
Constraining Dynamic TOPMODEL Responses using Fuzzy Rule
Based Performance Measures of Uncertain Water Table Information

Jim Freer1,  Hillary McMillan2,  Jeff McDonnell3  and  Keith Beven1

1 Institute of Environmental & Natural Sciences, Lancaster University, Lancaster, UK     2 Dept. of Geography, University of Cambridge, Cambridge, UK 3 Dept. of Forest Engineering, 
Oregon State University, Corvallis, Oregon, USA. 

Environmental
Science
Research

Environmental
Science
Research

Hydrology and 
Fluid Dynamics
Group

T3 T2 T1
38 78 13 Nest 1

T6 T5 T4
10 30 60 Nest 2

T9
T8 T7

19 27 49 Nest 3

T3 Tensiometer Number
38 Cup depth below surface (m)

M8 Stream Channel

1m

0.5m
0

0

Model Grid Square

C.

Nest 1

Nest 2

Nest 3

Nest 4

Nest 568 42
15

107
58

36 17

124 38 55
18

108 82 41 17

102 76 37
19

Pit 5 (or P5)

T4
T3 T2

T1

T5T6T7

T8
T9T10T24

T23

T25
T12T13

T11

T16 T14T15

1m

1m
0

0

Model Grid Square

D.T12 T11 T10
14 32 68 Nest 4

Tensiometer Position (   not used 
in the analysis)

Figure 1: Maimai M8 catchment: The spatial variability of (A) the ln(a/tanβ) index and (B) the
VB and HS LU's. Details of tensiometer instrumentation at (C) the Near Stream and (D) the
Pit 5 sites (see McDonnell, [1990] and McGlynn et al. [2002] for description of data/catchment).

10 20 30 40 50 60

10

20

30

40

50

60
2 3 4 5 6 7 8

Pit 5

Near
Stream

Pit A

A.

ln(a/tanβ)

River Cells

10 20 30 40 50 60

B.

Valley Bottom Landscape Unit (VB
LU

)
Hillslope Landscape Unit (HS

LU
)

INTRODUCTION
Dynamic TOPMODEL, a conceptual rainfall-runoff model, is applied 
to the Maimai M8 catchment (3.8 ha, figure 1a), New Zealand using 
rainfall-runoff and uncertain water table (Wt) information in the 
analysis of model performance. Different parametric representations 
of hillslope (HS) and valley bottom (VB) hydrological similarity units 
(HSU's) were used to improve the spatial representation of the 
Dynamic TOPMODEL structure (figure 1b).  The continuous time 
series Wt information is obtained from multiple tensiometric 
observations from both near stream and hillslope locations (figure 
1c,d). Fuzzy estimates of Wt dynamics for each time step were 
derived from the variability in the observed data (see figure 2). 
Parameter interactions b/t the two HSU's are assessed using Monte 
Carlo simulations. Conclusions are drawn as to the usefulness of 
uncertain (fuzzy) information in evaluating Dynamic TOPMODEL's 
structure and in constraining model parameters (figures 5-7). 

MAIN AIMS - to explore:
How fuzzy rules can be applied to imperfect and imprecise knowledge 
that is at a scale consistant with the effective model gridscale
To challenge the assumptions of the Dynamic TOPMODEL structure 
at Maimai using multi-response observations
The assessment model performance using Monte Carlo simulations 
within the Generalised Likelihood Uncertainty Estimation (GLUE) 
procedure [Beven and Binley, 1991].

In Equation Form the Fuzzy Performancs Measure for all timesteps
for the WT simulations can be shown as

Where M(Θ|Yt,Wt) indicates the ith model, conditioned on input data Yt and observations Wt. 
Where Wt is the observed and Zt is the simulated water table at time t. The observed Wt 
limits (minWt, 25Wt, 75Wt and maxWt) are determined at each time step from the apparent 
variability in the Wt observations at the model gridscale (see figure 2).

Support

Boundary

Core

Boundary

0

1

minwt maxwt25wt 75wt

∇wt

fuzzy
number

Figure 4: An example of the construction and terminology of a Fuzzy 
Performance Measure applied to the Water Table Information at the NS and 
Pit 5 Sites. 

P1

P3 or M1- n

P2

R
IV

E
R

1

2

8

5

4

3

6

7

Hillslope HSU's

Valley Bottom HSU's

Hydrologically
Similar Units (HSU's)

Main Landscape
Units

Landscape
Position

L
an

d
sc

ap
e 

Fu
n

ct
io

n
al

U
ni

t F
uz

zy
 L

in
ka

ge
s

M
o

d
el

 S
p

ac
e

M
ap

p
in

g

Figure 3:  Schematic representation showing the connectivity of hydrological 
response units in the new Dynamic TOPMODEL. The catchment is grouped 
according to landscape units that have distinct hydrological functional forms. 
Kinematic routing of both sub-landscape units (HSU's in this case using basic 
topographic characteristics) and between landscape units is determined by 
multi-directional downslope fluxes from digital terrain analysis.

Monte Carlo Simulations
are used to sample model 
parameters P1 - Pn which
are mapped into the model
space

Methods
Fuzzy Water Table Measures
For each tensiometer nest location, and within an 
area equivalent to an effective model gridscale, a 
number of tensiometer readings were available (figure 
1). Using this information a distribution of Wt 
elevations for each time step at each location was 
calculated (figure 2). Relationships between -ve 
tension and height above Wt were derived for periods 
with a known Wt evelation [Freer, 1998]. The 
distribution of water table elevations was used to 
derive fuzzy estimates of the water table depth for the 
whole time series that explicitly includes the temporal 
variability of the uncertainty in the observations (figure 
4). These data were used to further constrain the 
spatial representation of the model having previously 
conditioned the model using the rainfall-runoff data.
Dynamic TOPMODEL GLUE Simulations
For each simulation run all parameters listed in Table 
1 were randomly assigned a value appropriate to the 
ranges specified for each LU. A uniform sampling 
strategy of the parameter ranges was deployed to 
express the lack of knowledge of the expected 
distribution and covariance of the parameter values. 
The model streamflow and Wt predictions were 
compared to the observed data using an appropriate 
Performance Measure (PM - for streamflow this was 
R2), non-behavioural simulations were rejected. 

Results
Table 2 lists the number of behavioural simulations 
from 2 sets of Monte Carlo simulation runs (run2 had 
more constrained parameter ranges). The efficiency 
of the sampling is noted. The relationships between 
parameters for the final set of behavioural 
simulations (i.e. that were classed as behavioural for 
all PM's) are shown in figure 5. Figure 6 shows the 
range of uncertainty in the model predictions for 
each observed data series. Finally, figure 7 
highlights the variability in the model dynamics from 
behavioural parameter sets obtained using different 
PM's by using summary model responses.
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Figure 6: Final GLUE Simulations using PM's updated from Discharge, NS Wt and Pit 5 Wt 
data showing behavioural possibility bounds for a) Discharge, b) ln(Discharge), C) Pit 5 Wt 
and D) NS Wt simulations. 

Parameter Units Lower 

Limits* 

Upper 

Limits* 

Description 

SZM [m] 0.001  {0.005} 0.012  {0.017} Form of the exponential decline in conductivity 

ln(T0) [m2 hr-1]  7.0  {-7.0} 3.0  {3.0} Effective lateral saturated transmissivity 

SRmax [m] 0.005  {0.005} 0.08  {0.08} Maximum soil root zone deficit 

SRini [m] 0.00  {0.00} 0.01  {0.01} Initial root zone deficit 

CHV [m hr-1] 250  {250} 1500  {1500} Channel routing velocity 

Td [hr] 0.10  {0.10} 40.0  {40.0} Unsaturated zone time delay 

  0.05  {0.01} 0.60  {0.30} Effective porosity 

Smax [m] 0.60  {0.60} 2.00  {2.00} Maximum effective deficit of the subsurface 
storage zone 

*Parameter upper and lower ranges for both the valley bottom and hillslope (in {}’s)    

Table 1: Parameter ranges for the VBLU  and the HSLU  for the Monte-Carlo simulations 

 run1 behavioural 
simulations* 

run2 behavioural 
simulations** 

run1 and run2 

Acceptability Criteria Total 
Number 

Sampling 
Efficiency 

(%) 

Total 
Number 

Sampling 
Efficiency 

(%) 

Sampling 
Efficiency 
Increase 

Discharge only 2,327,664 41.56 1,016,325 84.69 2.0 

NS �wt only  196,591 3.51 118,519 9.87 2.8 

P5 �wt only  16,195 0.28 39,128 3.26 11.5 

Discharge and NS �wt   84,636 1.51 98,218 8.18 5.4 

Discharge and P5 �wt   11,987 0.21 34,205 2.80 13.3 

NS �wt  and P5 �wt   614 0.011 3,692 0.31 28.2 

Discharge, NS and P5 �wt   419 0.007 3,184 0.26 37.1 

* Total number of all simulations was 5,600,000        ** Total number of all simulations was 1,200,000 

Table 2: Behavioural simulations for individual and combined acceptance criteria for 
the performance measures identified in Table 3 from both run1 and run2. 

Dynamic TOPMODEL
Dynamic TOPMODEL [Beven and Freer, 2001] is a new version of 
TOPMODEL that relaxes some of the assumptions of the original 
form [Beven and Kirkby, 1979]. This new formulation allows for 
local accounting of hydrological fluxes and storages (see figure 3), 
relaxing the quasi steady state assumption of a water table parallel 
to the local surface slope expressed through the derivation of the 
ln(a/tanβ) index. The dynamics of the subsurface saturated zone 
during wetting and drying event periods can now be simulated. The 
increased flexibility of the model structure allows for the spatial 
definition of different HSU's, each potentially having different 
functional forms and parameterisations. Transfers between HSU's 
are calculated using a kinematic wave approximation.
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Figure 2: Observed water table responses calculated from the tensiometer data for both (A) Near 
Stream and (B) Pit 5 tensiometer sites. The plot shows the resultant upper and lower min and max 
limits for the water table responses defining the model gridscale variability of the observations.
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Figure 7: Distributions of summary model responses for behavioural simulations using different
PM's or combinations of PM's

Figure 5: Dotty plots of behavioural parameter distributions for both the VB and the HS LU for 
parameter sets that were classed as behavioural for all three performance measures. The main 
matrix of dotty plots shows the correlation between pairs of parameters within the same LU and 
between the HS and VB LU's (the yellowed area).

Conclusions
    Possible uncertainties in data should be assessed, especially 
when point scale spatial information is used to assess preditions 
made at the model gridscale.
    Fuzzy numbers are a useful way to define PM's for observational 
uncertainties that are time variant and have complex error 
structures.  
    Although behavioural simulations are retained prediction limits 
are not always bracketed by the observational uncertainties. 
Importantly, is this model structural error or unaccounted for 
observational error ?
     Equifinality of the final behavioural parameter sets suggests the 
need for an uncertainty analysis procedure such as GLUE 
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