prior to the time at which out-of-bank flow began. This 

means that no consideration is given to conditions where standing water relating to a 

previous extent affects the capacity of the floodplain to store or transport floodwater from 

the current event. However, this assumption is justified as temporal juxtaposition of out-

of-bank events is relatively rare within the catchment. By making this simplification, 

continuous simulation of the floodplain behaviour is no longer required and flood events 

may be modelled individually, thereby significantly reducing the computational 

overhead. 

• Second, the assumption was made that the frequency distribution of inundation extent 

could be characterised using an annual maximum series for flow events. This reduces the 

analysis time required over that for a peaks-over-threshold (POT) analysis. Although a 

POT analysis gives a more complete picture of catchment behaviour, the same advantage 

can typically be acquired by using one additional year of annual maximum data (Robson 

and Reed, 1999). Given the long simulated data series, it is therefore not considered 

necessary.  

• A third assumption is made that the event in each year which causes the greatest 

inundation is that which has the greatest instantaneous peak discharge. This is based on 

the premise that the magnitude of an event is a good indication of other damaging 

attributes of a flood such as over-bank volume or duration. Such an assumption is 

considered reasonable in a small headwater catchment such as that at Linton where long, 
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lower-volume events resulting from delayed subcatchment response are unlikely, and no 

major control structures (e.g. dams) exist. This assumption is key to reducing time spent 

processing rainfall-runoff data as the storm with maximum discharge in each 

hydrological year can be easily identified. In contrast, identifying the storm causing most 

inundation from a flow series would be a challenging and time-consuming task, and 

might not be possible without carrying out the inundation simulation in full. 

The magnitude of the discharge annual maximum is therefore collected for each year of 

the 1000-year flow series. In turn this can be used to give an estimate of peak flow for 

any given return period. In order to use the peak flow estimate to produce simulations of 

associated inundation, a hydrograph must be associated with the peak flow. The simplest 

method of achieving this would be to run the model to steady state, i.e. the hydrograph 

increases from typical baseflow levels to a steady flow at the peak value. However the 

inundation forecast produced from such a hydrograph would only be a true representation 

of catchment conditions if the assumption that the catchment reaches steady state is valid. 

This is not thought to be true in the Linton catchment where the flashy response to flood 

peaks gives insufficient time for steady state to occur. An estimate of the hydrograph 

shape is therefore required. Typically, flood hydrographs may be approximated as a 

triangle, as recession tails are less important to inundation estimation. Houghton-Carr 

(1999) gives examples of techniques for estimation of the shape from gauged records or 

catchment descriptors. In this study, a simple measure of hydrograph volume is required 

that may be used for comparison across storms. The measure chosen was the length of 

time before and after the flood peak at which the discharge remained above 3.5 m3s-1. 

This threshold value was chosen after initial tests to identify correct volume estimation of 

the hydrograph. It must also be a compromise between capturing the complete 

hydrograph above bankfull level (calculated as between 4 and 5 m3s-1 through the centre 

of Linton using Manning’s formula to relate depth to discharge) and achieving adequate 

separation of neighbouring peaks. This measure is computationally efficient in terms of 

data requirements and provides the opportunity to produce frequency distributions of 

hydrograph volume in addition to peak value. To ensure that the triangular hydrographs 

produced represented an accurate representation of true hydrograph volumes, a set of 
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sample annual maximum hydrographs were saved and their volume compared with the 

triangle estimation (Figure 7.1 below). 
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Figure 7.1: Validation of the Hydrograph Volume Estimation Technique 

By storing the two threshold measures of the hydrograph in addition to the peak 

discharge, an estimation of the hydrograph shape may therefore be reconstructed for each 

flood event. This reconstruction can be used as input into the floodplain hydraulic model.  

A final decision was taken that uncertainty in calibration of the floodplain model, i.e. 

value of Manning’s n for channel friction, would not be part of the coupled uncertainty 

analysis. If this were to be undertaken, then for each return period of interest, the design 

event corresponding to each of the 1000 discharge series realisations would have to be 

propagated through the inundation model with each possible value of channel friction, 

giving rise to tens of thousands of simulations. This is not computationally feasible given 

that each inundation simulation takes several hours to perform. Instead, by considering 

only the uncertainty from the rainfall and rainfall-runoff models, the confidence bounds 

on the design event magnitude may be translated directly into confidence bounds on 

inundation extent. A limited sensitivity analysis of the model response to uncertainty in 

channel friction is, however, undertaken to provide a gauge of its relative effects on the 

inundation predictions. There is clear scope for this additional uncertainty source to be 

more fully considered in future applications when computational restrictions may have 

been lessened, however at present this simplified analysis is thought reasonable as unlike 

the strongly equifinal behaviour of the rainfall-runoff model (Chapter 5), the hydraulic 
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model calibration (Chapter 6) gave a unimodal performance distribution with a single 

optimal value.  

7.2.3 Data Preparation and Processing 

7.2.3.1 Creation of Rainfall Series and Rainfall-Runoff Parameter Sets 

Simulated rainfall series were produced using the methodology described in Chapter 4. 

Using the empirical distributions of each characteristic of the rainfall record, simulated 

storms were ascribed a mean intensity, duration, profile shape and inter-arrival time. For 

each hydrological year (1 September – 31 August) storms were created separately for the 

summer and winter seasons to allow for differences in precipitation patterns, and then 

concatenated to yield complete timeseries. As stated in Section 7.2.2.2 above, series of 

1000 years duration were produced. One series was randomly generated to correspond to 

each rainfall-runoff model parameter sample, 1000 in all. 

The rainfall-runoff model parameter sets used were those created using the process 

described in Chapter 5. They parameterise a transfer function model consisting of a non-

linear rainfall transformation and two parallel linear runoff routing pathways. The 

retained parameter sets are those which achieve a performance, measured by the R2 

criterion, greater than the required threshold of 0.6. The discharge predictions produced 

by each set are weighted by this performance value.  

7.2.3.2 Creation of Temperature Series 

In order to respond to simulated series of rainfall input, the rainfall-runoff model also 

needs a temperature input at each 15-minute interval. This input is not measurable since 

the series are simulated rather than observed, and hence it must also be simulated. 

Temperature may be considered either as a predictable quantity that can be modelled as 

an average of observed records, or as a stochastic process which should include random 

fluctuation. In the case of the present application, temperature is required as a controlling 

process on the soil moisture recession curve within the catchment. As previously 

demonstrated, this recession is a slow process with characteristic timescales of several 

months. The short-term fluctuations in temperature are therefore less important; instead 

the requirement is to represent correctly the average temperatures on a monthly scale. 
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Plotting average monthly temperatures at Linton over the historical record showed 

relatively small variation between years, and therefore it was concluded that an average 

yearly temperature would be suitable for use in the simulations. The average temperature 

for each month was found from the historical record, and these points fitted by a sine 

curve as shown in Figure 7.2 below. 
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Figure 7.2: Average Yearly Temperature Curve Fitting by Sine Wave 

A daily temperature curve was superimposed on the yearly curve. The curve was created 

using the average maximum deviations from the mean during each month of the year. 

Positive and negative deviations were considered separately as their magnitudes were 

often significantly different. The diurnal curve created in Section 3.3.2 was then fitted to 

these maxima and minima. Superimposing the two curves gave an average temperature 

value for every 15-minute period during the year. 

7.2.3.3 Process Methodology 

The method by which the rainfall series were created and processed using the rainfall-

runoff model and characteristics of the discharge series saved, had to be carefully 

designed to minimise memory and storage requirements. The 1000-year rainfall series 

were too large to be held in memory complete (each consists of 1000 * 365 * 24 * 4 = 3.5 

* 107 points), so were split into 100-year sections that could be processed separately and 

then stitched together, saving final conditions at the end of each partition to become 

antecedent conditions to the next section. In order to ensure that the prescribed initial 
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conditions of catchment storage did not contribute to the model behaviour, the model was 

run for a period of 5 years as a warm-up before the start of the 1000-year period. Due to 

storage considerations, each 1000-year series was created on the fly and processed using 

the rainfall-runoff model before being deleted immediately. In turn, the required 

parameters were drawn from the discharge series and saved before it too was deleted; 

multiple rainfall or flow series were never stored permanently.  

As discussed in Section 7.2.2.3, the characteristics drawn from any 1000-year discharge 

series were as follows. For each year of record, the peak instantaneous discharge was 

stored. The surrounding period of discharge was also retrieved from the record, and the 

time before and (separately) after the peak at which the discharge exceeded 3.5 m3s-1 was 

recorded. The 1000 storms so recorded are then ranked by peak value and stored for later 

analysis. 

7.2.4 Discharge Prediction Results 

7.2.4.1 Flood Frequency Estimation 

On completion of the processing of each simulation rainfall sequence using the rainfall-

runoff model with corresponding parameter set, 1000 discharge series each of 1000 years 

were available in order to estimate the discharge associated with a range of return periods 

in the catchment. For each rank position in the 1000-year series, the 1000 possible 

realisations of discharge value were ordered and associated with the R2 value as 

explained in Section 7.1.3.1. A weighted cumulative distribution of discharge for each of 

these return periods could therefore be created, and upper and lower limits at the required 

confidence level together with any other quantiles produced by interpolation. The return 

period-discharge relationship may be visualised by plotting all sets of limits together 

(Figures 7.3 and 7.4). 
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Figure 7.4: Detail of Modelled Discharge: Return 
Period Relation. Dashed lines show (a) Discharge 

associated with 2001 flood, with return period 
estimated from median and quartiles and 

(b)Discharge associated with 100-year flood. 

The results demonstrate the high level of uncertainty associated with predictions made 

using the simulated rainfall series and rainfall-runoff model. As an example of this, 

consider a typical measure of susceptibility to flooding, the 100-year flood. A flood at 

this return period should be well-estimated by a 1000-year discharge record (Section 

7.1.2.1). The confidence interval at a 90% level gives the possible range of discharge as 

14.8 - 48.0 m3s-1 (illustrated in Figure 7.4). The number of properties flooded by an event 

at the lower end of this range would probably fall in single figures; at the upper end of the 

interval widespread damage would be expected. In a similar vein, uncertainty in 

estimation of return period associated within a given discharge may also be considered. 

The estimated discharge of the October 2001 flood, 20.5 m3s-1, is also marked on Figure 

7.4. In this case the return period associated with the event varies from 7 years to 146 

years between the upper and lower quartiles (the return period estimated from the upper 

90% bound was not captured within the 1000 series duration). The effects of the wide 

confidence intervals in turn impact on the cost-benefit ratio associated with any flood 

protection works, as is explored more fully in the following section using the floodplain 

hydraulic model to simulate inundation patterns. 
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7.2.4.2 Forming the Hydrograph: Flow-Discharge Relationship 

As detailed in Section 7.2.2.3, a figure for the peak flow during a flood event is 

insufficient to create an input hydrograph for the floodplain inundation model, and 

therefore such hydrographs cannot be produced directly from the flood frequency 

analysis carried out in the previous section. In order to solve this problem, each annual 

flow maximum in the database was saved along with the time at which the discharge 

exceeded 3.5 m3s-1 both before and after each flood peak. This allows the approximate 

recreation of hydrograph shape and volume for each event. 

For each return period, a cumulative distribution of peak flow was produced. A flood 

hydrograph would typically be required for a given percentage point of this distribution. 

The simplest approach would be to run the floodplain model using a steady-state 

simulation based on this peak discharge. However, this was not felt to be a suitable 

approximation in this application (see Section 7.2.2.3). Another possible approach would 

be to find the recorded storm with peak discharge closest to this percentage point, and use 

the hydrograph reconstructed from the data on this storm. However, this might not 

produce a representative result if that particular storm had an unusual flow:volume 

relationship. Instead, an investigation was made into the reliability of using a generalised 

flow:volume relationship. To do this, the volume of each storm was calculated and this 

was graphed against the peak flow value. The assumption is made that the relationship 

follows a power law (this would be the case if hydrographs scale across the range of peak 

discharges such that they can be approximated as similar triangles). The results are shown 

below in Figure 7.5, plotted on a log-log scale, together with the best-fit regression 

relationship. 
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Figure 7.5: Peak Flow - Volume Relationship 

Figure 7.5 shows a well-defined relationship between flow and volume, with a regression 

line defined by the following equation: 

Volume = 36720 * Flow1.35 

Equation 7.1: Regression Relationship between Peak Flow (m3s-1) and Volume (m3) 

The strong correlation between flow and volume (correlation coefficient 0.90) justifies 

the use of a standardised hydrograph based on peak value. For each simulation, the peak 

value was identified, and Equation 7.1 used to predict the volume. The percentage of the 

hydrograph volume lying before and after the peak value was felt to be of less importance 

in controlling inundation extent than the total overbank volume. The median percentages 

of 23% before peak and 77% after peak were therefore used as a simple approximation. 

From this information the simplified input hydrograph relating to the peak value can be 

created ready for input into the inundation model. 
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7.2.4.3 Creation of Design Hydrographs 

Following the approach described above, design hydrographs were derived for the range 

of return periods shown in Table 7.1. For each return period, hydrographs were produced 

with peak discharge at the median prediction and at the 5% and 95% points of the 

cumulative distribution.  

Return 
Period 
(Years) 

Cumulative 
Distribution 

Point (%) 

Peak 
Discharge 

(m3s-1) 
Volume (m3) Time to Peak 

(Hours) 
Time after 

Peak (Hours) 

5 8.6 672000 1.0 33.4 

50 15.2 1450000 12.2 40.8 10 

95 30.0 3631000 15.5 51.8 

5 13.0 1174000 11.5 38.6 

50 22.2 2418000 13.9 46.6 50 

95 43.1 5923000 17.6 58.8 

5 14.8 1399000 12.1 40.4 

50 25.1 2854000 14.5 48.6 100 

95 48.0 6949000 18.2 61.0 

5 19.0 1960000 13.2 44.1 

50 32.1 3979000 15.8 53.0 500 

95 58.8 9008000 20.0 65.5 

5 20.8 2215000 13.6 45.6 

50 35.5 4558000 16.4 54.9 1000 

95 64.7 10249000 20.2 67.8 

Table 7.1: Specifications for Design Hydrographs 

The parameters may then be used to produce graphical representations of the hydrographs 

(Figure 7.6). 
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(a) 100 Year Return Period 
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(a) 1000 Year Return Period 

Figure 7.6: Design Hydrographs for each return period, at the 5%, 50% and 95% points of the 
cumulative distributions. 
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7.2.5 Inundation Extent and Depth Estimation Results 

7.2.5.1 Inundation Extent of Design Events 

The design hydrographs shown in the previous section (7.2.4.3) give discharge series for 

the gauging station at Linton, upstream of the town centre. The hydrographs were used to 

form the upstream boundary condition for the hydraulic model. Following the model 

evaluation presented in Chapter 6, the floodplain code was implemented at 10 m 

resolution using the sub-grid porosity treatment for maximum computational efficiency. 

The channel friction coefficient (Manning’s n) was set at 0.05 m-1/3s, which gave optimal 

performance in the multi-criteria validation for the 2001 flood event. For the reasons 

given in Section 7.2.2.3, uncertainty in value of channel friction is not considered at this 

stage. For a simple sensitivity analysis relating to this parameter, refer to Section 7.3.3.  

For each of the 5 return periods (10 year, 50 year, 100 year, 500 year, 1000 year) the 

hydraulic model was used to produce an inundation simulation relating to the design 

hydrographs for the 5%, 50% and 95% points of the distribution of peak discharge 

magnitudes. The results are shown in Figure 7.7.  
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Figure 7.7: Areas of Predicted Inundation at the 5%, 50% and 95% points of the 
cumulative distribution of peak discharge magnitudes 
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7.2.5.2 Communication of Results 

The spatial pattern of inundation extent evident in Figure 7.7 is ultimately constrained by 

the valley morphology, so that despite large differences in the peak discharges of the 

extreme return periods, the maximal inundation envelope remains comparatively 

consistent. This is due to relatively steep topography at the natural boundaries of the 

floodplain which serves to constrain flood waters. However, it is also at this boundary 

that accuracy in prediction becomes more critical, as beyond the edge of the floodplain, 

density of housing increases dramatically. On the floodplain itself, there are few 

buildings, as waterlogged land and frequent flooding have constrained construction 

(Section 3.2.1.2). 

The preceding paragraph usefully illustrates the importance of presenting results in a 

method sensitive to the intended use. The mapped inundation extents of Figure 7.7 would 

be useful for strategic and emergency planning at the local scale, for example to inform 

decisions on flood defence works or to prepare emergency evacuation and traffic routing 

plans. Information in a similar style from a deterministic forecast at return periods of 100 

and 1000 years is presented online by the Environment Agency (Environment Agency, 

2006) for public use and aimed particularly at homeowners (although the EA map is 

static and therefore does not allow the simulation of wetting up patterns which may be 

useful for emergency planning). However, for more specific applications such as a 

benefit-cost analysis for a structural flood defence scheme, statistics drawn from the 

inundation mapping would present the important trends more clearly. Figure 7.8 gives an 

example, plotting the number of houses flooded at each return period. The analysis for 

the figure counted a house as ‘flooded’ if flood water reached its perimeter at any point, 

and at any depth. It would be possible to tailor the analysis further, for example, counting 

only houses flooded to a depth at which it was no longer considered reasonable that they 

be protected by the use of sandbags or removable flood gates. The same analysis could 

also be used to recommend raised floor levels. 
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Figure 7.8: Number of houses flooded (to any depth) as a 

function of return period and point of peak discharge 
distribution 

Figure 7.8 demonstrates a sharp rise in the number of properties flooded between the 10-

year, 50-year and 100-year events; there is then a smaller increase up to the 500-year and 

1000-year events. This type of analysis could be used to suggest a threshold return period 

beyond which the expenditure involved in containing the Granta would not be realised in 

terms of damage saving. In order to do this more fully, a worthwhile extension of the 

current work would be to link the properties in the area to a valuation, perhaps through 

zoning by postcode, in order to estimate the financial cost of each flood event. However, 

care should be taken not to discriminate against residents living in lower-cost 

accommodation when using this method, as noted in Section 1.2.3.2. 

Another possible example of the use of inundation maps is to calculate the area flooded 

by each simulated event. This variable, as with the previous example of number of houses 

inundated, would be used directly within the DEFRA scoring system for capital works 

planning (DEFRA, 2002; see also Sections 1.3.2.2, 1.3.3). The results of such an analysis 

are shown in Figure 7.9. The analysis would be valuable in estimating the damage done 

to agricultural land (Section 1.2.4.3), and could be extended to examine the duration of 

inundation if appropriate. As previously, increase in flooded area is rapid up to the 100-

year return period, less so for higher return periods.  
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Figure 7.9: Area of land flooded (to any depth) as a function of 

return period and point of peak discharge distribution 

7.2.5.3 Inundation Depth Results 

In addition to maps of inundation extent, the simulations provide information on 

inundation depths and dynamic pattern of flood routing. Figure 7.10 gives an example of 

such output, showing the results from the 100-year event in more detail. The evolution of 

the flood is shown for the 5%, 50% and 95% points of the confidence interval, at 4-hour 

time intervals. 

As highlighted in Section 1.2.4.3, depth mapping can be extremely useful in order to aid 

identification of areas of high risk to life and greater damage to property. Median 

expected depth of flooding, together with confidence bounds, may also be produced on a 

property-by-property basis for any given return period, allowing owners to choose the 

most appropriate flood protection measures. 
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Figure 7.10: Inundation Simulations at 4-hour intervals, using hydrographs based on the 
5%, 50% and 95% points of the discharge magnitude distribution 
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7.3  Constraining Uncertainty in End-to-End Modelling 

7.3.1 Constraining Uncertainty in Discharge 

Given the wide confidence interval associated with discharge prediction, meaning that 

any estimate of flood peak magnitudes is associated with a high degree of uncertainty, it 

is important to improve understanding of the reasons that this uncertainty exists. 

Quantifying the uncertainty and analysing its provenance offers the scope to determine 

the main sources of uncertainty, and identify means of uncertainty reduction through 

refinement of model structure, parameterisation or boundary condition specification. 

7.3.1.1 Effects of Uncertainty in Rainfall Series 

Part of the uncertainty associated with high return period discharge estimation comes 

from the stochasticity of precipitation patterns that ultimately force the model chain. The 

combined rainfall and rainfall-runoff simulation accounted for this uncertainty by using 

an ensemble of 1000 individual climate scenarios. However, to consider the possible 

reduction in uncertainty that would be possible if improved knowledge of future rainfall 

behaviour was available, consider the extreme case where the full 1000-year series is 

known exactly. This can be simulated by selecting a single random series that is assumed 

to be ‘correct’ and re-running the Monte Carlo simulations using each of the possible 

rainfall-runoff model parameter sets as before, but all with the single rainfall series. The 

results are shown below in Figures 7.11 and 7.12, in the same format as the previous 

results. 
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Figure 7.11: Modelled Discharge: Return Period 

Relation using single rainfall series 
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Figure 7.12: Detail of Modelled Discharge: Return 

Period Relation. Dashed line shows discharge 
associated with 2001 flood, with return period 

estimated from median and quartiles. 

The return period-flow curves are, on first inspection, very similar to those using 

different rainfall series for each simulation. The curves are not as smooth, representing 

the increased dependence of the results on model response to particular rainfall events. 

Figure 7.12 shows a detail of the relationship for return periods of up to 250 years, and 

the return periods associated with the 2001 flood are marked as previously. The discharge 

of the 100-year event is slightly more constrained, the range between the 90% confidence 

bounds being reduced from [14.8, 48.0] to [14.8, 42.4]. The range of return periods 

between the first and third quartiles is very similar to that of the previous application; 

however there is a shift towards higher values signifying typically lower flood peak 

predictions in each simulation. 

These results indicate that reducing the uncertainty in the rainfall series has only a small 

impact on the long term discharge prediction; similar variability is found within the 

response of models with different parameter sets but a single rainfall series as with 

multiple rainfall series. However, the estimate of particular quantities such as the return 

period associated with a particular discharge may be altered by a significant margin, e.g. 

the 2001 flood is estimated as having a return period of 47.4 years instead of 33.7. Hence 

improved information on rainfall patterns is predicted to improve accuracy but have only 

a minor affect on precision in discharge estimates. The limited effect of uncertainty in 
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precipitation patterns however ultimately reflects the derivation of the rainfall model 

from a single 15-year gauged record. A longer rainfall series might contain implicit non-

stationarity that exerts a significant control on discharge response: this question is 

discussed further in Section 8.3.2.  

7.3.1.2 Effects of Uncertainty in Rainfall-Runoff Model 

The above results suggested that the most significant source of uncertainty in the 

discharge prediction is in the parameterisation of the rainfall-runoff model. In order to 

test this, the suite of model simulations were rerun, using the same set of rainfall series as 

in the original experiment, but instead of using each of the behavioural rainfall-runoff 

parameter sets only that set with the optimal value of the performance measure was used. 

This mimics the situation where there is no uncertainty in the rainfall-runoff model 

parameterisation. The results are shown below in Figures 7.13 and 7.14.  
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Figure 7.13: Modelled Discharge: Return Period 

Relation using optimum model parameter set 
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Figure 7.14: Detail of Modelled Discharge: Return 

Period Relation. Dashed line shows discharge 
associated with 2001 flood, with return period 

estimated from median and quartiles. 

The graphs show that, as predicted, improved knowledge of the rainfall-runoff model 

parameters has the potential to greatly reduce the uncertainty associated with discharge 

estimates. The 90% confidence interval for the peak discharge of the 100-year flood has 

been constrained from [14.8, 48.0] to [17.5, 20.8] m3s-1. These narrower prediction 

bounds would be a significant advantage for any planning of flood defence works.  
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However, while this analysis shows the great benefits that would be associated with exact 

knowledge of rainfall-runoff model parameters, it must not be confused with the results 

of using a single set of parameters without the observed data and model structural 

knowledge required to justify this decision. Figures 7.13 and 7.14 show results using only 

the optimal parameter set as specified by comparison with the observed data. However, 

many of the alternative parameter sets used in the complete analysis showed an R2 value 

within 0.01 of this optimum, and all were within 0.08, giving little reason to suppose that 

one set should be accepted against the rejection of all others. By using the single 

optimum set, the possibility of flow values within the wider confidence bounds has 

therefore been discounted without good supporting evidence. This may have particularly 

damaging consequences for flood risk assessments as the confidence limits fall at the 

lower end of the range of the wider bounds; the optimum set does not necessarily give 

values bracketing the median of the complete uncertainty analysis. These results show the 

potential problems of using an analysis without uncertainty estimation such as the model 

constructed for the Environment Agency (Section 3.5) which bases its conclusions on a 

single realisation of the flow associated with a given return period. 

7.3.1.3 Uncertainty in Behavioural Threshold 

Another source of uncertainty in the distributions of peak discharge prediction, also 

associated with the parameterisation of the rainfall-runoff model, is the threshold 

performance value above which models are deemed to be behavioural. Only parameter 

sets meeting this criterion are included in the analysis, however there is little physical 

basis for the choice of threshold which is made instead through operational reasoning and 

has therefore been seen as a weakness in the calibration methodology (Section 5.4.2.4). 

The threshold used in the preceding analysis was to require a mean R2 value greater than 

0.6 when the model simulations were compared with the observed levels for each winter 

season (Section 7.1.4.1). To test the effect of threshold choice on discharge prediction, 

this value was reduced to 0.5 and the procedure re-run. The updated discharge prediction 

results are shown in Figures 7.15 and 7.16. 
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Figure 7.15: Modelled Discharge: Return Period 

Relation using behavioural threshold of 0.5 
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Figure 7.16: Detail of Modelled Discharge: 
Return Period Relation. Dashed line shows 
discharge associated with 2001 flood, with 
return period estimated from median and 

quartiles. 

The results show a relatively small change in the discharge predictions at low return 

periods: the 90% confidence interval for the peak discharge of the 100-year flood has 

been widened from [14.8, 48.0] to [14.7, 51.6] m3s-1. At higher return periods the 

difference is more pronounced: the 90% confidence interval for the peak discharge of the 

1000-year flood has been widened from [20.8, 64.7] to [23.1, 76.9] m3s-1. As expected, 

the less rigorous performance criterion has caused models with more disparate behaviour 

to be classed as behavioural and the range of simulation results has increased 

accordingly.    
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7.3.2 Propagating Uncertainty through Inundation Simulations 

The preceding section analysed the relative effects of uncertainty in the rainfall input and 

rainfall-runoff model parameters, and also considered the influence of the behavioural 

threshold used to parse the ensemble simulations. In order to understand how such 

changes in discharge prediction distributions would affect inundation predictions in the 

coupled model structure, the uncertainty was propagated through the hydraulic model. As 

before, the peak discharge values were used to create triangular input hydrographs to 

form the upstream boundary condition for the floodplain inundation model. In this case, 

the 100-year event only was considered, as a standard for comparison between the 

different distributions. The hydrograph parameters are shown in Table 7.2.   

Distribution 
Information 

Cumulative 
Distribution 

Point (%) 

Peak 
Discharge 

(m3s-1) 
Volume (m3) Time to Peak 

(Hours) 
Time after 

Peak (Hours) 

5 14.8 1395600 12.0 40.3 

50 24.5 2756000 14.4 48.1 
Single 

Rainfall 
Series 95 42.4 5778900 17.4 58.3 

5 17.5 1749900 12.8 42.8 

50 19.0 1955300 13.1 44.0 

Single set of 
Rainfall-

Runoff model 
Parameters 95 20.8 2209500 13.6 45.4 

5 14.7 1382900 12.0 40.2 

50 26.3 3032800 14.7 49.3 
Behavioural 
Threshold at 

r2 = 0.5 95 51.6 7533200 18.7 62.5 

Table 7.2: Parameters for 100-Year Hydrographs Using Altered Discharge Distributions 

The inundation pattern associated with each of these hydrographs was simulated using 

the hydraulic model. The patterns of inundation forecasts are shown in Figure 7.17. The 

plots of inundated area translate the effect of changing the uncertainty bounds into the 

consequences for flood extent: 

• Plot (a) shows the original analysis of the 100-year flood, repeated for comparison 

with the other methods.  
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• Plot (b) shows the significant reduction in uncertainty of flood boundary position 

possible if the rainfall-runoff model parameters could be defined exactly. Although this is 

unlikely due to equifinality in parameter sets, caused by model structural deficiencies and 

limited calibration data, it reinforces the suggestion that significant benefits could be 

achieved by further work to reduce the number of models considered behavioural.  

• Plot (c) shows the small reduction in uncertainty achievable if the future rainfall 

patterns were known exactly, however the relatively minor impact compared with that of 

Plot (b) suggests that improvements in rainfall-runoff modelling should take precedence 

over improvements in rainfall characterisation.  

• Plot (d) shows the impact of changing the threshold value for model acceptance; this 

change has a relatively small effect on inundation extent at the 5% and 50% points of the 

discharge distribution, however at the upper 95% point the additional encroachment of 

the flood into the urbanised area suggests that many more households could be affected 

by flood waters if this additional uncertainty in the rainfall-runoff model parameterisation 

is considered valid. 
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d) Behavioural Threshold at r2 = 0.5 

Figure 7.17: Areas of Predicted Inundation at the 5%, 50% and 95% points of the 
cumulative distribution of peak discharge magnitudes for the 100-year flood, using four 

alternative methods to calculate uncertainty bounds 
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7.3.3 Sensitivity to Inundation Model Parameterisation 

As discussed in Section 7.2.2.3, the uncertainty analysis carried out in the preceding 

sections did not include consideration of uncertainty in the channel friction parameter 

used to calibrate the floodplain inundation model. Although computational restraints 

prevented such analysis under the framework of GLUE, it was felt to be important to 

gauge the comparative sensitivity of this parameter. Therefore a decoupled ‘sensitivity 

analysis’ procedure was undertaken to compare the scale of uncertainty associated with 

the channel friction parameter compared to those of the rainfall and rainfall-runoff model 

parameters.  

For each return period, the 50% (median) hydrograph was routed through the floodplain 

using channel friction coefficients of 0.04 and 0.06 m-1/3s, chosen to surround the 

previously selected optimum of 0.05 m-1/3s which represented a single, global maximum 

in the validation statistic response space. More extreme values were thought less likely to 

produce behavioural simulations; for example, validation scores were depressed for 

values below 0.04 m-1/3s. Using the 100-year flood as a standard for comparison as 

before, the relative effects of the uncertainty sources on the flood envelope may be 

compared (Figure 7.18). It is observed that varying the friction parameter value within 

the specified range has a relatively small effect relative to the uncertainty sources 

previously considered. It is particularly noticeable that predictions using n = 0.05 m-1/3s 

and n = 0.06 m-1/3s give very similar flood outlines: this is consistent with the 

correspondingly close values of the combined validation statistic (Table 7.3). 

Channel Friction 
(m-1/3s) 

Validation 
Statistic Value 

0.04 0.705 
0.05 0.766 
0.06 0.732 

Table 7.3: Combined validation statistic: variation with channel friction parameter value 
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Figure 7.18: Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall 
and rainfall-runoff model parameters and (b) Uncertainty associated with floodplain 

model channel friction parameter 

In addition to mapping the flood envelope, the uncertainty may also be quantified in 

terms of number of houses flooded, as in Section 7.2.5.2. To visualise the relative 

uncertainties, the variation associated with a channel friction parameter in the range 0.04 

– 0.06 m-1/3s was plotted as an error bar, superimposed on the graph showing previous 

uncertainty error bounds (Figure 7.19). 
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Figure 7.19: Uncertainty associated with variation in channel friction parameter in the 

range 0.04 – 0.06 m-1/3s, compared with previous uncertainty bounds. 
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This graph again suggests that the effects of uncertainty in the channel friction parameter 

are of a smaller magnitude than those of uncertainty in the rainfall and rainfall-runoff 

model parameters. As with other uncertainty sources, the sensitivity increases with return 

period as marginal changes in the flood envelope become more significant in dense areas 

of housing. It should however be understood that a simplistic analysis of this kind cannot 

represent the nonlinear effects of uncertainty propagation through the model chain, and 

hence provides only a guide as to the likely effect of uncertainty on model results in a full 

application of the GLUE procedure to the coupled model system. 
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7.4 Discussion 

The above analysis shows the results of propagating uncertainty through coupled rainfall, 

rainfall-runoff and floodplain inundation models. A number of key findings are made. 

First, extending the flood frequency analysis to include inundation simulations based on 

discharge magnitude estimates offers the opportunity to explore the relationships between 

discharge, inundation extent and depth, and likely damage to infrastructure and buildings. 

This emphasises the importance of including a hydraulic model in the chain of coupled 

models. This is especially relevant in the light of the recent trend away from structural 

flood defences and towards a greater reliance on integrated catchment management 

approaches (Section 1.3.2.2). While peak discharge measurements were sufficient for 

schemes which aimed to increase conveyance capacity to ensure that river flows 

remained in-bank, modern solutions instead aim to manage a ‘functional floodplain’; 

using natural defences to attenuate flood peaks. The need for model results which 

simulate flow paths over the floodplain has therefore become a practical imperative. 

An important aspect of the modelling procedure is the rejection of the principle of using 

single deterministic forecasts, replacing these with results in the form of distribution 

quantiles. To aid visualisation, these were presented using a confidence interval for 

predictions of inundation extent, with the median forecast also shown. The aim is to 

allow an intuitive interpretation of the effects of uncertainty on flood forecasts. Maps 

showing the confidence intervals allow an assessment of which areas of the floodplain 

are most sensitive to uncertainty in discharge predictions due to channel shape and local 

topography. The effects of uncertainty on inundation boundaries at different return 

periods can also be examined; at low return periods (10 – 50 years) boundaries are highly 

uncertain as small changes in water depths may create large differences in inundation 

extent as water spreads across shallow gradients of the floodplain. At return periods of 

100 – 500 years the boundaries become more constrained by steepening topography at 

the natural edge of the floodplain, however at very high return periods (1000 years or 

greater) the uncertainty may increase again as water spreads across the shallower 

topography of the urban area. 
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The inclusion of uncertainty estimates in a flood frequency analysis is still a relatively 

rare occurrence outside academic research. This is demonstrated by the recent Standards 

of Protection Assessment commissioned by the Environment Agency for the River 

Granta, and summarised in Section 3.5, which uses a deterministic forecast. Section 7.3, 

however, demonstrates the narrowing of prediction bounds caused by the use of a single 

set of rainfall-runoff model parameters, even where uncertainty in rainfall patterns is still 

included in the analysis. Where insufficiency of validation data gives rise to equifinality 

in model calibration, this represents an unjustified suggestion of certainty in model 

results and may not correspond to the median prediction from a full uncertainty analysis 

thus giving biased estimates of flood risk. The results therefore suggest that it would be 

highly beneficial to catchment management agencies and to the general public that flood 

risk assessments should include analysis of uncertainty in predictions, and that such 

uncertainty should be communicated to the user. Although traditionally such an analysis 

might have been considered too complex to be conveyed effectively, it is becoming 

increasingly common to see probabilistic forecasts in the realm of weather prediction 

(e.g. Metcheck, 2006; Meteo France, 2006) and there is an expectation of greater 

customer demand in the future (Met Office, 2004). It is therefore reasonable to suggest 

that provision of uncertainty information should be extended to flood risk assessments. 

A wider reporting of the effects of uncertainty on model predictions may also provide an 

impetus for further data collection in order to constrain uncertainty. By emphasising that 

observed floods may fall within wide prediction bounds rather than the more simplistic 

interpretation that the deterministic model is ‘wrong’, it becomes more obvious how 

additional data could aid future predictions. This is demonstrated in Section 7.3, which 

considers the effect of uncertainty from different sources on the confidence bounds. The 

results show that the major cause of uncertainty is equifinality in rainfall-runoff model 

parameterisation, and therefore suggests that future effort might best be directed at 

reducing the range of behaviour associated with the set of behavioural models. This could 

be achieved by constraining the parameters of the current model, for example by 

investing in a telemetered rain gauge closer to the subject site or a flow gauge that did not 

wash out at high discharge levels. Alternatively, a different model structure could be 

chosen which would enable the incorporation of internal state data such as water table 
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levels at different points in the catchment, if funding were available to collect this data. 

The interrelations between model component complexity, sensitivity and magnitude of 

uncertainty are explored further in Section 8.3.2. 

It is hoped that in the future this methodology could be extended to include uncertainty in 

hydraulic model parameterisation as part of the full GLUE application. The decoupled 

sensitivity analysis suggested that uncertainty in the Manning channel roughness 

coefficient was of smaller magnitude than that associated with the rainfall-runoff model. 

This conflicts with the findings of Hall et al. (2005), who found uncertainty in channel 

friction to be the factor with the greatest effect on predictions. Their study did however 

assume a relatively small uncertainty in upstream flow condition (assumed to have a 

normal distribution with mean 73 m3s-1 and standard deviation 4 m3s-1) which is 

appropriate for flows measured at a gauging station, but would not be the case in a 

coupled modelled application where input is derived from a statistical analysis of 

continuously simulated discharge. While it would not be practical to propagate 

predictions from each discharge series through the hydraulic model, a concept such as 

that of functional similarity (Pappenberger et al., 2005) might be used to reduce 

computational effort. It is however unlikely that uncertainty in hydraulic model 

parameters could be significantly reduced before a further flood event in the town 

allowed a more complete archive of inundation data to be collected. 
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7.5 Conclusion 

This chapter presents a method for using continuous simulation within the context of a 

chain of coupled models, to produce a flood frequency analysis including flood risk 

mapping. This technique would be valuable in data poor catchments where flood risk 

predictions are required for strategic planning purposes, a situation which has become 

more common in recent years due to perceived increases in flood events in small lowland 

catchments. Such catchments do not typically have a history of flow gauging, but the 

continuous simulation method allows predictions of high return period floods to be made. 

The method draws together the models described in the previous three chapters: a 

stochastic rainfall model (Chapter 4), a rainfall-runoff model incorporating parallel fast 

and slow pathways (Chapter 5) and a 2d raster floodplain inundation model (Chapter 6). 

The stochastic nature of the rainfall model and equifinality in rainfall-runoff model 

parameter sets led the concept of an optimum model to be rejected in favour of the use of 

a set of behavioural models weighted by performance score. Methods of propagating the 

uncertainty in model inputs and predictions through the model chain were therefore 

considered. The GLUE methodology was used to cascade full pdfs of parameter values 

through the rainfall and rainfall-runoff models; a reduced set of hydraulic model 

simulations were then carried out to maintain efficiency, an important consideration if it 

is to become more widely used in commercial flood risk assessment applications. 

The results of the flood frequency analysis showed that, given the modelling choices 

above, the uncertainty present in the estimates of flood extent for events at return periods 

of 10, 50, 100, 500 and 1000 years was significant and led to relatively wide confidence 

intervals for the number of houses which could be affected. The current use of 

deterministic flood risk analyses by the Environment Agency was therefore suggested to 

be unduly restrictive. This view was backed up by a further investigation of the relative 

effects of uncertainty from different causes, which identified uncertainty in rainfall-

runoff model parameterisation as the major contributing factor. Using only the single 

optimum rainfall-runoff model parameter set was found to give conservative estimates of 

flood extent which did not reflect the possible risks identified in the full analysis. 
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Chap t e r  8  

CONCLUSIONS 

 

8.1 Thesis Summary 

8.1.1 A Modern View on Flood Risk Modelling and Assessment 

Hydrology is a fast-moving science and flood modelling in particular is in a period of 

rapid change with the recent introduction of many new concepts. Revolutions in data 

availability and computational resources have opened new avenues of research and 

facilitated the creation and application of hitherto unsupportable model structures. The 

principle aim of this thesis was to integrate the best of these emerging techniques with 

new thinking on reduced complexity modelling methods and opportunities for model 

coupling in order to establish an efficient, rigorous and modern structure for flood risk 

assessment.  

Flood risk assessment currently has a high public and political profile due to recent floods 

in the UK and Europe which have highlighted the wide-ranging consequences of flooding 

and played onto public fears of the possible effects of climate change. Support and 

funding opportunities for data collection and modelling to aid understanding of flood risk 

and provide new catchment management solutions are at a high; however there is often a 

struggle to bridge the gap between specialist techniques developed for a single part of the 

flood modelling process and those that are perceived as providing a complete solution 

suitable for practical application. It is crucial that individual techniques are seen in their 

wider context as it is then that their ability to improve scientific understanding of 

catchment behaviour and response to management strategies can be fully appreciated. 

Importantly, the effects of uncertainty on model response in terms of impacts on 

dependant model components can also be evaluated.  

Wheater (2002) considered a similar problem, at a time in which present techniques were 

still in their early developmental stages. In the light of the progress then achieved, he 

 289



identified the following as among the priority research challenges in fluvial flood 

modelling: 

1. Development of a national capability for continuous hydrological simulation of 

ungauged catchments. 

2. Improved representation of urban flooding. 

3. Appropriate parameterisations for hydraulic simulation of in-channel and 

floodplain flows, assimilating available ground observations and remotely sensed 

data. 

4. A flexible decision-support modelling framework, incorporating developments in 

computing, data availability, data assimilation and uncertainty analysis. 

This thesis has presented a preliminary structure to achieve the last of these aims, by 

means of coupled model components developed using ideas suggested by the first three 

and seeking to include the expertise expressed in the latest hydrological model 

developments. The chapters of this thesis consider in turn linked sub-models representing 

rainfall regime, runoff production and routing, and floodplain hydraulics. These are then 

drawn together as part of a coherent structure in Chapter 7. 

8.1.2 Case Study 

In order to provide context for each component, the models are applied to a catchment of 

the River Granta in Cambridgeshire. The catchment typifies the conditions in which flood 

models are increasingly expected to perform but which do not necessarily correspond to 

the characteristics of well-studied, highly instrumented research catchments. After the 

Granta suffered a flood in October 2001, which caused significant damage to listed 

buildings in the centre of the town of Linton, strong public pressure was exerted on 

management authorities to provide an increased level of flood protection. In order to 

achieve this, a standard flood risk assessment was carried out by the Environment 

Agency, relying on well-established techniques of design event creation and 1d hydraulic 

modelling. 

Using Linton as a case study, the benefits of using the latest remote sensing data together 

with modern techniques of coupled modelling are demonstrated, providing a more 
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comprehensive and rigorous flood risk assessment than that previously possible. In 

particular, continuous simulation methodology provides reliable estimates of flood 

magnitudes at each required return period while high-resolution 2d floodplain inundation 

simulation allows detailed representation of flood progression through an urban area. 

This is done without compromising the requirement to produce a framework which can 

be parameterised using only that data widely available within the UK for catchments 

which had not previously been considered at high flood risk. The technique is therefore 

verified as suitable for widespread implementation. 
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8.2 Focus on Technique Improvements 

8.2.1 Continuous Simulation 

Although the concept of continuous simulation is not new, it has not previously been 

considered as a suitable method for integration into a system of coupled models to 

provide a flood risk assessment framework. Previous examples of its use have included 

proof that it can be used to reproduce annual maximum floods and forecast those of 

greater return period (Cameron et al., 1999) but not assimilation into an ‘End-to-End’ 

modelling system. Recent studies which have succeeded in linking numerical weather 

prediction models, rainfall-runoff models and hydraulic models have been focused 

around reproduction of single events in order to prove the concept of cascading model 

chains (Pappenberger et al., 2005). Such studies are often constrained by model run times 

and have therefore been restricted to a relatively small number of simulations. This thesis 

has demonstrated that by using rainfall and rainfall-runoff models which have a low 

computational overhead, continuous simulation can be used as a practical and valuable 

tool to provide estimation of extreme discharge events. The short run time of the rainfall-

runoff model deployed also allowed investigation of the effects of uncertainty within a 

Monte Carlo framework (Section 7.2.3). 

The advantages of using continuous simulation within a flood risk assessment framework 

are numerous. By considering the flow regime of the catchment as a continuous process, 

antecedent conditions are automatically accounted for in the rainfall-runoff model. A 

strong annual cycle in the storage parameter of the rainfall-runoff model which controls 

runoff production showed this to be of great importance in the Linton catchment, 

demonstrating the strong dependency of the catchment response on groundwater levels. 

This behaviour, typical of catchments throughout the chalklands of South-East England, 

could not be modelled effectively using an event-based approach. Continuous simulation 

also reduces the dependency of the model on traditional statistical methods of extreme 

event prediction. It allows the whole rainfall - runoff record to be used to parameterise 

the model rather than purely the extreme event magnitudes, thus ameliorating the 

problems associated with short and unreliable flow records. For example, using 
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continuous simulation in the Linton catchment enabled predictions of flood events even 

after gauge malfunction occurred. This proved a significant advantage over statistical 

methods for flood frequency analysis employed by the Environment Agency which were 

biased by the faulty gauge readings. 

Furthermore, continuous simulation is a flexible methodology which may be manipulated 

to make predictions relating to climate or land-use change, through the adjustment of 

rainfall or rainfall-runoff model parameters. For example, Ivanov et al. (2004) discuss the 

use of continuous simulation with a distributed model sensitive to soil type distribution, 

which could therefore be used to study changes in catchment land-use. This ability is 

important in an age where flooding is seen as an evolving threat caused by human 

behaviour, and floodplain management strategies therefore require simulations of 

possible future scenarios to enable proper precautionary measures to be taken. 

8.2.2 Urban Flood Modelling 

One of the greatest challenges in the creation of a modern flood risk assessment 

framework is to produce a system capable of providing simulations and decision-making 

capabilities in complex urban environments. The ability to provide predictions in such 

environments is becoming a common requirement as awareness of flood risk is increased 

and limitations in the deployment of structural flood defences become apparent (Sharif et 

al., 2006). Recent changes in attitude towards floodplains mean that they are no longer 

seen purely as areas which should be protected from overbank flow, and instead there is 

an increased understanding of their role as a functional part of the fluvial environment. 

As well as leading to improvements in catchment-wide management strategies, this new 

conceptualisation has also encouraged an expectation of self-sufficiency with regard to 

flood protection measures, as flooding is seen as a natural occurrence for homes located 

within the floodplain area. It is therefore important to provide accurate information on 

expected flood inundation extent and depth at different return periods, to allow 

homeowners to prepare for future flood events, and flood response strategies to be 

developed for urban areas. 

Past attempts to incorporate flood risk mapping into flood risk analyses have typically 

used simple 1d models which provide predictions of water surface elevation for cross-
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sections perpendicular to the channel orientation. This type of model is unable to properly 

represent the complex flow patterns created through densely-populated areas where 

housing layout may cause combinations of directional blockages and preferential flow 

pathways. Instead, a 2d model structure is required, allowing a more complete 

representation of channel-floodplain coupling and floodplain flow behaviour which 

recognises the floodplain as an area providing dynamic flow pathways rather than simply 

as a static storage zone. 

8.2.2.1 Incorporation of New Data Resources 

The expectations of urban flood simulation capability have been driven by recent 

advances in remote sensing techniques such as LIDAR which provide high resolution 

mapping of vulnerable areas. Prior to such data availability, there was little to suggest 

that detailed urban flood modelling might be a realistic proposition. However, 

emphasising the inter-dependence between data collection advances and model structural 

improvements that was discussed in Section 2.1, expanding coverage of high resolution 

topographic data sets has pushed forward advances in models capable of providing 

spatially-distributed flood predictions. 

Improvements in provision of topographic data have not always been matched by 

collection of validation data in terms of inundation datasets, especially in the case of 

small catchments displaying relatively flashy responses which do not lend themselves to 

aerial image capture. These catchments cannot benefit from advances in remote-sensing 

technology, and hence ‘post-flood’ reconstruction is inevitably required. This thesis has 

proved that it is still possible to reap the benefits of 2d floodplain inundation models in 

such catchments, using the simple strategy of a survey of residents to collect data on 

inundation extent and depth. Where this technique was used in a study relating to a more 

recent event, such information could be supplemented by trash line data. Although model 

calibration must then be conducted using point data rather than a complete flood outline, 

such disadvantages may be ameliorated by including additional data on flood depths 

which would not normally be collected from satellite SAR data, a deficiency which has 

been highlighted as an impediment to identification of correct model behaviour (Bates et 

al., 1997; Werner et al., 2005). 
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The influx of high resolution topographic data has brought new challenges to 

hydrological modelling for flood risk assessment. Model implementations in typical UK 

catchments are no longer restricted by low-resolution data produced by techniques such 

as contour digitalisation. Instead, the requirement to produce an efficient modelling 

structure means that models must often be applied at a resolution lower than that 

achieved by the topographic data set. Through the introduction of the concept of grid cell 

porosity, this thesis established a method which enabled the use of information on sub-

grid scale variation in elevation to control the direction and rate of flow between cells. 

The advantages of this concept in the field of urban flood modelling were demonstrated 

in a preliminary investigation by Yu and Lane (2006b) using topographic information at a 

scale half that of the model scale. This thesis extended the method to use a greater 

number of sub-grid cells, and hence enabled 2 m topographic information to be used 

within a 10 m model framework. This showed that elevation data at a scale at which the 

effect of building layout on flow pathway direction and conveyance capacity was 

accurately represented, could be included within a model running at an efficient and 

practical resolution. No previous raster model structures for floodplain inundation have 

enabled the use of such high-resolution information within a model suitable to run at the 

scale of a town or city.  The ability to include this information was found to have a 

profound effect on flood inundation predictions and enabled replication of the results 

found when using a full high resolution (2 m) version of the model. This was achieved 

while reducing the running time to 1/38 of that of the high resolution implementation, 

with important consequences for both uncertainty analysis techniques and successful 

operational flood warning.     

8.2.2.2 Communication and Visualisation 

An important challenge in urban flood modelling is to provide predictions in a format that 

is useful and accessible to the wide range of end users towards whom the estimates are 

aimed. These users include residents, insurers and emergency and strategic planning 

authorities. Without consideration of the presentation format, simulation results may be 

considerably less valuable to these users; in contrast, where result format is made a 

priority, it may prove a powerful tool to encourage uptake of the new modelling 
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framework proposed in this thesis. A demonstration of this was seen in the enthusiasm of 

local residents to understand and contribute to simulation of flood extent for the October 

2001 event, when results were presented at a scale which clearly showed the relation of 

inundation depths and boundaries to individual buildings.  

As an example, the benefits of coupling predictions of channel discharge (from rainfall 

and rainfall-runoff models) to a floodplain inundation model illustrate several of the 

relevant issues in visualisation of flood risk. First, that the variable through which the 

results are presented is very important. By integrating the inundation model within the 

coupled model framework, it is possible to present flood risk in terms of its spatial extent 

rather than as a river discharge level or depth. The results are then made accessible to 

many more users. For example, risk understanding for individual homeowners, and 

planning of likely road closures, are just two tasks that become easier and more accurate, 

no longer relying on basin-fill approximations from river level data. An example of the 

use of distributed flood data within an emergency planning model is given by Simovic 

and Ahmad (2005), and several other studies demonstrate the possibilities arising from 

further coupling to GIS data (e.g. Dutta et al., 2006; Zerger, 2002; Zerger and Wealands, 

2004).  

The coupled inundation model may also be used to improve visualisation of flood 

evolution. By understanding the dominant breach points and flow paths within the 

floodplain, flood defences may be more efficiently sited. In effect, a spatially targeted 

response to the flood becomes possible. This point is becoming increasingly important as 

hard engineering solutions to flood protection fall out of favour due to improved 

understanding of the limitations and disadvantages associated with such interventions, 

and instead focus shifts to the role of the floodplain and riparian areas in flood peak 

attenuation (Section 1.3.2.3). Modern solutions more often rely on ‘soft engineering’ 

designed to restore the natural functions of the floodplain, together with greater emphasis 

on individual responsibility for building protection. These responses rely heavily on a 

spatial understanding of inundation patterns to identify respectively effective restoration 

measures and vulnerable areas of the floodplain. 
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8.2.3 Uncertainty Estimation 

As identified by Wheater (2002), the modern decision support framework for flood risk 

assessment must include uncertainty estimation techniques in order to produce 

meaningful estimates. Although integration of uncertainty estimates into flood inundation 

modelling has been relatively slow compared to other branches of hydrology (Section 

2.3), it is now being recognised as a vital part of flood risk assessment. A high level of 

uncertainty exists in boundary conditions and validation data for the typical lowland 

catchment; for example, the majority of gauges are not designed to function across the 

full spectrum of flow conditions and therefore do not record data relating to the complete 

range of dominant flow pathways which may be activated in different catchment wetness 

conditions. This is subsequently mirrored in high uncertainties and occurrence of 

equifinality in model parameterisation. It is therefore likely that the impression of 

certainty given by a deterministic forecast would be misleading. 

The method used in this thesis to assess uncertainty in flood extent was the GLUE 

technique. Using Monte Carlo sampling of parameter values, many realisations of the 

model are created, and each one is tested for behaviourability with respect to some 

threshold criterion. Those that meet the criterion are weighted according to their success 

in replicating some validation data set. The set of weighted predictions is then used to 

give a cumulative distribution for any required output parameter. The method was 

explained fully in Chapter 5. The technique is extremely flexible and applicable to a wide 

range of natural phenomena which display nonlinear behaviour and may therefore 

preclude an analytical study of error propagation. In particular, GLUE is suitable for use 

within a system of coupled models such as that presented here, although it should be 

noted that as the number of models and associated parameters increase, the computational 

load also expands rapidly. This has been found in other studies of cascading models as 

the limiting factor in a full uncertainty analysis (Pappenberger et al., 2005). In this thesis, 

reduced complexity model structures helped to decrease the simulation time required, 

together with imposed limitations on the sources of uncertainty considered and therefore 

the number of model realisations that had to be propagated through the complete model 

chain. 
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Although the assumptions required to reduce the simulation running time leave scope for 

the uncertainty analysis to be extended in the future, the method showed that GLUE is no 

longer a technique so specialised and resource-intensive that it is impractical to use in 

standard management decisions. Instead, with suitable simplifications, this extremely 

useful method may be rendered widely applicable. In addition to addressing efficiency 

issues, the inclusion of uncertainty information must be considered in relation to the 

ability of the end user to make use of the information. In Section 7.4, the increasing 

public acceptance and even expectation of uncertainty information presented with 

forecasts was discussed; however care must still be taken to present the magnitude and 

effects of uncertainty in an accessible way. Again, coupling of rainfall-runoff and 

floodplain inundation models proved a powerful way to achieve this, enabling uncertainty 

to be presented in terms of nested predictions of flood outline (Section 7.2.5). 

Given an effective method of uncertainty estimation and presentation, continuous 

simulation within a GLUE framework compares very favourably with more traditional 

flood risk assessment approaches in giving a much more complete picture of flood risk 

possibility. This was demonstrated in the Linton catchment, by a comparison both with 

results using more limited uncertainty analyses, and also with the Flood Risk Assessment 

carried out on behalf of the Environment Agency with design event estimation using 

Flood Estimation Handbook methodology and inundation extent estimated using the 1d 

ISIS model. In Section 7.3, the effects on model output of methods ignoring uncertainty 

in rainfall estimates or rainfall-runoff model parameterisation were considered. The most 

significant disadvantage in the use of such reduced structures was found to be in the use 

of a single set of rainfall-runoff model parameters. Not only does such a structure fail to 

express the range of output which might be expected based on the results of the full 

model, but the median discharge predictions were greatly reduced. This is due to the 

characteristics of equifinality in model parameterisation, which give a wide range of 

parameter sets with approximately equal predictive value. The optimum parameter set 

produces only marginally better predictions than other behavioural sets and does not 

necessarily represent the median behaviour of these other sets.  

The results of the uncertainty analysis showed that if the 90% confidence bounds on 

predictions were used, these demonstrated a very wide range when considered in term of 
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discharge. For example, the median estimate for peak discharge of the 100-year flood at 

Linton was 25.1 m3s-1 but the 90% confidence interval was [14.8 m3s-1, 48.0 m3s-1]. The 

perception of the effects of this uncertainty may vary depending on the variable through 

which uncertainty is presented. If the inundated area is used, the perceived uncertainty is 

reduced as the steeper gradient of the natural boundary of the floodplain serves to 

constrain the flood (Section 7.2.5). However this is also the distance from the channel at 

which the housing density rises, and therefore uncertainty expressed in terms of number 

of residential properties affected may appear to be of greater significance. Whichever 

variable is used, it is clear that the data currently available for the catchment does not 

justify a deterministic prediction of the inundation associated with a given return period. 

This may go some way to explaining the discrepancy between the results returned in this 

thesis and those from the Environment Agency report, as the latter gives no indication of 

uncertainty bounds. However, it is also affected by known gauging errors in the 

catchment, a problem which is ameliorated by the use of continuous simulation, as 

previously discussed (Section 8.2.1). 
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8.3 Reflections on the Results 

The improvements in technique integrated into the end-to-end flood risk assessment 

framework, and summarised in the previous section, led to inundation predictions that are 

different in character to those from more conventional methods. In order to consider the 

advantages that the end-to-end technique could offer, these differences are explored in 

more detail. First, the results are compared with those of the Environment Agency risk 

assessment study previously discussed. The role of uncertainty as an integral part of the 

forecasts is a defining feature of the new framework, and therefore the extent to which 

uncertainty analysis results can be used to learn about the catchment is discussed. In 

particular, the use of inundation forecasts with uncertainty bounds in improving flood 

risk management strategies is considered. 

8.3.1 Comparisons with Conventional Results 

To illustrate the characteristic differences of the end-to-end flood risk assessment 

framework from conventional methodologies, the inundation predictions of Chapters 6 

and 7 are compared with those of the Environment Agency study using the ISIS model 

and described in Section 3.5. Both methods use a hydrograph estimation technique, based 

on rainfall-runoff modelling, to provide an upstream boundary condition for an 

inundation model. However, the EA model uses a Flood Estimation Handbook estimate 

of design rainfall, routed through the rainfall-runoff model as a single event, which 

removes the influence of antecedent catchment wetness conditions on rainfall generation. 

The model therefore loses the ability to replicate the effects of either seasonal fluctuation 

in rainfall totals, or clustering of rainfall events. Further, the rainfall-runoff model results 

are calibrated against the statistical distribution of flows measured at the Linton gauge, 

introducing errors due to gauge malfunction. The end-to-end framework attempts to 

address these concerns by using continuous simulation methodology which provides 

implicit soil moisture accounting and allows representation of long-term groundwater 

level fluctuations. The contrasting nature of the techniques is reflected in the predictions 

of the 100-year flow peak magnitude: 10.22 m3s-1 in the EA ISIS model versus 25.1 m3s-1 

median prediction in the end-to-end model.  
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Both techniques route the flood hydrograph along the channel to produce inundation 

envelope forecasts, and a comparison is made between the two forecasts in Figure 8.1. 

Comparing initially the deterministic ISIS forecast with the median forecast from the 

end-to-end system, the differences may be considered as a combination of magnitude and 

pattern. The constrained design event methodology of the ISIS implementation, leading 

to a flow peak prediction less than half that of the end-to-end technique, naturally gives 

rise to a much reduced flood envelope. However, the predicted pattern of inundation is 

also different, and the more complex routing mechanisms possible in a 2d model are 

evident. Particularly striking in the end-to-end inundation envelope are flow paths within 

the floodplain, and high resolution definition of the flood boundary. 

The large difference in predictions of flood envelope, and hence the number of houses at 

risk from flooding, obviously has the potential to lead to vastly different approaches to 

flood risk mitigation within the catchment. However, it is hoped that the representation of 

uncertainty within the end-to-end forecast might also lead to a more comprehensive 

consideration of possible flood scenarios. This outcome is discussed more fully in 

Section 8.3.3. 
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Figure 8.1: Comparison of 100-year flood envelopes predicted using End-to-End versus ISIS models 

 

 

 



8.3.2 Catchment Sensitivity 

The end-to-end flood risk assessment (FRA) framework goes beyond conventional FRA 

techniques in that it provides not only inundation forecasts, but also a chance to learn 

more about catchment sensitivity. One of the driving principles behind the FRA 

framework constructed in this study was the need for a process-based approach to flood 

modelling which could show the same sensitivities to climate and land-use change as a 

real-world catchment and therefore remain relevant in an era of accelerated flood risk and 

non-stationarity in the forcing factors of flood risk. It was hoped that such a model 

framework might enable recommendations to be made as to the model components which 

are most affected by uncertainty, and so hold the most opportunity to mitigate the 

uncertainty. The analysis required for such an appraisal relies on an assessment of the 

model component sensitivity to the data available for model conditioning, and hence also 

provides an indication of those components which may be most sensitive to non-

stationarity of climate or land-use input conditions.  

The application of the coupled model chain within a GLUE framework enabled an 

assessment of the contribution of individual uncertainty sources within the long term 

discharge and inundation predictions. It is not, however, justifiable to draw a direct link 

between this model component uncertainty and catchment process sensitivity. The 

component uncertainty is instead determined by the combined effects of catchment 

process sensitivity, data available for model conditioning, choice and complexity of 

model and validation methodology.  

In Section 7.3, it was found that uncertainty in the rainfall-runoff model parameterisation 

was dominant over that in rainfall series realisation or in floodplain inundation model 

calibration. However, this result must be considered in terms of the relative complexity of 

parameterisation in each of these components. The uncertainty in the rainfall series 

results not from model parameterisation, as the rainfall generator relies on direct 

sampling from empirical distributions of storm characteristics, but instead only from the 

stochastic nature of the sampling procedure and the corresponding clustering of simulated 

storm events. The relatively short data series from which the distributions are created 

therefore limits the uncertainty in the simulated rainfall series. The uncertainty in the 
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inundation model is also constrained by the use of a single calibration parameter; 

calibration using a distributed floodplain friction parameter having been rejected due to 

model insensitivity caused by the flow limiter. In contrast, the rainfall-runoff model has 

seven parameters to be calibrated, despite having one of the simplest structures in 

common use.  

In trying to distinguish the most sensitive part of the hydrological system - the climate 

forcing, the nonlinear runoff generator or the flood routing process - we have therefore 

perhaps learnt more about the relative complexity of each component and our ability to 

characterise the dominant processes. In the case of the rainfall and floodplain 

components, the attempt to use the data available in the context of physical understanding 

of catchment process has been relatively successful. Returning to the discussion of 

Section 2.1, these aspects of catchment behaviour have been well conditioned by data 

that can be measured remotely: precipitation series for the rainfall model and the 

topographic boundary condition for the inundation model. This success has allowed the 

use of physically-based models which capture the dominant processes and require 

relatively little calibration. In contrast, the nonlinear mechanisms of runoff generation 

and catchment-scale routing remain elusive. Subsurface processes are known to control 

the catchment response and yet the techniques to monitor them are unavailable. This is 

exacerbated by the sensitivity of such processes to small-scale heterogeneity and 

structural features in the soil and bedrock, leading to model representations and 

parameterisations which are highly scale dependant. The model structure used in the 

lumped rainfall-runoff model is therefore necessarily a crude simplification requiring the 

calibration of ‘effective’ parameters which cannot be directly measured in the catchment.  

8.3.3 Useful Uncertainty 

The previous section suggested that the investigation of the relative contribution of 

uncertainty sources could lead to conclusions about the conditioning of each model in 

response to the available data. It is important that this result is seen not only in its 

academic context but also that the consequences in term of flood risk assessment 

procedure are explored. Without this context, uncertainty estimation is in danger of 
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gaining a reputation as a theoretical game without useful or meaningful results (Morss et 

al., 2005). 

8.3.3.1 Improving forecast precision  

High levels of uncertainty in a flood forecast make strategic and emergency planning 

more difficult. Therefore it is hoped that a more detailed understanding of uncertainty 

sources will aid hydrologists in their efforts to constrain the total uncertainty. There are 

three factors relating to each model component which could be considered in deciding 

where future work could best be directed in this aim. First, how great are the current 

uncertainty levels? Second, to what extent would it be possible to reduce these? Third, 

does the uncertainty analysis carried out to date represent a fair assessment of the model 

sensitivity or could there be additional uncertainty sources not currently quantified? 

The rainfall model currently shows relatively low uncertainty magnitude. However, this 

does not necessarily mean it should be ignored in terms of future improvements. This 

relates to the third factor described above: the current model provides only a 

representation of rainfall characteristics over the past 15 years, a sufficiently short period 

that climate change is unlikely to be well represented and will therefore show essentially 

stationary conditions. The possible model sensitivity to non-stationarity in the climate 

driver is therefore a source of uncertainty that has not been included in the analysis, and 

is an area in which future investigation would be valuable.  

The rainfall-runoff model is currently the dominant source of uncertainty. However, this 

only recommends it as a subject for further work if there exist the methods to reduce this 

uncertainty. Although a very simple structure was chosen for the model, it clearly still 

exhibits ill-conditioning, evidenced by equifinality in parameter set choice. In the long 

term, the best solution to this problem is to collect a longer series of rainfall-runoff data 

to capture a fuller description of catchment behaviour including response to extreme 

conditions, and hence allowing parameter identification for a model of similar or more 

complex structure. To achieve this, structural improvements should also be made to the 

Linton gauge to allow accurate measurement of flood flows where additional flow 

pathways or processes may become active. This solution, however, does not provide an 

answer for the immediate problem. In the past, a traditional response would have been to 
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use a physically-based model whose parameters could be measured directly in the 

catchment and which therefore reduces the need for calibration. However, improved 

understanding of parameter scale dependence has led to a rejection of this philosophy 

(Beven, 1996). One possible alternative is to attempt the alter the rainfall-runoff model 

structure to enable increased use of catchment data that is available or could be collected, 

without increasing the number of parameters. This type of modification might provide a 

more immediate approach to reducing model uncertainty. For example, the topographic 

index of TOPMODEL allows explicit use of a DEM to represent the control of catchment 

form on runoff response, although this may not be appropriate in a groundwater-

dominated catchment where surface gradient does not follow bedrock slope. Another 

possibility would be to make use of regional data, using results from similar catchments 

to constrain the range of the effective parameters.  

The floodplain model was not included in the full GLUE application; however a 

sensitivity analysis was carried out to gauge the relative scale of uncertainty in this 

component. As with the rainfall model, it was found to make a relatively minor 

contribution to overall uncertainty. However, during the modelling process it was noted 

that use of a flow limiter caused insensitivity to floodplain friction. Therefore an 

additional cause of uncertainty related to choice of limiter and roughness caused by 

floodplain vegetation may exist, which is not currently included in the uncertainty 

estimation procedure. 

8.3.3.2 Integrating uncertainty into risk assessment 

Given the arguments in the previous section, it is likely that uncertainty will continue to 

play an important role in flood risk forecasts. In order to utilise knowledge of uncertainty, 

procedures should be implemented which embed uncertainty analysis into flood risk 

assessment procedures. Section 2.3.2 discussed conventional methods of dealing with 

uncertainty such as using the ‘worst case scenario’ or using an arbitrary safety factor. 

However, more complete specifications of inundation risk distributions would allow 

management decisions to be based on data rather than guesswork. 

Using concepts from mathematical decision theory, candidate strategies may be assessed 

on the basis of a risk function which quantifies the danger associated with the decision 
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(e.g. Lund, 2002). This is calculated using the distribution of possible flood outcomes 

from the coupled model chain, together with a function which attempts to evaluate the 

‘loss’ expected as a result of a particular flood magnitude occurring in a community 

adopting the given flood mitigation strategy. The loss function could be interpreted in a 

narrow, financial, ‘cost’ sense; or in a broader sense to incorporate the vulnerability of 

the community as discussed in Section 1.3.2.2. 

This type of assessment would be very valuable as it provides an evidence-based 

methodology for assessing flood risk guidance which considers the spectrum of possible 

flood outcomes rather than a single deterministic prediction. Therefore the cost savings 

associated with minimum intervention strategies in the case of unusually low-volume 

floods are included as well as the benefits of planning for low-probability, high–risk 

events. The end-to-end framework proposed here provides the best information available 

on the probability distribution of flood magnitudes required for such an assessment. 
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8.4 End-to-End Modelling: Future Directions 

The challenges found in the creation and application of the flood risk assessment 

framework in many ways reflect the wider questions being asked of catchment hydrology 

today. The cascade of coupled models – stochastic rainfall model, rainfall-runoff model 

and floodplain inundation model – has emphasised the interdependence of each part of 

the modelling process and the importance of an assessment of model structure, 

uncertainty and finally flood risk, made in the context of the complete system. The 

understanding of the need to take a holistic view of catchment process mirrors the 

increasing rejection of hydrologic modelling techniques based on laboratory-scale 

process descriptions. Sivapalan (2005) voices this philosophy in his call for a unified 

theory of hydrology at the catchment scale, based on new multi-scale process theories.   

Although superficially this concept might seem to conflict with modern perceptions of 

small-scale heterogeneity and “uniqueness of place” (Beven, 2000), it is in fact a 

response to many of the same drivers. Current technologies for hydrological data 

collection are not sufficient to allow the perceived complexity and spatial heterogeneity 

of catchment rainfall-runoff response to be incorporated in a model structure without 

causing ill-conditioning. This was demonstrated in Chapter 5 where 15 years of rainfall-

runoff data was found insufficient to parameterise a model with 9 parameters. Recent 

attempts integrate detailed observations from specific areas of a catchment within current 

simplified model structures have concluded that this could instead lead to model bias 

(e.g. Freer et al., 2004). The unified theory would try to circumvent these problems by 

relating signatures of hydrological variability to predictor variables rather than relying on 

measured data. For example, spatial densities of preferential flow pathways would be 

considered in terms of the climate or geological driving forces.  

This type of approach suggests a solution to the typical lack of data available in small 

urban catchments increasingly at risk from flooding. By considering the geomorphic or 

land-forming processes which control catchment response, connections may be made 

between observations in different catchments by study of pattern and process. This would 

allow transfer of information between catchments, and hence facilitate the type of region-
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based identification of catchment process proposed as a solution to data scarcity in 

Section 8.3.3.1. By relating catchment response to predictor variables, progress may also 

be made towards the goal of understanding catchment sensitivity to human impacts on 

climate and land-use. Discussed in Section 1.2.2, this aim is at the root of many of 

today’s efforts to understand, model, predict and mitigate future flood risk. The type of 

integrated, process-based methodology that is proposed in this thesis will be an integral 

part of the drive to achieve this aim. 
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Appendix A 

 

 

 

COMPUTER CODE FOR FLOODPLAIN INUNDATION MODELS 

 



Matlab Function Code: FloodWave 
 
 

 
%This function routes a flood wave down the river channel 
%Calls function which routes water over floodplain 
 
%Hilary McMillan 
%Department of Geography 
%Cambridge University 
 
function [Flows, Flows2, Flows3, FloodplainDepth, Times, MassBalance] = 
FloodWave(ChInfoArray,InitDepths,InitFlow,hydrotime,hydroflow,EndTime,DEMresolution, 
DEMarray,RoughArray,InitFloodplainDepths) 
 
%------Inputs  
 
%ChInfoArray has columns: Channel x-position, channel y-pos, width, slope, friction coeff, bankfull depth 
%InitDepths: initial upstream depth (m) 
%InitFlow: Initial channel flow (m^3/s) 
%[hydrotime, hydroflow]: upstream hydrograph 
%EndTime: Time to end simulation (s) 
%DEMresolution: Distance between sample points (m) 
 
%--These are passed straight to floodplain depth calculator FloodplainRoute 
%DEMarray: Ground height of floodplain 
%RoughArray: Roughness of each grid square on floodplain 
%InitFloodplainDepths: Initial depth of water in each floodplain cell 
 
%------Outputs 
%Flows, Flows2, Flows3: Channel hydrograph at specified locations 
%Floodplain Depth: maximum depth occurring at each grid cell 
%Times: Time (s) at which hydrograph data is recorded 
%MassBalance: Record of any water volume change during model run (accuracy check) 
 
tic  %record time taken 
 
%--------- Declare global variables ------------------------------------------------------------------------------ 
 
%Array of volume of water in each grid cell 
global VolumeArray 
 
%---------Set up constants ---------------------------------------------------------------------------------------- 
 
%Find delta-x array of length of channel in each grid cell 
%    depending on whether consective channel cells are adjacent or diagonal 
 
%Create intermediate variables 
Channelx = ChInfoArray(1:end-1,1); 
Channelx2 = ChInfoArray(2:end,1); 
Channely = ChInfoArray(1:end-1,2); 
Channely2 = ChInfoArray(2:end,2); 
%Calculate distance between centres of each two channel cells (= 1 or sqrt(2)) 
deltax = (((Channelx2-Channelx)+(Channely2-Channely)-1)*(sqrt(2)-1))+1; 
%Clear intermediate variables 
clear Channelx2,Channely2; 
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%Split up channel info array for readability 
ChannelXpos = ChInfoArray(:,1); 
ChannelYpos = ChInfoArray(:,2); 
ChannelWidth = ChInfoArray(:,3); 
%And cut width if greater than cell size 
ChannelWidth=min(ChannelWidth,DEMresolution); 
ChannelSlope = ChInfoArray(:,4); 
ChannelFriction = ChInfoArray(:,5); 
ChannelBankfull = ChInfoArray(:,6); 
 
%Clear ChInfo array 
clear ChInfoArray; 
 
%Set positions at which to output hydrograph 
OutHydPosition = 891; 
OutHydPosition2 = 366; 
OutHydPosition3 = 253; 
 
%Set folder in which to store output video 
VideoFolder = 'H:\VideoFolder'; 
 
%Set folder in which to store output files 
OutputFolder = 'H:\OutputFolder'; 
 
%--------- Create Arrays to stop dynamic allocation -------------------------------------------------------------- 
 
%Store time values in seconds corresponding to timesteps j 
StoredTime = zeros(30000,1); 
 
%Store Q (flow) values 
Q = zeros(length(ChannelWidth),2); 
%And put in intial flows 
Q(:,1) = InitFlow*ones(length(ChannelWidth),1); 
Q(:,2) = Q(:,1); 
 
%Store Output hydrograph values 
OutputFlow = zeros(1,30000); 
OutputFlow2 = zeros(1,30000); 
OutputFlow3 = zeros(1,30000); 
 
%Store water depths y 
y = zeros(length(ChannelWidth),2); 
%And put in initial depths 
y(:,1) = (ChannelFriction.*Q(:,1)./((ChannelSlope.^0.5).*ChannelWidth)).^(0.6); 
y(:,2) = y(:,1); 
 
%Store Channel Inflow q 
qq1 = zeros(length(ChannelWidth),1); 
qq2=qq1; 
qq2_old = qq1; 
 
%Create variable alpha used in calculations of Q 
alpha = [(ChannelFriction.*ChannelWidth.^(2/3))./ChannelSlope.^(1/2)].^0.6; 
 
%Depth of water on floodplain 
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sz2 = size(DEMarray); 
FloodplainDepth1 = zeros(sz2(1),sz2(2)); 
FloodplainDepth2=FloodplainDepth1; 
FloodplainDepth1 = InitFloodplainDepths; 
FloodplainMaxDepth = zeros(sz2(1),sz2(2)); 
 
%Initialise floodplain flows 
Flow_S = 0; 
Flow_E = 0; 
Flow_SE = 0; 
Flow_NE = 0; 
 
%Array of floodplain volumes 
VolumeArray = zeros(sz2(1),sz2(2)); 
 
%Find fraction of channel in channel cells for volume finding-------------------------------------------------------
--------- 
 
%Calculate length of channel occurring within each cell 
%Set up temporary arrays 
%Add beginning and end coordinates as if adjacent channel cells existed 
Channelxoffset1 = [ChannelXpos(1);ChannelXpos(1:end-1)]; 
Channelyoffset1 = [ChannelYpos(1)-1;ChannelYpos(1:end-1)]; 
Channelxoffset2 = ChannelXpos(1:end); 
Channelyoffset2 = ChannelYpos(1:end); 
Channelxoffset3 = [ChannelXpos(2:end);ChannelXpos(end)]; 
Channelyoffset3 = [ChannelYpos(2:end);ChannelYpos(end)+1]; 
%Calculate lengths 
ChannelLength = sqrt(abs(Channelxoffset2-Channelxoffset1)+abs(Channelyoffset2-Channelyoffset1))/2 + 
... 
                    sqrt(abs(Channelxoffset3-Channelxoffset2)+abs(Channelyoffset3-Channelyoffset2))/2; 
 
ChannelFraction=zeros(length(ChannelLength),1); 
%Cell type 1: straight channel 
CL1=find(ChannelLength==1); 
%Cell type 2: straight/diagonal 
CL12=find(ChannelLength==((1/2)+(sqrt(2)/2))); 
%Cell type 3: all diagonal 
CL2=find(ChannelLength==sqrt(2)); 
%Calculate volume for each cell type 
ChannelFraction(CL1)=(ChannelWidth(CL1).*ChannelLength(CL1))/DEMresolution; 
ChannelFraction(CL12)=((ChannelWidth(CL12).*ChannelLength(CL12))/DEMresolution)/2+... 
    ((((2^0.5).*ChannelWidth(CL12))./DEMresolution)-
((ChannelWidth(CL12).*ChannelWidth(CL12))./(2*(DEMresolution^2))))/2; 
ChannelFraction(CL2) = (((2^0.5).*ChannelWidth(CL2))./DEMresolution)-
((ChannelWidth(CL2).*ChannelWidth(CL2))./(2*(DEMresolution^2))); 
%Put in due to errors when Channel takes up whole square 
ChannelFraction=min(ChannelFraction,0.8); 
%Save as sparse matrix 
sparse_channel_vol = sparse(ChannelYpos,ChannelXpos,ChannelFraction,sz2(1),sz2(2)); 
 
%clear up 
clear Channelxoffset1 Channelyoffset1 Channelxoffset2 Channelyoffset2 Channelxoffset3 Channelyoffset3 
%Initialise total water for mass balance calculations 
WaterIn = sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
WaterOut = 0; 
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OldTotalWater = sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
 
%---------Initialise loop variables-------------------------------------------------------------------------------- 
 
%Initialise timestep 
delta_t = 0; 
 
%time in seconds 
t=0; 
 
%timestep number 
j = 1; 
 
%--------- Calculate variable values from initial conditions ---------------------------------------------------- 
 
%Q(:,1) = InitFlow; 
FloodplainDiff = [0]; 
 
%Find timesteps at which to record picture of flood  
Step = floor(EndTime/60); 
Step = Step:Step:Step*60; 
StepCounter=1; 
 
%Find point at which drying begins 
[MaxChannelFlow, MaxChannelFlowIndex] = max(hydroflow); 
DryingTime = hydrotime(MaxChannelFlowIndex); 
 
%-------- Loop for timesteps-------------------------------------------------------------------------------------- 
 
while t < (EndTime-delta_t)      
 
%-------- Find delta-t by using Courant condition ----------------------------------------------------------------- 
 
%Find kinematic wave celerity c_k = dQ/dA = 1/B.dQ/dY       B = channel width, y = water depth 
%Mannings equation Q = [By.Sf^(1/2).R^(2/3)]/n    (A=By)  s0 = sf  R~=y 
%Differentiate to get c_k = [s0^(1/2).(5/3).y^(2/3)]/n 
%We assume surface slope s0 = bed slope 
 
%c_k is found for each cell 
c_k = [ChannelSlope.^(1/2)*(5/3).*y(:,2).^(2/3)]./ChannelFriction; 
 
%delta-t is found for each cell, and min value gives timestep 
delta_t = min(DEMresolution./c_k)*1; 
 
%--------- Advance to next time step -------------------------------------------------------------------------------- 
 
t = t + delta_t; 
 
%Store timestep value 
StoredTime(j+1) = t; 
 
t %print time 
 
%---------- Now route water overbank and into floodplain where appropriate -------------------------------------
--- 
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%Find overbank height by subtracting bankfull height from total water depth 
ChannelHeight = y(:,2) - ChannelBankfull; 
     
%update variables 
chheight = ChannelHeight; 
FloodplainDepth1 = FloodplainDepth2; 
qq1_old = qq2_old; 
qq1=qq2; 
 
%Find out whether this step needs to be stored to be part of flood video 
if (StoredTime(j+1)>Step(StepCounter))&&(StoredTime(j)<Step(StepCounter)) 
    VideoFile = [VideoFolder,'\VideoFrame',num2str(StepCounter,'%02i'),'.asc']; 
    save(VideoFile, 'FloodplainDepth1', '-ASCII') 
    if StepCounter < length(Step) 
        StepCounter=StepCounter+1;   
        if StepCounter==11 
            stop=1; 
        end; 
 
    end 
end 
 
%Variable should not include within-reach inflow 
if ((t > 82000)&&(t < 143000)) 
    qqtemp=qq1_old-0.0116; 
else 
    qqtemp=qq1_old; 
end; 
 
%Find out whether we are in drying phase 
if t > DryingTime;Drying=1;else;Drying=0;end; 
 
%Calculate new floodplain depths and channel inflow for next timestep using FloodplainRoute function 
[FloodplainDepth2, qq2,Flow_S,Flow_E,vol_edge] = FloodplainRoute(DEMarray,RoughArray, ... 
    
FloodplainDepth1,DEMresolution,ChannelXpos,ChannelYpos,ChannelHeight,ChannelWidth,delta_t,Flow
_S,Flow_E,qqtemp, 
ChannelFraction,Drying); 
 
%Add within-reach lateral inflow 
if ((t > 82000)&&(t < 143000)) 
    qq2=qq2+0.0116; 
end; 
qq2_old=qq2; 
 
%Record maximum depths 
FloodplainMaxDepth = max(FloodplainMaxDepth,FloodplainDepth2); 
 
%--------- Calculate correct upstream flow value for this data point ------------------------------------------------ 
 
%Update flow variable 
Q(:,1) = Q(:,2); 
 
%If hydrograph does not start at time zero then add a zero 
if min(hydrotime > 0) 
    hydrotime = [0;hydrotime]; 
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    hydroflow = [hydroflow(1);hydroflow]; 
end; 
 
%Find position of time t within hydrograph times series 
tlessthan = (hydrotime <= t); 
tposition = sum(tlessthan); 
%Hence find interpolated flow at time t 
Q(1,2) = hydroflow(tposition) + ((t-hydrotime(tposition))/(hydrotime(tposition+1)-hydrotime(tposition))) 
...  
    *(hydroflow(tposition+1)-hydroflow(tposition)); 
 
 
%--------- Loop to calculate downstream discharges ----------------------------------------------------------------- 
 
%Length of channel array = number of channel cells 
for i = 1:length(ChannelWidth)-1 
 
%--------- Solve for discharge at point x + delta-x ----------------------------------------------------------------- 
 
if ((Q(i+1,1)+Q(i,2)) > (10^(-15))) 
    Q(i+1,2) = 
((delta_t/(DEMresolution*ChannelLength(i+1)))*Q(i,2)+alpha(i+1)*0.6*Q(i+1,1)*((Q(i+1,1)+Q(i,2))/2).^-
0.4+ ...  
        (delta_t/(DEMresolution*ChannelLength(i+1)))*(qq2(i+1)+qq1(i+1))/2)/ ... 
        ((delta_t/(DEMresolution*ChannelLength(i+1))) + alpha(i+1)*0.6*((Q(i+1,1)+Q(i,2))/2).^-0.4); 
 
else 
    Q(i+1,2) = 0; 
end; 
     
 
%------------------------------------------------------------------------------------------------------------------- 
 
end; %End downstream loop 
 
%Save Output flow for Output hydrograph 
OutputFlow(j+1)=Q(OutHydPosition,2); 
OutputFlow2(j+1)=Q(OutHydPosition2,2); 
OutputFlow3(j+1)=Q(OutHydPosition3,2); 
 
%-------- Transform flows into depths ----------------------------------------------------------------------------- 
 
%Water depth is found for each cell 
%from Mannings equation y = (nQ/(s0^(1/2).B))^(3/5) 
y(:,1) = y(:,2); 
y(:,2) = (ChannelFriction.*Q(:,2)./((ChannelSlope.^0.5).*ChannelWidth)).^(0.6); 
 
%------- Find total volume of water to check conservation --------------------------------------------------------- 
 
%Water on floodplain 
TotalWater = VolumeArray; 
TotalWater = sum(TotalWater(:)); 
%Add water depth in channel 
TotalWater = TotalWater + sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
 
%Find volume of water added to model 
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WaterIn = WaterIn + Q(1,2)*delta_t; 
WaterOut = WaterOut + Q(length(ChannelXpos),2)*delta_t; 
 
%Account for water flowing off edge of model 
WaterOut = WaterOut - vol_edge; 
 
%wo = Q(length(ChannelXpos),2)*delta_t; 
WaterBalance = (WaterIn-WaterOut-TotalWater)/WaterIn; 
 
%Save for next timestep 
OldTotalWater = TotalWater; 
 
%Increment timestep 
j = j+1; 
 
end; %End timestep loop 
 
%--------- Write outputs variable ----------------------------------------------------------------------------------- 
 
Flows = OutputFlow(1:j); 
Flows2 = OutputFlow2(1:j); 
Flows3 = OutputFlow3(1:j); 
FloodplainDepth = FloodplainMaxDepth; 
Times = StoredTime(1:j); 
MassBalance = WaterBalance*100; 
 
%--------- Save all outputs ------------------------------------------------ 
flowfile = [OutputFolder,'\OutputFlows.dat']; 
flowfile2 = [OutputFolder,'\OutputFlows2.dat']; 
flowfile3 = [OutputFolder,'\OutputFlows3.dat']; 
depthsfile = [OutputFolder,'\OutputDepths.dat']; 
timesfile = [OutputFolder,'\OutputTimes.dat']; 
waterbalfile = [OutputFolder,'\WaterBalance.dat']; 
 
save(flowfile,'Flows','-ascii'); 
save(flowfile2,'Flows2','-ascii'); 
save(flowfile3,'Flows3','-ascii'); 
save(depthsfile,'FloodplainDepth','-ascii'); 
save(timesfile,'Times','-ascii'); 
save(waterbalfile,'MassBalance','-ascii'); 
 
ttoc=toc 
tocfile = [OutputFolder,'\tocfile.dat']; 
save(tocfile,'ttoc','-ascii'); 
 
 
%--------------------------------------End of Kinematic Wave ----------------------------------------------------------- 
 
 
 
 

 A-7



%-------------------------------------FloodplainRoute subfunction for 2D floodplain flow ---------------------- 
 
 
function [Floodplain_depths, Inchannel_Flow,Flow_S,Flow_E,vol_edge] = 
FloodplainRoute(DEMarray,RoughArray,DepthsArray, 
...DEMresolution,Channelx,Channely,ChannelHeight,ChannelWidths,delta_t,ChannelFrac,Drying) 
 
%DEMarray = Land Height for each gridsquare (m) 
%RoughArray = Mannings n for each gridsquare 
%DepthsArray = previous depths of water on floodplain (m) 
%DEM resolution: Distance between sample points (m) 
%Channelx = channel square x-position 
%Channely = channel square y-position 
%Channel Height = overbank height of water 
%ChannelWidths = width of channel in each cell 
%delta_t = timestep over which flow can take place 
%ChannelFrac: Fraction of each channel cell containing channel not floodplain 
%Drying: boolean to specify if we are in drying phase 
 
%Returns 
%Floodplain_depths = new heights of water on floodplain 
%Inchannel_Flow = Flow rate of water returning to channel 
%Floodplain_depths = new heights of water on floodplain 
%Flow_S/Flow_E: Floodplain flows 
%vol_edge: volume of water leaving edge of floodplain 
 
 
%--------- Declare global variables ------------------------------------------------------------------------------ 
 
global VolumeArray 
 
%------- Set up constants ---------------------------------------------------------------------------------------------------
- 
 
%Get size of DEM array 
sz = size(DEMarray); 
%Size of DEM 
DEMsizeNS = sz(1); 
DEMsizeWE = sz(2); 
 
%------- Create mask of active points within floodplain ---------------------------------------------------------------
------ 
 
activepoints = (DepthsArray > 0); 
ap_pack = bwpack2(activepoints);                     %bwpack is used for efficiency 
se_dilate = strel2([0, 1, 0;1, 1, 1;0, 1, 0]);       %Each point with positive depth has its four surrounding 
points made active 
ap_dilate = imdilate2(ap_pack,se_dilate,'ispacked'); 
ap_unpack = bwunpack2(ap_dilate,size(activepoints,1)); 
 
%------- First Calculate 'down/south' flows in relation to DEM ------------------------------------------------------
--------- 
 
%Initialise arrays 
DepthsTotal = DepthsArray+DEMarray; 
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%Create offset maps 
DEMoffset1 = DEMarray(1:end-1,:); 
DEMoffset2 = DEMarray(2:end,:); 
 
Depthoffset1 = DepthsTotal(1:end-1,:); 
Depthoffset2 = DepthsTotal(2:end,:); 
 
RoughOffset1 = RoughArray(1:end-1,:); 
RoughOffset2 = RoughArray(2:end,:); 
 
%Initialise Flow matrix 
Flow_S = zeros(sz(1)-1,sz(2)); 
 
%Find active flows 
aps1 = ap_unpack(2:end,:); 
aps = find(aps1); 
 
%Calculate flows 
Flow_S(aps) = sign(Depthoffset1(aps)-Depthoffset2(aps)).*[((max(Depthoffset1(aps),Depthoffset2(aps))-
max(DEMoffset1(aps),DEMoffset2(aps))).^(5/3)) ... 
        .*(abs(Depthoffset1(aps)-Depthoffset2(aps)).^0.5).*(DEMresolution.^(7/6))]./ ... 
    
[((RoughOffset1(aps)+RoughOffset2(aps))./2).*((DEMresolution+2*(max(Depthoffset1(aps),Depthoffset2(
aps))-max(DEMoffset1(aps),DEMoffset2(aps)))).^(2/3))]; 
 
 
%Check that water is not allowed to flow such that depth in receiving cell > depth in source cell 
%Calculate max flow lost from cell 1 = (av. depth - prev depth).*area./timestep 
aps_add1 = aps + ceil(aps/(DEMsizeNS-1)); 
MaxFlowS = abs((VolumeArray(aps_add1)-VolumeArray(aps_add1-1))./2)./delta_t; 
Flow_S(aps) = sign(Flow_S(aps)).*min(abs(Flow_S(aps)),MaxFlowS); 
 
%------- Calculate 'right/east' flows in relation to DEM --------------------------------------------------------------- 
 
%Initialise arrays 
 
%Create offset maps 
DEMoffset1 = DEMarray(:,1:end-1); 
DEMoffset2 = DEMarray(:,2:end); 
 
Depthoffset1 = DepthsTotal(:,1:end-1); 
Depthoffset2 = DepthsTotal(:,2:end); 
 
RoughOffset1 = RoughArray(:,1:end-1); 
RoughOffset2 = RoughArray(:,2:end); 
 
%Initialise Flow matrix 
Flow_E = zeros(sz(1),sz(2)-1); 
 
%Find active flows 
ape1 = ap_unpack(:,2:end); 
ape = find(ape1); 
 
%Calculate flows 
Flow_E(ape) = sign(Depthoffset1(ape)-Depthoffset2(ape)).*[((max(Depthoffset1(ape),Depthoffset2(ape))-
max(DEMoffset1(ape),DEMoffset2(ape))).^(5/3))... 

 A-9



        .*(abs(Depthoffset1(ape)-Depthoffset2(ape)).^0.5).*(DEMresolution.^(7/6))]./ ... 
    
[((RoughOffset1(ape)+RoughOffset2(ape))./2).*((DEMresolution+2*(max(Depthoffset1(ape),Depthoffset2
(ape))-max(DEMoffset1(ape),DEMoffset2(ape)))).^(2/3))]; 
 
%Check that water is not allowed to flow such that depth in receiving cell > depth in source cell 
%Calculate max flow lost from cell 1 = (av. depth - prev depth).*area./timestep 
ape_add1 = ape + ceil(ape/(DEMsizeWE-1)); 
MaxFlowE = abs((VolumeArray(ape)-VolumeArray(ape+DEMsizeNS))./2)./delta_t; 
Flow_E(ape) = sign(Flow_E(ape)).*min(abs(Flow_E(ape)),MaxFlowE); 
 
%------Clear up 
clear DEMoffset1 DEMoffset2 RoughOffset1 RoughOffset2 DepthOffset1 DepthOffset2 aps1 ape1  
clear aps_add1 ape_add1 depthindices flows_xsec flows_wp max depths 
 
%------- Now Calculate flows to and from Channel -------------------------------------------------------------------
- 
 
%Create array of floodplain cells corresponding to channel cells 
%Get size of DEM array 
sz = size(DEMarray); 
%Uses linear index to retrieve scattered elements of DEM array 
DEMChannelCell = DEMarray(sz(1)*(Channelx-1)+Channely); 
%And similarly for roughness 
RoughChannelCell = RoughArray(sz(1)*(Channelx-1)+Channely); 
%And water heights 
DepthsChannelCell = DepthsArray(sz(1)*(Channelx-1)+Channely); 
 
%Calculate length of channel occurring within each cell 
%Set up temporary arrays 
%Add beginning and end coordinates as if adjacent channel cells existed 
Channelxoffset1 = [Channelx(1);Channelx(1:end-1)]; 
Channelyoffset1 = [Channely(1)-1;Channely(1:end-1)]; 
Channelxoffset2 = Channelx(1:end); 
Channelyoffset2 = Channely(1:end); 
Channelxoffset3 = [Channelx(2:end);Channelx(end)]; 
Channelyoffset3 = [Channely(2:end);Channely(end)+1]; 
%Calculate lengths 
ChannelLength = sqrt(abs(Channelxoffset2-Channelxoffset1)+abs(Channelyoffset2-Channelyoffset1))/2 + 
... 
                    sqrt(abs(Channelxoffset3-Channelxoffset2)+abs(Channelyoffset3-Channelyoffset2))/2; 
 
ChannelTransform = sparse(Channely,Channelx,ChannelFrac,DEMsizeNS,DEMsizeWE);            
 
%For each channel cell, work out flow from cell into channel 
Inchannel_Flow = sign(DepthsChannelCell-
ChannelHeight).*[(max(ChannelHeight,DepthsChannelCell).^(5/3)).*(abs(DepthsChannelCell-
ChannelHeight).^0.5).* ... 
        
((2*ChannelLength*DEMresolution).^(7/6))]./[RoughChannelCell.*((2*ChannelLength*DEMresolution)+
2*(max(ChannelHeight,DepthsChannelCell)).^(2/3))]; 
 
%Check that water is not allowed to flow such that depth in receiving cell > depth in source cell 
%Calculate Channel area 
ChannelArea = (DEMresolution^2)*ChannelFrac; 
%Calculate total volume of water available 
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TotalVolume = ChannelHeight.*ChannelArea + DepthsChannelCell.*(DEMresolution^2-ChannelArea); 
%Calculate equilibrium depths 
EquilDepths = TotalVolume./((DEMresolution^2)); 
%Calculate depth lost from channel 
LostDepths = ChannelHeight - EquilDepths; 
%Calculate vol lost from channel 
LostVolume = LostDepths.*ChannelArea; 
%Calculate flow from channel to cell 
ChtoCellFlowMax = LostVolume./delta_t; 
 
%-------------- Cut off flows if greater than allowed then cut off (as flow would actually decrease as level 
difference decreased 
Inchannel_Flow = sign(Inchannel_Flow).*min(abs(Inchannel_Flow),abs(ChtoCellFlowMax)); 
 
%Find new area of interest 
dpS = find(Flow_S); 
dpE = find(Flow_E); 
 
%------- Transform flows to volumes ----------------------------------------------------------------------------- 
 
%Initialise 
Vol_S = Flow_S; 
Vol_E = Flow_E; 
 
%Find flowing volume by transforming flow 
Vol_S(dpS) = Vol_S(dpS)*delta_t; 
Vol_E(dpE) = Vol_E(dpE)*delta_t; 
Vol_Ch = -Inchannel_Flow.*delta_t; 
 
%------ Clear up 
clear Flow Depthoffset1 Depthoffset1E Depthoffset2 Depthoffset2E MaxFlowE MaxFlowS 
Channelxoffset1 Channelyoffset1 Channelxoffset2 Channelyoffset2 Channelxoffset3 Channelyoffset3 
 
%-------- Add flowing volumes to each cell ---------------------------------------------------------------------- 
 
%Find water that flows out of each cell 
%Initially zero 
VolOut = zeros(DEMsizeNS,DEMsizeWE); 
%At same time find min height difference between central and neighbouring outflow cells 
HeightDiff1 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff2 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff3 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff4 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiffch = zeros(DEMsizeNS, DEMsizeWE); 
 
HeightDiff = zeros(DEMsizeNS, DEMsizeWE); 
 
%And count flows out of each cell 
NumFlows = zeros(DEMsizeNS, DEMsizeWE); 
 
%Find direction of flow at each point 
dpS_south = find(Vol_S(dpS)>0); 
dpS_south = dpS(dpS_south); 
dpS_north = find(Vol_S(dpS)<0); 
dpS_north = dpS(dpS_north); 
dpE_east = find(Vol_E(dpE)>0); 
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dpE_east = dpE(dpE_east); 
dpE_west = find(Vol_E(dpE)<0); 
dpE_west = dpE(dpE_west); 
 
%Now at each point add all the negative flows 
%Find flow to vol matrix index conversion 
dpS_add1 = dpS + ceil(dpS/(DEMsizeNS-1)); 
dpS_south_add1 = dpS_south + ceil(dpS_south/(DEMsizeNS-1)); 
dpS_north_add1 = dpS_north + ceil(dpS_north/(DEMsizeNS-1)); 
%South flowing 
VolOut(dpS_south_add1-1) = VolOut(dpS_south_add1-1) + Vol_S(dpS_south); 
HeightDiff1(dpS_south_add1-1)=DepthsTotal(dpS_south_add1-1)-DepthsTotal(dpS_south_add1); 
%North flowing 
VolOut(dpS_north_add1) = VolOut(dpS_north_add1) - Vol_S(dpS_north); 
HeightDiff2(dpS_north_add1)=DepthsTotal(dpS_north_add1)-DepthsTotal(dpS_north_add1-1); 
%East flowing 
VolOut(dpE_east) = VolOut(dpE_east) + Vol_E(dpE_east); 
HeightDiff3(dpE_east)=DepthsTotal(dpE_east)-DepthsTotal(dpE_east+DEMsizeNS); 
%West Flowing 
VolOut(dpE_west+DEMsizeNS) = VolOut(dpE_west+DEMsizeNS) - Vol_E(dpE_west); 
HeightDiff4(dpE_west+DEMsizeNS)=DepthsTotal(dpE_west+DEMsizeNS)-DepthsTotal(dpE_west); 
 
 
%Now include channel cells 
%Find indices of channel cells 
ChCells = sz(1)*(Channelx-1)+Channely; 
%Find flows into channel 
Into_channel = find((Vol_Ch)<0); 
%Add flows 
VolOut(ChCells(Into_channel)) = VolOut(ChCells(Into_channel)) - Vol_Ch(Into_channel); 
HeightDiffch(ChCells(Into_channel))=min(DepthsChannelCell(Into_channel),DepthsChannelCell(Into_cha
nnel)-(ChannelHeight(Into_channel).*(1-ChannelFrac(Into_channel)))); 
 
%Find out max flow from each cell 
ActiveHeights=find(HeightDiff1+HeightDiff2+HeightDiff3+HeightDiff4+HeightDiffch); 
ah1=HeightDiff1(ActiveHeights); 
ah2=HeightDiff2(ActiveHeights); 
ah3=HeightDiff3(ActiveHeights); 
ah4=HeightDiff4(ActiveHeights); 
ahch=HeightDiffch(ActiveHeights); 
 
MaxHeights=max([ah1,ah2,ah3,ah4,ahch],[],2); 
 
%Any flows less than 1/20 of max are deleted 
MinHeights=MaxHeights./20; 
%Find indices of bad heights 
delheights1=find(ah1<MinHeights); 
delheights2=find(ah2<MinHeights); 
delheights3=find(ah3<MinHeights); 
delheights4=find(ah4<MinHeights); 
delheightsch=find(ahch<MinHeights); 
 
%And remove 
ah1(delheights1)=0; 
ah2(delheights2)=0; 
ah3(delheights3)=0; 
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ah4(delheights4)=0; 
ahch(delheightsch)=0; 
 
%Find number of flows at each point 
NumFlowsVector=(ah1>0)+(ah2>0)+(ah3>0)+(ah4>0)+(ahch>0); 
%Find height diff minima 
%First set 0 values high 
ah1(find(ah1==0))=1000; 
ah2(find(ah2==0))=1000; 
ah3(find(ah3==0))=1000; 
ah4(find(ah4==0))=1000; 
ahch(find(ahch==0))=1000; 
HeightDiffVector = min([ah1,ah2,ah3,ah4,ahch],[],2); 
 
%Put back into matrix 
HeightDiff(ActiveHeights)=HeightDiffVector; 
NumFlows(ActiveHeights)=NumFlowsVector; 
 
 
%Include estimated flows for cells on edge of floodplain to allow water to flow along floodplain  
%Find flows out 
Edge_out = find(Vol_E(1:DEMsizeNS)<0); 
VolOut(Edge_out) = VolOut(Edge_out) - Vol_E(Edge_out);       %Western edge 
NumFlows(Edge_out) = NumFlows(Edge_out) + 1; 
 
%Find points where volume flowing out is too great 
FlowRatio=(1+1./NumFlows).*VolOut; 
FlowRatio(ChCells)=FlowRatio(ChCells)./(1-ChannelFrac); 
 
[ii jj] = find((FlowRatio > HeightDiff*DEMresolution^2)+(VolOut > VolumeArray)); 
 
if length(ii) > 0 
 
%---------------------------------------------------Normalise flows 
%Find normalisation coefficient 
%Find indices of bad points 
norm_position = DEMsizeNS*(jj-1) + ii; 
 
[channel_norm_position,inp,ics] = intersect(norm_position,ChCells); 
 
find_norm_coeff = 
(HeightDiff(norm_position)*DEMresolution^2)./((1+1./NumFlows(norm_position)).*VolOut(norm_positi
on)); 
find_norm_coeff(inp)=find_norm_coeff(inp).*(1-ChannelFrac(ics)); 
find_norm_coeff = min(find_norm_coeff,(VolumeArray(norm_position))./(VolOut(norm_position))); 
 
%--------Extra code for drying case ----------------------- 
%This allows cells to drain to zero volume when they are already very low 
 
if (Drying==1) 
    %Find points where outflowing vol is too great and low depth 
    drying_cells = find(VolumeArray(norm_position) < (0.01*DEMresolution^2)); 
    %Check that these cells do have some water in 
    drying_cells = drying_cells(find(VolumeArray(drying_cells) > 0)); 
     
    if(length(drying_cells)>0) 
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    %Save index of drying cells 
    drying_cells_index = drying_cells; 
    %Get index into vol array for these point 
    drying_cells = norm_position(drying_cells); 
    %Check that these cells do not have an inflow 
    %Find Volumes of surrounding cells 
    %Check surrounding cells are not off the edge of array 
    drying_cells_plus = 
(((drying_cells+DEMsizeNS)<=(DEMsizeNS*DEMsizeWE)).*(drying_cells+DEMsizeNS))+ ... 
        (((drying_cells+DEMsizeNS)>(DEMsizeNS*DEMsizeWE)).*drying_cells); 
    drying_cells_minus = (((drying_cells-DEMsizeNS)>=1).*(drying_cells-DEMsizeNS))+(((drying_cells-
DEMsizeNS)<1).*drying_cells); 
    %Then collect values of surrounding cells 
    CheckInflowArray = 
[DepthsTotal(drying_cells),DepthsTotal(min(drying_cells+1,DEMsizeNS*DEMsizeWE)),DepthsTotal(ma
x(drying_cells-1,1)),... 
            DepthsTotal(drying_cells_plus),DepthsTotal(drying_cells_minus)]; 
    %Check that centre cell has highest depth 
    CheckInflowArray = 
((max(max(max(max(CheckInflowArray(:,1),CheckInflowArray(:,2)),CheckInflowArray(:,3)),CheckInflo
wArray(:,4))... 
        ,CheckInflowArray(:,5)))==CheckInflowArray(:,1)); 
    %Find cells with no inflow 
    drying_cells = drying_cells(CheckInflowArray); 
    drying_cells_index = drying_cells_index(CheckInflowArray); 
    %Set normalisation coefficient to reduce volume to zero in these cells 
    find_norm_coeff(drying_cells_index) = 
VolumeArray(norm_position(drying_cells_index))./VolOut(norm_position(drying_cells_index)); 
end; 
 
end; 
 
%----------------------------------------------------------- 
 
%Convert back to indices in flow/vol matrices 
norm_north = norm_position - ceil(norm_position/(DEMsizeNS)); 
norm_south = norm_north+1; 
norm_east = norm_position; 
norm_west = norm_position - DEMsizeNS; 
 
%Take subset of flow indices which apply only to those flows in the correct direction 
%i.e. do not apply to inflows in problem cells 
%Return point,index into active points vector, index into norm coeff vector 
[norm_south,ips,ins] = intersect(dpS_south,norm_south); 
[norm_north,ipn,inn] = intersect(dpS_north,norm_north); 
[norm_east,ipe,ine] = intersect(dpE_east,norm_east); 
[norm_west,ipw,inw] = intersect(dpE_west,norm_west); 
[norm_channel,ipc,inc] = intersect(ChCells(Into_channel),norm_position); 
 
%Now normlalise flow volumes 
Vol_S(norm_south) = Vol_S(norm_south).*find_norm_coeff(ins); 
Vol_S(norm_north) = Vol_S(norm_north).*find_norm_coeff(inn); 
Vol_E(norm_east) = Vol_E(norm_east).*find_norm_coeff(ine); 
Vol_E(norm_west) = Vol_E(norm_west).*find_norm_coeff(inw); 
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if length(ipc)>0 
    %Apply to flow into channel from problem cells 
    Vol_Ch(Into_channel(ipc)) = Vol_Ch(Into_channel(ipc)).*find_norm_coeff(inc); 
    Inchannel_Flow(Into_channel(ipc)) = Inchannel_Flow(Into_channel(ipc)).*find_norm_coeff(inc); 
end; 
 
end; 
 
%------------------------------------------------------Recalculate new depths 
 
 
%Record previous volume 
OldVol = VolumeArray; 
 
%Recoded for better efficiency 
VolumeArray(dpS_add1) = VolumeArray(dpS_add1) + Vol_S(dpS);           %NS Flows 
VolumeArray(dpS_add1-1) = VolumeArray(dpS_add1-1) - Vol_S(dpS); 
 
VolumeArray(dpE+DEMsizeNS) = VolumeArray(dpE+DEMsizeNS) + Vol_E(dpE); %WE Flows 
VolumeArray(dpE) = VolumeArray(dpE)-Vol_E(dpE); 
 
%Include estimated flows for cells on edge of floodplain to allow water to flow along floodplain  
VolumeArray(1:DEMsizeNS) = VolumeArray(1:DEMsizeNS) + Vol_E(1:DEMsizeNS);       %Western 
edge 
 
%Add water flowing into floodplain on channel cells 
VolumeArray(ChCells) = VolumeArray(ChCells) + Vol_Ch; 
 
%Record water lost for mass balance 
vol_edge = sum(Vol_E(1:DEMsizeNS)); 
 
%Allow for small numerical errors 
VolumeArray = max(VolumeArray,0); 
 
%---------- Transform volumes in cells to new depths------------------- 
 
DepthsArray = VolumeArray./(DEMresolution^2); 
DepthsArray(ChCells)=DepthsArray(ChCells)./(1-ChannelFrac); 
 
%Clear up 
clear indices1 indices2 indices3 indices DepthLower DepthUpper VolumeLower VolumeUpper 
 
%clear up 
clear ExtraDepth AddedVol sparse_norm_s sparse_norm_E norm_coeff_channel dpS dpS_add1 dpE 
DepthsArray2  
 
%-------- Function returns new floodplain depths and new channel overbank height -----------------------------
-------- 
 
%Floodplain depths have already been calculated 
Floodplain_depths = DepthsArray; 
 
clear DepthsArray 
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Matlab Function Code: FloodWave_Porosity 
 
 

 
%This function routes a flood wave down the river channel 
%Calls function which routes water over floodplain: uses porosity values 
 
%Hilary McMillan 
%Department of Geography 
%Cambridge University 
 
function [Flows, FloodplainDepth, Times, MassBalance] =  
FloodWave_Porosity(ChInfoArray,hydrotime,hydroflow,DEMresolution,DEMarray,RoughArray,In
itFloodplainDepths,DilatedChannel,PorosityAtDepths,WettedPMatrix_NS,WettedPMatrix_WE,XSe
cAreaMatrix_NS,XSecAreaMatrix_WE) 
 
%------Inputs  
 
%ChInfoArray has columns: Channel x-position, channel y-pos, width, slope, friction coeff, bankfull depth 
%[hydrotime, hydroflow]: upstream hydrograph 
%DEMresolution: Distance between sample points (m) 
%DilatedChannel: Channel area if channel covers more than single line of grid cells 
%PorosityAtDepths: Look-up table of porosity values 
%WettedPMatrix_WE/NS: Look-up tables of wetted perimeters 
%XSecAreaMatrix_WE/NS: Look-up tables of cross-sectional areas 
 
%--These are passed straight to floodplain depth calculator FloodplainRoute 
%DEMarray: Ground height of floodplain 
%RoughArray: Roughness of each grid square on floodplain 
%InitFloodplainDepths: Initial depth of water in each floodplain cell 
 
%------Outputs 
 
%Flows: Channel hydrograph at specified locations 
%FloodplainDepth: maximum depth occurring at each grid cell 
%Times: Time (s) at which hydrograph data is recorded 
%MassBalance: Record of any water volume change during model run (accuracy check) 
 
%--------- Declare global variables ------------------------------------------------------------------------------ 
 
global Porosities 
global VolumeArray 
global VolumeArray2 
global PorosityVolumes 
global WettedP_NS 
global WettedP_WE 
global XSecArea_NS 
global XSecArea_WE 
 
%Assign input parametes to global variables 
WettedP_NS = WettedPMatrix_NS; 
WettedP_WE = WettedPMatrix_WE; 
XSecArea_NS = XSecAreaMatrix_NS; 
XSecArea_WE = XSecAreaMatrix_WE; 
%and clear original variables 
clear WettedPMatrix_NS WettedPMatrix_WE XSecAreaMatrix_NS XSecAreaMatrix_WE 
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%---------Set up constants ---------------------------------------------------------------------------------------- 
 
%Time for simulation to end 
EndTime=hydrotime(end); 
%Inital channel flow 
InitFlow=hydroflow(1); 
 
%Find delta-x array of length of channel in each grid cell 
%    depending on whether consective channel cells are adjacent or diagonal 
%Create intermediate variables 
Channelx = ChInfoArray(1:end-1,1); 
Channelx2 = ChInfoArray(2:end,1); 
Channely = ChInfoArray(1:end-1,2); 
Channely2 = ChInfoArray(2:end,2); 
%Calculate distance between centres of each two channel cells (= 1 or sqrt(2)) 
deltax = (((Channelx2-Channelx)+(Channely2-Channely)-1)*(sqrt(2)-1))+1; 
%Clear intermediate variables 
clear Channelx2,Channely2; 
 
%Split up channel info array for readability 
ChannelXpos = ChInfoArray(:,1); 
ChannelYpos = ChInfoArray(:,2); 
ChannelWidth = ChInfoArray(:,3); 
ChannelSlope = ChInfoArray(:,4); 
ChannelFriction = ChInfoArray(:,5); 
ChannelBankfull = ChInfoArray(:,6); 
 
%Clear ChInfo array 
clear ChInfoArray; 
 
%Set folder in which to store output video 
VideoFolder = 'H:\VideoFolder'; 
 
%Set folder in which to store output files 
OutputFolder = 'H:\OutputFolder'; 
 
%----------Calculate volumes corresponding to known depths -------------------------------- 
 
%Depths where porosity is recorded 
p_depths = [0;0.25;0.5;0.75;1;1.5;2;2.5;3;4;5;6;7;8;9;10;11;12]; 
 
%Also find volumes corresponding to known depths and porosities 
Porosities = PorosityAtDepths; 
PorosityVolumes = Porosities; 
 
for i = 1:length(p_depths) 
    PorosityVolumes(:,:,i) = (DEMresolution^2).*p_depths(i).*Porosities(:,:,i); 
end; 
 
 
%---------Set up matrix to change between dilated channel and central channel-----------------------------------
- 
 
%------ Find x,y position of elements in dilated channel matrix 
[dchi dchj dchv] = find(DilatedChannel); 
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%------ Find single index position of channel elements 
dchindex = find(DilatedChannel); 
dchindexnot = find(DilatedChannel==0); 
 
%Create sparse matrix for transform 
ChannelTransform = sparse(dchv,[1:length(dchv)]',ones(length(dchv),1)); 
 
%------ Find cells which represent inflow into channel 
DilatedChannel2=(DilatedChannel>0); 
Channel_S = DilatedChannel2(1:(end-1),:) + 2.*DilatedChannel2(2:end,:);  
InflowCellsS = (Channel_S==2) + (Channel_S==1); 
InflowS = find(InflowCellsS);  
InChannelS = find(Channel_S==3); 
 
Channel_E = DilatedChannel2(:,(1:end-1)) + 2.*DilatedChannel2(:,2:end); 
InflowCellsE = (Channel_E==2) + (Channel_E==1); 
InflowE = find(InflowCellsE); 
InChannelE = find(Channel_E==3); 
 
%Clear up 
clear Channel_S Channel_E InflowCellsS InflowCellsE DilatedChannel2 
 
%--------- Create Arrays to stop dynamic allocation -------------------------------------------------------------- 
 
%Store time values in seconds corresponding to timesteps j 
StoredTime = zeros(30000,1); 
%StoredTime = zeros(2,1); 
 
%Store Q (flow) values 
%Q = zeros(length(ChannelWidth),30000); 
Q = zeros(length(ChannelWidth),2); 
%And put in intial flows 
Q(:,1) = InitFlow*ones(length(ChannelWidth),1); 
Q(:,2) = Q(:,1); 
 
%Store Output hydrograph values 
OutputFlow = zeros(1,30000); 
 
%Store water depths y 
y = zeros(length(ChannelWidth),2); 
%And put in initial depths 
y(:,1) = (ChannelFriction.*Q(:,1)./((ChannelSlope.^0.5).*ChannelWidth)).^(0.6); 
y(:,2) = y(:,1); 
 
%Store Channel Inflow q 
qq1 = zeros(length(ChannelWidth),1); 
qq2=qq1; 
inflow = zeros(1000,1); 
 
%Create variable alpha used in calculations of Q 
alpha = [(ChannelFriction.*ChannelWidth.^(2/3))./ChannelSlope.^(1/2)].^0.6; 
 
%Depth of water on floodplain 
sz2 = size(DEMarray); 
FloodplainDepth1 = zeros(sz2(1),sz2(2)); 
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FloodplainDepth2=FloodplainDepth1; 
FloodplainDepth1 = InitFloodplainDepths; 
FloodplainMaxDepth = zeros(sz2(1),sz2(2)); 
 
%Initialise floodplain flows 
Flow_S = 0; 
Flow_E = 0; 
Flow_SE = 0; 
Flow_NE = 0; 
 
%Array of floodplain volumes 
VolumeArray = zeros(sz2(1),sz2(2)); 
VolumeArray2 = zeros(sz2(1),sz2(2)); 
VolumeArray2(dchindex)=y(dchv,1).*(DEMresolution^2); 
VolumeArray2(dchindex)=(y(dchv,1)-ChannelBankfull(dchv)).*(DEMresolution^2); 
 
 
%Find fraction of channel in channel cells for volume finding----------------- 
 
%Calculate length of channel occurring within each cell 
%Set up temporary arrays 
%Add beginning and end coordinates as if adjacent channel cells existed 
Channelxoffset1 = [ChannelXpos(1);ChannelXpos(1:end-1)]; 
Channelyoffset1 = [ChannelYpos(1)-1;ChannelYpos(1:end-1)]; 
Channelxoffset2 = ChannelXpos(1:end); 
Channelyoffset2 = ChannelYpos(1:end); 
Channelxoffset3 = [ChannelXpos(2:end);ChannelXpos(end)]; 
Channelyoffset3 = [ChannelYpos(2:end);ChannelYpos(end)+1]; 
%Calculate lengths 
ChannelLength = sqrt(abs(Channelxoffset2-Channelxoffset1)+abs(Channelyoffset2-Channelyoffset1))/2 + 
... 
                    sqrt(abs(Channelxoffset3-Channelxoffset2)+abs(Channelyoffset3-Channelyoffset2))/2; 
 
ChannelFraction = (ChannelWidth.*ChannelLength)/DEMresolution; 
sparse_channel_vol = sparse(ChannelYpos,ChannelXpos,ChannelFraction,sz2(1),sz2(2)); 
 
%Now use calculated channel fraction as part of Porosity Array  
for i = 1:length(p_depths) 
    temp=PorosityVolumes(:,:,i); 
    temp(find(DilatedChannel))=p_depths(i).*(DEMresolution^2); 
    PorosityVolumes(:,:,i)=temp; 
end; 
 
%And put into Porosities matrix as well 
for i = 1:length(p_depths) 
    temp=Porosities(:,:,i); 
    temp(find(DilatedChannel))=1; 
    Porosities(:,:,i)=temp; 
end; 
     
%clear up 
clear Channelxoffset1 Channelyoffset1 Channelxoffset2 Channelyoffset2 Channelxoffset3 Channelyoffset3 
%Initialise total water for mass balance check 
WaterIn = sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
WaterOut = 0; 
OldTotalWater = sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
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%---------Initialise loop variables-------------------------------------------------------------------------------- 
 
%Initialise timestep 
delta_t = 0; 
 
%time in seconds 
t=0; 
 
%timestep number 
j = 1; 
 
%--------- Calculate variable values from initial conditions ---------------------------------------------------- 
 
FloodplainDiff = [0]; 
 
%Find timesteps at which to record picture of flood 
%hours of simulation 
NumHours = floor(EndTime/(60*60)); 
%every hour 
Step = [3600:3600:3600*NumHours]; 
 
StepCounter=1; 
 
%Find point at which drying begins 
[MaxChannelFlow, MaxChannelFlowIndex] = max(hydroflow); 
DryingTime = hydrotime(MaxChannelFlowIndex); 
 
%-------- Loop for timesteps-------------------------------------------------------------------------------------- 
 
while t < (EndTime-delta_t)      
 
%-------- Find delta-t by using Courant condition ----------------------------------------------------------------- 
 
%Find kinematic wave celerity c_k = dQ/dA = 1/B.dQ/dY       B = channel width, y = water depth 
%Mannings equation Q = [By.Sf^(1/2).R^(2/3)]/n    (A=By)  s0 = sf  R~=y 
%Differentiate to get c_k = [s0^(1/2).(5/3).y^(2/3)]/n 
%We assume surface slope s0 = bed slope 
 
%c_k is found for each cell 
c_k = [ChannelSlope.^(1/2)*(5/3).*y(:,1).^(2/3)]./ChannelFriction; 
 
%delta-t is found for each cell, and min value gives timestep 
delta_t = min(DEMresolution./c_k);  
 
%--------- Advance to next time step -------------------------------------------------------------------------------- 
 
t = t + delta_t; 
 
%Store timestep value 
StoredTime(j+1) = t; 
 
%Print time 
t 
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%---------- Now route water overbank and into floodplain where appropriate -------------------------------------
--- 
 
%Find overbank height by subtracting bankfull height from total water depth 
ChannelHeight = y(:,2) - ChannelBankfull; 
 
FloodplainDepth1 = FloodplainDepth2; 
qq1 = qq2; 
 
%Add overbank heights to all cells in Dilated Channel 
FloodplainDepth1(dchindex)=ChannelHeight(dchv); 
VolumeArray2(dchindex)=(ChannelBankfull(dchv)+ChannelHeight(dchv)).*DEMresolution^2; 
VolumeArray(dchindex)=(ChannelHeight(dchv)).*DEMresolution^2; 
 
%Find out whether this step needs to be stored to be part of flood video 
if (StoredTime(j+1)>Step(StepCounter))&&(StoredTime(j)<Step(StepCounter)) 
    VideoFile = [VideoFolder,'\VideoFrame',num2str(StepCounter,'%02i'),'.asc']; 
    save(VideoFile, 'FloodplainDepth1', '-ASCII') 
    if StepCounter < length(Step) 
        StepCounter=StepCounter+1;     
    end 
end 
 
%Remove within-reach lateral inflow 
if ((t > 7300)&&(t < 68300)) 
    qqtemp=qq1-0.0116; 
else 
    qqtemp=qq1; 
end 
 
%Find out whether we are in drying phase 
if t > DryingTime;Drying=1;else;Drying=0;end; 
 
%Calculate new floodplain depths and channel inflow for next timestep using FloodplainRoute function 
[FloodplainDepth2,Flow_S,Flow_E,vol_edge] = FloodplainRoute(DEMarray,RoughArray, ... 
    
FloodplainDepth1,DEMresolution,ChannelXpos,ChannelYpos,ChannelHeight,ChannelWidth,delta_t,Flow
_S,Flow_E,... 
    qqtemp,InflowS,InflowE,InChannelS,InChannelE,dchindex,dchindexnot, Drying); 
 
%Depths in channel are recorded as overbank height 
FloodplainDepth2(dchindex)=FloodplainDepth2(dchindex)-ChannelBankfull(dchv); 
 
%Record maximum depths 
FloodplainMaxDepth = max(FloodplainMaxDepth,FloodplainDepth2); 
 
%Add together all flow for each dilated channel cell corresponding to central channel cells 
qq2 = (ChannelTransform*(FloodplainDepth2(dchindex)-
FloodplainDepth1(dchindex)))*((DEMresolution)^2)/delta_t; 
 
%Add within-reach lateral inflow 
if ((t > 7300)&&(t < 68300)) 
    qq2=qq2+0.0116; 
end 
 
%--------- Calculate correct upstream flow value for this data point ------------------------------------------------ 
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%Update Flow variable 
Q(:,1) = Q(:,2); 
 
%If hydrograph does not start at time zero then add a zero 
if min(hydrotime > 0) 
    hydrotime = [0;hydrotime]; 
    hydroflow = [hydroflow(1);hydroflow]; 
end; 
 
%Find position of time t within hydrograph times series 
tlessthan = (hydrotime <= t); 
tposition = sum(tlessthan); 
%Hence find interpolated flow at time t 
Q(1,2) = hydroflow(tposition) + ((t-hydrotime(tposition))/(hydrotime(tposition+1)-hydrotime(tposition))) 
...  
    *(hydroflow(tposition+1)-hydroflow(tposition)); 
%Add any in/outflow from the floodplain 
Q(1,2)=Q(1,2)+qq2(1); 
 
 
%--------- Loop to calculate downstream discharges ----------------------------------------------------------------- 
 
%Length of channel array = number of channel cells 
for i = 1:length(ChannelWidth)-1 
 
%--------- Solve for discharge at point x + delta-x ----------------------------------------------------------------- 
 
if ((Q(i+1,1)+Q(i,2)) > (10^(-15))) 
    Q(i+1,2) = 
((delta_t/(DEMresolution*ChannelLength(i+1)))*Q(i,2)+alpha(i+1)*0.6*Q(i+1,1)*((Q(i+1,1)+Q(i,2))/2).^-
0.4+ ...  
        (delta_t/(DEMresolution*ChannelLength(i+1)))*(qq2(i+1)+qq1(i+1))/2)/ ... 
        ((delta_t/(DEMresolution*ChannelLength(i+1))) + alpha(i+1)*0.6*((Q(i+1,1)+Q(i,2))/2).^-0.4); 
else 
    Q(i+1,2) = 0; 
end 
     
%------------------------------------------------------------------------------------------------------------------- 
 
end; %End downstream loop 
 
%Save Output flow for Output hydrograph 
OutputFlow(j+1)=Q(length(ChannelWidth),2); 
 
%-------- Transform flows into depths ----------------------------------------------------------------------------- 
 
%Water depth is found for each cell 
%from Mannings equation y = (nQ/(s0^(1/2).B))^(3/5) 
y(:,1) = y(:,2); 
y(:,2) = (ChannelFriction.*Q(:,2)./((ChannelSlope.^0.5).*ChannelWidth)).^(0.6); 
 
%------- Find total volume of water to check conservation --------------------------------------------------------- 
 
%Water on floodplain (reduced in cells where channel takes up part of the area) 
TotalWater = VolumeArray; 
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TotalWater(dchindex)=0; 
TotalWater = sum(TotalWater(:)); 
%Add water depth in channel 
TotalWater = TotalWater + sum(y(:,1).*ChannelLength.*ChannelWidth*DEMresolution); 
 
%Find volume of water added to model 
WaterIn = WaterIn + Q(1,2)*delta_t; 
 
%And leaving model 
WaterOut = WaterOut + Q(length(ChannelXpos),2)*delta_t; 
 
%Account for water flowing off edge of model 
WaterOut = WaterOut - vol_edge*(DEMresolution^2); 
 
WaterBalance = (WaterIn-WaterOut-TotalWater)/WaterIn; 
 
%Save for next timestep 
OldTotalWater = TotalWater; 
 
%Increment timestep 
j = j+1; 
 
end; %End timestep loop 
 
%--------- Write outputs variable ----------------------------------------------------------------------------------- 
 
Flows = OutputFlow(1:j); 
FloodplainDepth = FloodplainMaxDepth; 
Times = StoredTime(1:j); 
MassBalance = WaterBalance*100; 
 
%--------- Save all outputs ------------------------------------------------ 
flowfile = [OutputFolder,'\OutputFlows.dat']; 
depthsfile = [OutputFolder,'\OutputDepths.dat']; 
timesfile = [OutputFolder,'\OutputTimes.dat']; 
waterbalfile = [OutputFolder,'\WaterBalance.dat']; 
 
save(flowfile,'Flows','-ascii'); 
save(depthsfile,'FloodplainDepth','-ascii'); 
save(timesfile,'Times','-ascii'); 
save(waterbalfile,'MassBalance','-ascii'); 
 
 
%--------------------------------------End of Kinematic Wave ---------------------------------------------------------- 
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%-------------------------------------- Start FloodplainRoute subfunction ----------------------------------------- 
 
 
%Function to route water over floodplain 
 
%Hilary McMillan 
%Department of Geography 
%Cambridge University 
 
function [Floodplain_depths,Flow_S,Flow_E,vol_edge] = 
FloodplainRoute(DEMarray,RoughArray,DepthsArray,DEMresolution,Channelx,Channely, 
ChannelHeight,ChannelWidths,delta_t,InS,InE,ChS,ChE,dchindex,dchindexnot,Drying) 
 
%DEMarray = Land Height for each gridsquare (m) 
%RoughArray = Mannings n for each gridsquare 
%DepthsArray = previous depths of water on floodplain (m) 
%DEM resolution: Distance between sample points (m) 
%Channelx = channel square x-position 
%Channely = channel square y-position 
%Channel Height = overbank height of water 
%ChannelWidths = width of channel in each cell 
%delta_t = timestep over which flow can take place 
%InS/InE: flow paths into channel 
%ChS/ChE: flow paths intra-channel 
%dchindex: location of channel 
%dchindexnot: cells not in channel 
%Drying: boolean to specify if we are in drying phase 
 
%Returns 
%Floodplain_depths = new heights of water on floodplain 
%Flow_S/Flow_E: Floodplain flows 
%vol_edge: volume of water leaving edge of floodplain 
 
%--------- Declare global variables ------------------------------------------------------------------------------ 
 
global Porosities 
global VolumeArray 
global VolumeArray2 
global PorosityVolumes 
global WettedP_NS 
global WettedP_WE 
global XSecArea_NS 
global XSecArea_WE 
 
%------- Set up constants ---------------------------------------------------------------------------------------------------
- 
 
%Set lateral inflow damping 
DampingLateral = 0.0; 
 
%Set intra-floodplain damping 
DampingFloodplain = 0.0; 
 
%Get size of DEM array 
sz = size(DEMarray); 
%Size of DEM 
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DEMsizeNS = sz(1); 
DEMsizeWE = sz(2); 
 
%Depths where porosity is recorded 
p_depths = [0;0.25;0.5;0.75;1;1.5;2;2.5;3;4;5;6;7;8;9;10;11;12]; 
num_pdepths = length(p_depths); 
 
%------- Create mask of active points within floodplain ---------------------------------------------------------------
------ 
 
activepoints = (DepthsArray > 0); 
ap_pack = bwpack2(activepoints);                     %bwpack is used for efficiency 
se_dilate = strel2([0, 1, 0;1, 1, 1;0, 1, 0]);       %Each point with positive depth has its four surrounding 
points made active 
ap_dilate = imdilate2(ap_pack,se_dilate,'ispacked'); 
ap_unpack = bwunpack2(ap_dilate,size(activepoints,1)); 
 
%------- First Calculate 'down/south' flows in relation to DEM ------------------------------------------------------
--------- 
 
%Initialise arrays 
DepthsTotal = DepthsArray+DEMarray; 
 
%Create offset maps 
DEMoffset1 = DEMarray(1:end-1,:); 
DEMoffset2 = DEMarray(2:end,:); 
 
Depthoffset1 = DepthsTotal(1:end-1,:); 
Depthoffset2 = DepthsTotal(2:end,:); 
 
Depthonlyoffset1 = DepthsArray(1:end-1,:); 
Depthonlyoffset2 = DepthsArray(2:end,:); 
 
RoughOffset1 = RoughArray(1:end-1,:); 
RoughOffset2 = RoughArray(2:end,:); 
 
%Initialise Flow matrix 
Flow_S = zeros(sz(1)-1,sz(2)); 
 
%Find active flows 
aps1 = ap_unpack(2:end,:); 
aps = find(aps1); 
%Get rid of points in/to channel 
aps=setdiff(aps,InS); 
aps=setdiff(aps,ChS); 
 
%Flow depends on cross-section areas and wetted perimeters - these in turn depend on depth 
%Get depth indices closest to actual depth - first get max depth over each two squares 
maxdepths = max(Depthoffset1(aps),Depthoffset2(aps)) - max(DEMoffset1(aps),DEMoffset2(aps)); 
depthindices = interp1(p_depths,[1:length(p_depths)],maxdepths); 
%Round to nearest integer 
depthindices1 = floor(depthindices); 
depthindices2 = depthindices1+1; 
%Index used to reference cross-section area - find upper and lower points 
flows_xsec1 = XSecArea_NS((depthindices1-1).*((sz(1)-1)*sz(2))+aps); 
flows_xsec2 = XSecArea_NS((depthindices2-1).*((sz(1)-1)*sz(2))+aps); 

 A-25



%Find actual xsec as combination 
flows_xsec = flows_xsec1 + ((depthindices-depthindices1)./(depthindices2-depthindices1)).*(flows_xsec2 - 
flows_xsec1); 
 
%Index used to reference cross-section area - find upper and lower points 
flows_wp1 = WettedP_NS((depthindices1-1).*((sz(1)-1)*sz(2))+aps); 
flows_wp2 = WettedP_NS((depthindices2-1).*((sz(1)-1)*sz(2))+aps); 
%Find actual xsec as combination 
flows_wp = flows_wp1 + ((depthindices-depthindices1)./(depthindices2-depthindices1)).*(flows_wp2 - 
flows_wp1); 
 
%Set flows to zero where no wetted perimeter 
zero_indices = find(flows_wp == 0); 
flows_wp(zero_indices) = 1; 
flows_xsec(zero_indices) = 0; 
 
%Calculate flows 
Flow_S(aps) = sign(Depthoffset1(aps)-Depthoffset2(aps)).*[(flows_xsec.^(5/3)).*(abs(Depthoffset1(aps)-
Depthoffset2(aps)).^0.5)] ./ ... 
    [(flows_wp.^(2/3)).*((RoughOffset1(aps)+RoughOffset2(aps))./2)]; 
 
Flow_S(InS) = sign(Depthonlyoffset1(InS)-
Depthonlyoffset2(InS)).*[(max(Depthonlyoffset1(InS),Depthonlyoffset2(InS)).^(5/3)) ... 
        .*(abs(Depthonlyoffset1(InS)-Depthonlyoffset2(InS)).^0.5).* (DEMresolution.^(7/6))]./ ... 
    
[((RoughOffset1(InS)+RoughOffset2(InS))./2).*((DEMresolution+2*(max(Depthonlyoffset1(InS),Depthon
lyoffset2(InS)))).^(2/3))]; 
 
%Check that water is not allowed to flow such that depth in receiving cell > depth in source cell 
%Calculate max flow lost from cell 1 = (av. depth - prev depth).*area./timestep 
aps_add1 = aps + ceil(aps/(DEMsizeNS-1)); 
MaxFlow1 = abs((VolumeArray(aps_add1)-VolumeArray(aps_add1-1))./2)./delta_t; 
MaxFlow2 = abs(((Depthonlyoffset2(InS)-Depthonlyoffset1(InS))./2).*(DEMresolution^2)./delta_t); 
 
%Extra step to ensure inflow channel cells are not overwritten by floodplain max flows 
Flow1 = sign(Flow_S(aps)).*min(abs(Flow_S(aps)),MaxFlow1); 
Flow2 = sign(Flow_S(InS)).*min(abs(Flow_S(InS)),MaxFlow2); 
 
%Cut off flow if greater 
Flow_S(aps) = Flow1; 
Flow_S(InS) = Flow2; 
 
%Clear flows between channel cells (as we discount these) 
Flow_S(ChS) = 0; 
 
%------- Calculate 'right/east' flows in relation to DEM --------------------------------------------------------------- 
 
%Initialise arrays 
 
%Create offset maps 
DEMoffset1 = DEMarray(:,1:end-1); 
DEMoffset2 = DEMarray(:,2:end); 
 
Depthoffset1 = DepthsTotal(:,1:end-1); 
Depthoffset2 = DepthsTotal(:,2:end); 
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Depthonlyoffset1 = DepthsArray(:,1:end-1); 
Depthonlyoffset2 = DepthsArray(:,2:end); 
 
RoughOffset1 = RoughArray(:,1:end-1); 
RoughOffset2 = RoughArray(:,2:end); 
 
%Initialise Flow matrix 
Flow_E = zeros(sz(1),sz(2)-1); 
 
%Find active flows 
ape1 = ap_unpack(:,2:end); 
ape = find(ape1); 
%Get rid of points in/to channel 
ape=setdiff(ape,InE); 
ape=setdiff(ape,ChE); 
 
%Flow depends on cross-section areas and wetted perimeters - these in turn depend on depth 
%Get depth indices closest to actual depth - first get max depth over each two squares 
maxdepths = max(Depthoffset1(ape),Depthoffset2(ape)) - max(DEMoffset1(ape),DEMoffset2(ape)); 
depthindices = interp1(p_depths,[1:length(p_depths)],maxdepths); 
%Round to nearest integer 
depthindices1 = floor(depthindices); 
depthindices2 = depthindices1+1; 
%Index used to reference cross-section area - find upper and lower points 
flows_xsec1 = XSecArea_WE((depthindices1-1).*((sz(1)-1)*sz(2))+ape); 
flows_xsec2 = XSecArea_WE((depthindices2-1).*((sz(1)-1)*sz(2))+ape); 
%Find actual xsec as combination 
flows_xsec = flows_xsec1 + ((depthindices-depthindices1)./(depthindices2-depthindices1)).*(flows_xsec2 - 
flows_xsec1); 
 
%Index used to reference cross-section area - find upper and lower points 
flows_wp1 = WettedP_WE((depthindices1-1).*((sz(1)-1)*sz(2))+ape); 
flows_wp2 = WettedP_WE((depthindices2-1).*((sz(1)-1)*sz(2))+ape); 
%Find actual xsec as combination 
flows_wp = flows_wp1 + ((depthindices-depthindices1)./(depthindices2-depthindices1)).*(flows_wp2 - 
flows_wp1); 
 
%Set flows to zero where no wetted perimeter 
zero_indices = find(flows_wp == 0); 
flows_wp(zero_indices) = 1; 
flows_xsec(zero_indices) = 0; 
 
%Calculate flows 
Flow_E(ape) = sign(Depthoffset1(ape)-Depthoffset2(ape)).*[(flows_xsec.^(5/3)).*(abs(Depthoffset1(ape)-
Depthoffset2(ape)).^0.5)] ./ ... 
    [(flows_wp.^(2/3)).*((RoughOffset1(ape)+RoughOffset2(ape))./2)]; 
 
Flow_E(InE) = sign(Depthonlyoffset1(InE)-
Depthonlyoffset2(InE)).*[(max(Depthonlyoffset1(InE),Depthonlyoffset2(InE)).^(5/3)) ... 
        .*(abs(Depthonlyoffset1(InE)-Depthonlyoffset2(InE)).^0.5).* (DEMresolution.^(7/6))]./ ... 
    
[((RoughOffset1(InE)+RoughOffset2(InE))./2).*((DEMresolution+2*(max(Depthonlyoffset1(InE),Deptho
nlyoffset2(InE)))).^(2/3))]; 
 
 
%Check that water is not allowed to flow such that depth in receiving cell > depth in source cell 
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%Calculate max flow lost from cell 1 = (av. depth - prev depth).*area./timestep 
ape_add1 = ape + ceil(ape/(DEMsizeWE-1)); 
MaxFlow1 = abs((VolumeArray(ape)-VolumeArray(ape+DEMsizeNS))./2)./delta_t; 
MaxFlow2 = abs(((Depthonlyoffset2(InE)-Depthonlyoffset1(InE))./2).*(DEMresolution^2)./delta_t); 
 
%Extra step to ensure inflow channel cells are not overwritten by floodplain max flows 
Flow1 = sign(Flow_E(ape)).*min(abs(Flow_E(ape)),MaxFlow1); 
Flow2 = sign(Flow_E(InE)).*min(abs(Flow_E(InE)),MaxFlow2); 
 
%Cut off flow if greater 
Flow_E(ape) = Flow1; 
Flow_E(InE) = Flow2; 
 
%Clear flows between channel cells (as we discount these) 
Flow_E(ChE) = 0; 
 
%------Clear up 
clear DEMoffset1 DEMoffset2 Depthoffset1 Depthoffset2 Depthonlyoffset1 Depthonlyoffset2 
RoughOffset1 RoughOffset2 aps1 ape1 MaxFlow1 MaxFlow2 Flow1 Flow2 
 
%Find new area of interest 
dpS = find(Flow_S); 
dpE = find(Flow_E); 
 
%Get rid of points in/to channel 
dpS=setdiff(dpS,InS); 
dpS=setdiff(dpS,ChS); 
 
dpE=setdiff(dpE,InE); 
dpE=setdiff(dpE,ChE); 
 
 
%------- Transform flows to volumes ----------------------------------------------------------------------------- 
 
%Initialise 
Vol_S = Flow_S; 
Vol_E = Flow_E; 
 
%Find flowing volume by transforming flow 
Vol_S(dpS) = Vol_S(dpS)*delta_t; 
Vol_E(dpE) = Vol_E(dpE)*delta_t; 
 
%------ Clear up 
clear Flow Depthoffset1 Depthoffset1E Depthoffset2 Depthoffset2E MaxFlowE MaxFlowS 
Channelxoffset1 Channelyoffset1 Channelxoffset2 Channelyoffset2 Channelxoffset3 Channelyoffset3 
 
 
%-------- Begin normalisation procedure ---------------------------------------------------------------------- 
 
%Find water that flows out of each cell 
%Initially zero 
VolOut = zeros(DEMsizeNS,DEMsizeWE); 
%At same time find min height difference between central and neighbouring outflow cells 
HeightDiff1 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff2 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff3 = zeros(DEMsizeNS, DEMsizeWE); 
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HeightDiff4 = zeros(DEMsizeNS, DEMsizeWE); 
HeightDiff = zeros(DEMsizeNS, DEMsizeWE); 
%And count flows out of each cell 
NumFlows = zeros(DEMsizeNS, DEMsizeWE); 
 
 
%Find direction of flow at each point 
dpS_south = find(Vol_S(dpS)>0); 
dpS_south = dpS(dpS_south); 
dpS_north = find(Vol_S(dpS)<0); 
dpS_north = dpS(dpS_north); 
dpE_east = find(Vol_E(dpE)>0); 
dpE_east = dpE(dpE_east); 
dpE_west = find(Vol_E(dpE)<0); 
dpE_west = dpE(dpE_west); 
 
%Now at each point add all the negative flows 
%Find flow to depth matrix index conversion 
dpS_add1 = dpS + ceil(dpS/(DEMsizeNS-1)); 
dpS_south_add1 = dpS_south + ceil(dpS_south/(DEMsizeNS-1)); 
dpS_north_add1 = dpS_north + ceil(dpS_north/(DEMsizeNS-1)); 
 
%South flowing 
VolOut(dpS_south_add1-1) = VolOut(dpS_south_add1-1) + Vol_S(dpS_south); 
HeightDiff1(dpS_south_add1-1)=DepthsTotal(dpS_south_add1-1)-DepthsTotal(dpS_south_add1); 
 
%North flowing 
VolOut(dpS_north_add1) = VolOut(dpS_north_add1) - Vol_S(dpS_north); 
HeightDiff2(dpS_north_add1)=DepthsTotal(dpS_north_add1)-DepthsTotal(dpS_north_add1-1); 
 
%East flowing 
VolOut(dpE_east) = VolOut(dpE_east) + Vol_E(dpE_east); 
HeightDiff3(dpE_east)=DepthsTotal(dpE_east)-DepthsTotal(dpE_east+DEMsizeNS); 
 
%West Flowing 
VolOut(dpE_west+DEMsizeNS) = VolOut(dpE_west+DEMsizeNS) - Vol_E(dpE_west); 
HeightDiff4(dpE_west+DEMsizeNS)=DepthsTotal(dpE_west+DEMsizeNS)-DepthsTotal(dpE_west); 
 
 
%Find direction of flow at each point 
InS_south = find(Vol_S(InS)>0); 
InS_south = InS(InS_south); 
InS_north = find(Vol_S(InS)<0); 
InS_north = InS(InS_north); 
InE_east = find(Vol_E(InE)>0); 
InE_east = InE(InE_east); 
InE_west = find(Vol_E(InE)<0); 
InE_west = InE(InE_west); 
 
%Add negative flows into channel 
InS_add1 = InS + ceil(InS/(DEMsizeNS-1)); 
InS_south_add1 = InS_south + ceil(InS_south/(DEMsizeNS-1)); 
InS_north_add1 = InS_north + ceil(InS_north/(DEMsizeNS-1)); 
%South flowing 
VolOut(InS_south_add1-1) = VolOut(InS_south_add1-1) + Vol_S(InS_south); 
HeightDiff1(InS_south_add1-1)=DepthsTotal(InS_south_add1-1)-DepthsTotal(InS_south_add1); 
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%NumFlows(InS_south_add1-1)=NumFlows(InS_south_add1-1)+1; 
 
%North flowing 
VolOut(InS_north_add1) = VolOut(InS_north_add1) - Vol_S(InS_north); 
HeightDiff2(InS_north_add1)=DepthsTotal(InS_north_add1)-DepthsTotal(InS_north_add1-1); 
%NumFlows(InS_north_add1)=NumFlows(InS_north_add1)+1; 
 
%East flowing 
VolOut(InE_east) = VolOut(InE_east) + Vol_E(InE_east); 
HeightDiff3(InE_east)=DepthsTotal(InE_east)-DepthsTotal(InE_east+DEMsizeNS); 
%NumFlows(InE_east)=NumFlows(InE_east)+1; 
 
%West Flowing 
VolOut(InE_west+DEMsizeNS) = VolOut(InE_west+DEMsizeNS) - Vol_E(InE_west); 
HeightDiff4(InE_west+DEMsizeNS)=DepthsTotal(InE_west+DEMsizeNS)-DepthsTotal(InE_west); 
%NumFlows(InE_west+DEMsizeNS)=NumFlows(InE_west+DEMsizeNS)+1; 
 
%Find out max flow from each cell 
ActiveHeights=find(HeightDiff1+HeightDiff2+HeightDiff3+HeightDiff4); 
ah1=HeightDiff1(ActiveHeights); 
ah2=HeightDiff2(ActiveHeights); 
ah3=HeightDiff3(ActiveHeights); 
ah4=HeightDiff4(ActiveHeights); 
 
 
%Count number of flows coming out of each cell 
NumFlowsVector=(ah1>0)+(ah2>0)+(ah3>0)+(ah4>0); 
 
%Temporary array of first porosity value 
tempPorosities = Porosities(:,:,2); 
 
%For each direction work out the value of the parameter which is minimised 
%South flowing 
if min(DepthsArray(dpS_south_add1-1))<=0 
    stop=1 
end 
if length(dpS_south)>0 
CentralPorosity = VolumeArray(dpS_south_add1-1) ./ (DepthsArray(dpS_south_add1-
1).*DEMresolution^2); 
OutflowPorosity = VolumeArray(dpS_south_add1) ./ (DepthsArray(dpS_south_add1).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(dpS_south_add1(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))); 
[FlowPoints, ifl, iah] = intersect(dpS_south_add1-1,ActiveHeights); 
HeightDiff1(dpS_south_add1-1)=HeightDiff1(dpS_south_add1-
1)./((1./CentralPorosity)+(1./(NumFlowsVector(iah).*(OutflowPorosity)))); 
end 
 
%North flowing 
if min(DepthsArray(dpS_north_add1))<=0 
    stop=1 
end 
 
if length(dpS_north)>0 
CentralPorosity = VolumeArray(dpS_north_add1) ./ (DepthsArray(dpS_north_add1).*DEMresolution^2); 
OutflowPorosity = VolumeArray(dpS_north_add1-1) ./ (DepthsArray(dpS_north_add1-
1).*DEMresolution^2); 
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OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(dpS_north_add1(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))-1); 
[FlowPoints, ifl, iah] = intersect(dpS_north_add1,ActiveHeights); 
HeightDiff2(dpS_north_add1)=HeightDiff2(dpS_north_add1)./((1./CentralPorosity)+(1./(NumFlowsVector
(iah).*(OutflowPorosity)))); 
end 
 
%East flowing 
if min(DepthsArray(dpE_east))<=0 
    stop=1 
end 
 
if length(dpE_east)>0 
CentralPorosity = VolumeArray(dpE_east) ./ (DepthsArray(dpE_east).*DEMresolution^2); 
OutflowPorosity = VolumeArray(dpE_east+DEMsizeNS) ./ 
(DepthsArray(dpE_east+DEMsizeNS).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(dpE_east(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))+DEMsizeNS); 
[FlowPoints, ifl, iah] = intersect(dpE_east,ActiveHeights); 
HeightDiff3(dpE_east)=HeightDiff3(dpE_east)./((1./CentralPorosity)+(1./(NumFlowsVector(iah).*(Outflo
wPorosity)))); 
end 
 
%West flowing 
if min(DepthsArray(dpE_west+DEMsizeNS))<=0 
    stop=1 
end 
 
if length(dpE_west)>0 
CentralPorosity = VolumeArray(dpE_west+DEMsizeNS) ./ 
(DepthsArray(dpE_west+DEMsizeNS).*DEMresolution^2); 
OutflowPorosity = VolumeArray(dpE_west) ./ (DepthsArray(dpE_west).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(dpE_west(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))); 
[FlowPoints, ifl, iah] = intersect(dpE_west+DEMsizeNS,ActiveHeights); 
HeightDiff4(dpE_west+DEMsizeNS)=HeightDiff4(dpE_west+DEMsizeNS)./((1./CentralPorosity)+(1./(Nu
mFlowsVector(iah).*(OutflowPorosity)))); 
end 
 
if length(InS_south)>0 
CentralPorosity = VolumeArray(InS_south_add1-1) ./ (DepthsArray(InS_south_add1-
1).*DEMresolution^2); 
OutflowPorosity = VolumeArray(InS_south_add1) ./ (DepthsArray(InS_south_add1).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(InS_south_add1(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))); 
 
[FlowPoints, ifl, iah] = intersect(InS_south_add1-1,ActiveHeights); 
HeightDiff1(InS_south_add1-1)=HeightDiff1(InS_south_add1-
1)./((1./CentralPorosity)+(1./(NumFlowsVector(iah).*(OutflowPorosity)))); 
 
end 
if length(InS_north)>0 
CentralPorosity = VolumeArray(InS_north_add1) ./ (DepthsArray(InS_north_add1).*DEMresolution^2); 
OutflowPorosity = VolumeArray(InS_north_add1-1) ./ (DepthsArray(InS_north_add1-
1).*DEMresolution^2); 
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OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(InS_north_add1(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))-1); 
 
[FlowPoints, ifl, iah] = intersect(InS_north_add1,ActiveHeights); 
HeightDiff2(InS_north_add1)=HeightDiff2(InS_north_add1)./((1./CentralPorosity)+(1./(NumFlowsVector(
iah).*(OutflowPorosity)))); 
 
end 
if length(InE_east)>0 
CentralPorosity = VolumeArray(InE_east) ./ (DepthsArray(InE_east).*DEMresolution^2); 
OutflowPorosity = VolumeArray(InE_east+DEMsizeNS) ./ 
(DepthsArray(InE_east+DEMsizeNS).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(InE_east(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))+DEMsizeNS); 
 
[FlowPoints, ifl, iah] = intersect(InE_east,ActiveHeights); 
HeightDiff3(InE_east)=HeightDiff3(InE_east)./((1./CentralPorosity)+(1./(NumFlowsVector(iah).*(Outflo
wPorosity)))); 
 
end 
if length(InE_west)>0 
CentralPorosity = VolumeArray(InE_west+DEMsizeNS) ./ 
(DepthsArray(InE_west+DEMsizeNS).*DEMresolution^2); 
OutflowPorosity = VolumeArray(InE_west) ./ (DepthsArray(InE_west).*DEMresolution^2); 
OutflowPorosity(find(isnan(OutflowPorosity)+(OutflowPorosity==0))) = 
tempPorosities(InE_west(find(isnan(OutflowPorosity)+(OutflowPorosity==0)))); 
 
[FlowPoints, ifl, iah] = intersect(InE_west+DEMsizeNS,ActiveHeights); 
HeightDiff4(InE_west+DEMsizeNS)=HeightDiff4(InE_west+DEMsizeNS)./((1./CentralPorosity)+(1./(Nu
mFlowsVector(iah).*(OutflowPorosity)))); 
 
end 
 
ah1=HeightDiff1(ActiveHeights); 
ah2=HeightDiff2(ActiveHeights); 
ah3=HeightDiff3(ActiveHeights); 
ah4=HeightDiff4(ActiveHeights); 
 
MaxHeights=max([ah1,ah2,ah3,ah4],[],2); 
 
%Any flows less than 1/20 of max are deleted 
MinHeights=MaxHeights./20; 
%Find indices of bad heights 
delheights1=find(ah1<MinHeights); 
delheights2=find(ah2<MinHeights); 
delheights3=find(ah3<MinHeights); 
delheights4=find(ah4<MinHeights); 
%And remove 
ah1(delheights1)=0; 
ah2(delheights2)=0; 
ah3(delheights3)=0; 
ah4(delheights4)=0; 
 
%Find number of flows at each point 
NumFlowsVector=(ah1>0)+(ah2>0)+(ah3>0)+(ah4>0); 
%Find height diff minima 
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%First set 0 values high 
ah1(find(ah1==0))=1000; 
ah2(find(ah2==0))=1000; 
ah3(find(ah3==0))=1000; 
ah4(find(ah4==0))=1000; 
HeightDiffVector = min([ah1,ah2,ah3,ah4],[],2); 
 
%Put back into matrix 
HeightDiff(ActiveHeights)=HeightDiffVector; 
NumFlows(ActiveHeights)=NumFlowsVector; 
 
%Include estimated flows for cells on edge of floodplain to allow water to flow along floodplain  
%Find flows out 
Edge_out = find(Vol_E(1:DEMsizeNS)<0); 
VolOut(Edge_out) = VolOut(Edge_out) - Vol_E(Edge_out);       %Western edge 
 
%Find points where volume flowing out is too great 
CheckDepth = ((VolOut > HeightDiff*DEMresolution^2)+(VolOut > VolumeArray)); 
CheckDepth(dchindex)=0; 
[ii jj] = find(CheckDepth > 0); 
 
 
if length(ii) > 0 
 
%---------------------------------------------------Normalise flows 
%Find normalisation coefficient 
%Find indices of bad points 
norm_position = DEMsizeNS*(jj-1) + ii; 
 
find_norm_coeff = (HeightDiff(norm_position)*DEMresolution^2)./(VolOut(norm_position)); 
find_norm_coeff = min(find_norm_coeff,(VolumeArray(norm_position))./(VolOut(norm_position))); 
 
%--------Extra code for drying case ----------------------- 
%This allows cells to drain to zero volume when they are already very low 
 
if (Drying==1) 
    %Find points where outflowing vol is too great and low depth 
    drying_cells = find(VolumeArray(norm_position) < (0.01*DEMresolution^2)); 
    %Check that these cells do have some water in 
    drying_cells = drying_cells(find(VolumeArray(drying_cells) > 0)); 
    %Save index of drying cells 
    drying_cells_index = drying_cells; 
     
    if length(drying_cells_index)>0 
     
    %Get index into vol array for these point 
    drying_cells = norm_position(drying_cells); 
    %Check that these cells do not have an inflow 
    %Find Volumes of surrounding cells 
    %Check surrounding cells are not off the edge of array 
    drying_cells_plus = 
(((drying_cells+DEMsizeNS)<=(DEMsizeNS*DEMsizeWE)).*(drying_cells+DEMsizeNS))+ ... 
        (((drying_cells+DEMsizeNS)>(DEMsizeNS*DEMsizeWE)).*drying_cells); 
    drying_cells_minus = (((drying_cells-DEMsizeNS)>=1).*(drying_cells-DEMsizeNS))+(((drying_cells-
DEMsizeNS)<1).*drying_cells); 
    %Then collect values of surrounding cells 
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    CheckInflowArray = 
[DepthsTotal(drying_cells),DepthsTotal(min(drying_cells+1,DEMsizeNS*DEMsizeWE)),DepthsTotal(ma
x(drying_cells-1,1)),... 
            DepthsTotal(drying_cells_plus),DepthsTotal(drying_cells_minus)]; 
    %Check that centre cell has highest depth 
    CheckInflowArray = 
((max(max(max(max(CheckInflowArray(:,1),CheckInflowArray(:,2)),CheckInflowArray(:,3)),CheckInflo
wArray(:,4))... 
        ,CheckInflowArray(:,5)))==CheckInflowArray(:,1)); 
    %Find cells with no inflow 
    drying_cells = drying_cells(CheckInflowArray); 
    drying_cells_index = drying_cells_index(CheckInflowArray); 
    %Set normalisation coefficient to reduce volume to zero in these cells 
    find_norm_coeff(drying_cells_index) = 
VolumeArray(norm_position(drying_cells_index))./VolOut(norm_position(drying_cells_index)); 
end; 
end; 
%----------------------------------------------------------- 
 
%Convert back to indices in flow/vol matrices 
norm_north = norm_position - ceil(norm_position/(DEMsizeNS)); 
norm_south = norm_north+1; 
norm_east = norm_position; 
norm_west = norm_position - DEMsizeNS; 
 
norm_north_2 = norm_north; 
norm_south_2 = norm_south; 
norm_east_2 = norm_east; 
norm_west_2 = norm_west; 
 
%Take subset of flow indices which apply only to those flows in the correct direction 
%i.e. do not apply to inflows in problem cells 
%Return point,index into active points vector, index into norm coeff vector 
[norm_south,ips,ins] = intersect(dpS_south,norm_south); 
[norm_north,ipn,inn] = intersect(dpS_north,norm_north); 
[norm_east,ipe,ine] = intersect(dpE_east,norm_east); 
[norm_west,ipw,inw] = intersect(dpE_west,norm_west); 
 
[norm_c_south,ipsc,insc] = intersect(InS_south,norm_south_2); 
[norm_c_north,ipnc,innc] = intersect(InS_north,norm_north_2); 
[norm_c_east,ipec,inec] = intersect(InE_east,norm_east_2); 
[norm_c_west,ipwc,inwc] = intersect(InE_west,norm_west_2); 
 
%Now normlalise flow volumes 
Vol_S(norm_south) = Vol_S(norm_south).*find_norm_coeff(ins); 
Vol_S(norm_north) = Vol_S(norm_north).*find_norm_coeff(inn); 
Vol_E(norm_east) = Vol_E(norm_east).*find_norm_coeff(ine); 
Vol_E(norm_west) = Vol_E(norm_west).*find_norm_coeff(inw); 
 
%Now normlalise flow volumes 
Vol_S(norm_c_south) = Vol_S(norm_c_south).*find_norm_coeff(insc); 
Vol_S(norm_c_north) = Vol_S(norm_c_north).*find_norm_coeff(innc); 
Vol_E(norm_c_east) = Vol_E(norm_c_east).*find_norm_coeff(inec); 
Vol_E(norm_c_west) = Vol_E(norm_c_west).*find_norm_coeff(inwc); 
 
end; 
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%Record previous volume 
OldVol = VolumeArray; 
 
%Recoded for better efficiency 
VolumeArray(dpS_add1) = VolumeArray(dpS_add1) + Vol_S(dpS);           %NS Flows 
VolumeArray(dpS_add1-1) = VolumeArray(dpS_add1-1) - Vol_S(dpS); 
 
VolumeArray(dpE+DEMsizeNS) = VolumeArray(dpE+DEMsizeNS) + Vol_E(dpE); %WE Flows 
VolumeArray(dpE) = VolumeArray(dpE)-Vol_E(dpE); 
 
%Include estimated flows for cells on edge of floodplain to allow water to flow along floodplain  
VolumeArray(1:DEMsizeNS) = VolumeArray(1:DEMsizeNS) + Vol_E(1:DEMsizeNS);       %Western 
edge 
 
VolumeArray(InS_add1) = VolumeArray(InS_add1) + Vol_S(InS);           %NS Flows 
VolumeArray(InS_add1-1) = VolumeArray(InS_add1-1) - Vol_S(InS); 
 
VolumeArray(InE+DEMsizeNS) = VolumeArray(InE+DEMsizeNS) + Vol_E(InE); %WE Flows 
VolumeArray(InE) = VolumeArray(InE)-Vol_E(InE); 
 
 
 
%Recoded for better efficiency 
VolumeArray2(dpS_add1) = VolumeArray2(dpS_add1) + Vol_S(dpS);           %NS Flows 
VolumeArray2(dpS_add1-1) = VolumeArray2(dpS_add1-1) - Vol_S(dpS); 
 
VolumeArray2(dpE+DEMsizeNS) = VolumeArray2(dpE+DEMsizeNS) + Vol_E(dpE); %WE Flows 
VolumeArray2(dpE) = VolumeArray2(dpE)-Vol_E(dpE); 
 
%Include estimated flows for cells on edge of floodplain to allow water to flow along floodplain  
VolumeArray2(1:DEMsizeNS) = VolumeArray2(1:DEMsizeNS) + Vol_E(1:DEMsizeNS);       %Western 
edge 
 
VolumeArray2(InS_add1) = VolumeArray2(InS_add1) + Vol_S(InS);           %NS Flows 
VolumeArray2(InS_add1-1) = VolumeArray2(InS_add1-1) - Vol_S(InS); 
 
VolumeArray2(InE+DEMsizeNS) = VolumeArray2(InE+DEMsizeNS) + Vol_E(InE); %WE Flows 
VolumeArray2(InE) = VolumeArray2(InE)-Vol_E(InE); 
 
%Record water lost for mass balance 
vol_edge = sum(Vol_E(1:DEMsizeNS)); 
 
%Allow for small computational errors 
VolumeArray(dchindexnot(find(VolumeArray(dchindexnot)<0)))=0; 
VolumeArray2(dchindexnot(find(VolumeArray2(dchindexnot)<0)))=0; 
 
%---------- Transform volumes in cells to new depths------------------- 
 
%Find known volume/porosity points that volume lies between 
VolumeArrayCheck = PorosityVolumes; 
for i = 1:num_pdepths 
    VolumeArrayCheck(:,:,i) = max(sign(VolumeArray2 - VolumeArrayCheck(:,:,i)+0.000001),0); 
end; 
%Sum known volume points less than Volume Array to find point number 
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VolumePointNumbers = sum(VolumeArrayCheck,3); 
%Now extract indices to find lower volume points 
indices1=repmat([1:DEMsizeNS].',DEMsizeWE,1); 
indices2=reshape(repmat([1:DEMsizeWE],DEMsizeNS,1),[],1); 
indices3=VolumePointNumbers(:); 
     
indices = sub2ind(size(PorosityVolumes),indices1,indices2,indices3); 
%Use index to find volume 
VolumeLower = PorosityVolumes(indices); 
%And finally reshape array 
VolumeLower=reshape(VolumeLower,DEMsizeNS,DEMsizeWE); 
%Use index to find depths 
DepthLower = p_depths(indices3); 
%And reshape 
DepthLower=reshape(DepthLower,DEMsizeNS,DEMsizeWE); 
 
%And upper volume points 
indices3=indices3+1; 
indices = sub2ind([DEMsizeNS,DEMsizeWE,length(p_depths)],indices1,indices2,indices3); 
%Use index to find volume 
VolumeUpper = PorosityVolumes(indices); 
%And finally reshape array 
VolumeUpper=reshape(VolumeUpper,DEMsizeNS,DEMsizeWE); 
%Use index to find depths 
DepthUpper = p_depths(indices3); 
%And reshape 
DepthUpper=reshape(DepthUpper,DEMsizeNS,DEMsizeWE); 
 
%Now calculate intermediate volume point 
DepthsArray = DepthLower + ((VolumeArray2-VolumeLower)./(VolumeUpper-
VolumeLower)).*(DepthUpper-DepthLower); 
 
%Clear up 
clear indices1 indices2 indices3 indices DepthLower DepthUpper VolumeLower VolumeUpper 
clear ExtraDepth AddedDepth sparse_norm_s sparse_norm_E norm_coeff_channel dpS dpS_add1 dpE 
DepthsArray2  
 
%-------- Function returns new floodplain depths ------------------------------------- 
 
%Floodplain depths have already been calculated 
Floodplain_depths = DepthsArray; 
 
clear DepthsArray 
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Appendix B 

 

 

 

FLOODPLAIN INUNDATION SURVEY RESPONSES 

 



Survey Responses by House Number 

 
House 

number 
(see map) 

Maximum 
flood 
depth 

Flood 
water 

came from 
river? 

Flood water 
came as 

surge from 
fields? 

Time 
house was 

first 
flooded 

Time for 
water to 
reach 1ft 

deep 

Comments 

1 2 ft Y N 2.30 pm 45 min  
2 3 ft 6 in Y ? Pre- 2.30 

pm 
  

3 2 ft 10 in Y Y 2.30-3 pm 15 min  
4 4-5 ft Y Y 5 pm   
5 18 in – 2 ft Y Y 1 pm?   
6 3 ft ? ? ?   
7 2 ft (cellar) N N ?   
8 2 ft Y ? ?   
9 4 ft (cellar) Y N Mid-

afternoon 
1 hr  

10 1 ft ? Y 7 pm 1 hr  
11 2 ft Y Y 2-2.30 pm 30 min  
12 3 ft 6 in Y N 3 pm 45 min  
13 2 ft Y Y 12.30 pm  Vacated 1pm 
14 5 ft 6 in Y Y ? 20 min   
15 4 ft Y Y 12.30 pm 15 min  
16 3 ft 6 in Y Y 1 pm 1 hr  
17 3 ft 6 in Y Y 1 pm 15 min  
18 3 ft Y Y 1 pm Minutes  
19 3 ft 10 in 

(cellar) 
Y N 4 pm 30 min Flooded through 

cellar walls 
20 2 ft Y N 4 pm  2 in inside 

(sandbags) 
21 1 ft 2 in ? ? ?  Owners absent 
22 1 in Y ? ?  3 ft in cellar 
23 3 ft (cellar) ? N 4 pm 1 hr Flooded through 

floor 
24 3 ft Y Y 1.30 pm 30-60 min  
25 3 in Y Y 3 pm 30 min House raised by 3 

ft above 
surrounding land 

26 1 ft  Y Y 2.30 pm 10-15 min  
27 3 ft 6 in ? Y ?  Owners absent 
28 3 ft ? Y 4 pm Immediately  
29 1 ft 2 in Y N 3 pm 1 hr  
30 1 ft 6 in Y ? 2 pm < 1 hr  
31 13 in Y N 4 pm 1 hr House raised by 20 

in above 
surrounding land 

32 18 in ? Y 1.30 pm   
33 1 ft  Y ? ?  Owners absent 
34 3 ft ? Y ?  Owners absent 
35 3 ft Y N 4 pm   
36 2-3 ft Y N 1 pm 30 min  
37 10-15 in Y ? 2 pm   
38 5 ft (cellar) ? N 2 pm 1 hr 30 min  
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Map of House Locations 

 

 

Figure B1: House locations in Linton as referenced by Survey Response table 
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