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Abstract

Stereo reconstruction is challenging in scenes with many

similar-looking objects, as matches between features are of-

ten ambiguous. Features matched incorrectly lead to an in-

correct 3D reconstruction, whereas if correct matches are

missed, the reconstruction will be incomplete. Previous sys-

tems for selecting a correspondence (set of matched fea-

tures) select either a maximum likelihood correspondence,

which may contain many incorrect matches, or use some

heuristic for discarding ambiguous matches. In this paper

we propose a new method for selecting a correspondence:

we select the correspondence which minimises an expected

loss function. Match probabilities are computed by Gibbs

sampling, then the minimum expected loss correspondence

is selected based on these probabilities. A parameter of the

loss function controls the tradeoff between selecting incor-

rect matches versus missing correct matches.

The proposed correspondence selection method is eval-

uated in a model-based framework for reconstructing

branching plants, and on simulated data. In both cases it

outperforms alternative approaches in terms of precision

and recall, giving more complete and accurate 3D models.

1. Introduction

Decades of research into 3D reconstruction from stereo

image pairs has resulted in general purpose algorithms

which can successfully reconstruct many different scenes,

including road scenes [13], buildings [12], and aerial im-

ages [20]. There are, however, environments in which

dense stereo algorithms perform poorly; these include en-

vironments containing many similar looking objects, and

environments with many occlusions and depth discontinu-

ities, where the assumptions built into these algorithms are

not appropriate. Examples of these environments include

branching plants imaged by agricultural robots [2], swarm-

ing flies imaged for biological research [22], and fingertips

imaged in hand tracking applications [9]. In situations like

these, model-based schemes which use domain knowledge

to match a sparse set of features between views are often

more suitable.

Previous methods for matching features between views

resolve ambiguous matches by either finding a maximum

likelihood correspondence (set of matched features), by

constraining the order in which matched features can oc-

cur in the images, or by detecting and discarding ambigu-

ous matches. These strategies are not necessarily the most

appropriate for complete and accurate 3D reconstruction, as

they frequently result in incorrectly matched features, or fail

to select features which could be matched. In this paper we

propose a new algorithm for selecting a correspondence be-

tween features detected in the two views from a calibrated

stereo camera. We treat the problem as a problem in deci-

sion theory: of all possible correspondences, which is the

best to choose to give as complete and accurate a 3D re-

construction as possible? To solve this problem, we com-

pute probabilities that feature matches are correct by Gibbs

sampling, then define a loss function which quantifies the

benefits of correctly matching features and the implications

of incorrectly matching features. We then derive a decision

rule for selecting the correspondence which minimises the

expected loss. A parameter α controls the tradeoff between

selecting incorrect matches versus missing correct matches.

The proposed scheme is ideal for the situation where fea-

tures have multiple match candidates, and these matching

ambiguities cannot be resolved by regularising depths or

by imposing ordering constraints. It is appropriate when

matches are ambiguous despite knowing the relative cam-

era poses, unlike the situation where matches are ambiguous

only because the camera pose is unknown, and the matches

and camera pose can be estimated jointly by RANSAC [11].

We evaluate our proposed scheme on a challenging 3D

reconstruction problem where branching vines are recon-

structed by a pruning robot. The proposed system outper-

forms alternative approaches in terms of precision and re-

call, leading to more complete and accurate 3D models.
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2. The sparse stereo correspondence problem

A calibrated stereo camera rig captures two images of a

scene. A feature detector is run on each image, and detects

a set of features R in the one image and S in the other.

A pair of features (r, s) ∈ R × S is correctly matched if

r and s each correspond to the same object in the scene.

The aim of this research is to use attributes of the features,

such as their appearance and position in the image, to find

as many correct feature matches as possible, while avoiding

incorrectly matched features. Matched features can then be

reconstructed in 3D. We refer to a set of matched features

C ⊂ R× S as a correspondence between the two images.

In general, one feature from R can be correctly matched

to at most one feature from S, and vice versa. This con-

straint is known as the one-to-one matching constraint. We

say a feature match (r, s) is compatible with a correspon-

dence C if it could be added to C without violating this

constraint.

2.1. Matching features between images

To find correspondences between two images, we use at-

tributes of the features including their appearance and their

position in the image. The appearance (i.e. colour and

shape) of pairs of features are compared, and only features

which appear similar should be matched. In some environ-

ments, an image feature may appear similar to many dif-

ferent features in the other image, but at most one of these

matches will be correct. In this situation more information,

such as position, helps to resolve which is the correct match.

The main constraint on the positions of matched features

comes from the epipolar geometry of the two views [16].

The epipolar geometry constrains any correct match to a

point feature in one image to lie on the epipolar line corre-

sponding to that feature’s location in the other image. The

depth to the corresponding point in 3D is determined by

the matching feature’s position on the epipolar line, so the

range of feasible depths for the object bounds the segment

of the epipolar line on which the correctly matched feature

must lie. In practice, errors in localising features in the im-

age mean that features could be correctly matched to points

anywhere within a few pixels of the corresponding epipolar

line.

For image features which do not have point locations,

such as linear features without well-defined endpoints, or

objects with boundaries occluded by other objects, the

epipolar constraint provides only a weak constraint on the

position of matching features. For the example of images of

branching plants, the endpoints of detected branches are of-

ten at either the image edge or at occlusion boundaries with

other branches. Features such as these often have multiple

possible match candidates.

3. Previous solutions to ambiguous stereo cor-

respondence problems

Matching sets of features between views is a com-

mon problem in computer vision. This section reviews

three different situations where correspondence problems

are solved. The first methods considered are feature-based

methods, where ambiguous matches are generally detected

and discarded. The second class of methods are dense

stereo algorithms, which use assumptions about the scene’s

3D structure to resolve ambiguities. The third class of meth-

ods are application-specific 3D reconstruction schemes,

which combine domain knowledge with a variety of heuris-

tics for resolving ambiguities.

Firstly, feature based methods are widely used for re-

constructing scenes where relative camera poses are ini-

tially unknown. A set of feature descriptors is extracted

from each view, and similar-looking features are matched

between views. Feature descriptors such as SIFT (Scale In-

variant Feature Transform; [17]) assign a vector descriptor

to a small region of an image; if the Euclidean distance be-

tween two SIFT descriptors is small then the regions ap-

pear similar. Typically each feature descriptor from one

image is matched to its nearest neighbour in the other im-

age [18], to provide a candidate match. From a set of can-

didate matches, a set of (mostly) correct matches, together

with the epipolar geometry is estimated jointly, often using

RANSAC (Random Sample Consensus; [11]).

A common heuristic used to identify ambiguous matches

is to match feature descriptors only when the distance to

the second nearest neighbour is greater than the distance

to the nearest neighbour by some threshold [17, 18], how-

ever this eliminates many correct matches. For example,

Dey et al. [8] used a feature-based approach to reconstruct

a 3D model of vines, but the reconstructions of branches

and wires are incomplete, because too few unambiguous

matches are found. Extensions to RANSAC have been

proposed to make use of multiple candidate matches to

each feature [21, 4], but RANSAC still relies on initially-

ambiguous matches being resolved once the epipolar ge-

ometry is known. By contrast, our proposed approach is

designed for the situation where ambiguities exist despite

knowing the relative camera pose.

One situation where matches are ambiguous despite

knowing the camera geometry is line-segment based stereo

matching: straight line segments are extracted from two im-

ages, and a correspondence between these sets of line seg-

ments is used to reconstruct the scene. Christmas et al. [7]

find the maximum likelihood correspondence between line

sections by probabilistic relaxation labelling, an algorithm

which has been applied to a variety of matching problems in

computer vision. The matching found is a maximum like-

lihood estimate given assumptions about distances between



matched lines, which are equivalent to a constraint on the

ordering of matches. Features are not matched to anything if

this is the most likely outcome, however no one-to-one con-

straint on matches is enforced. The maximum likelihood

matching results in some lines being incorrectly matched.

The second situation where a correspondence between

two views is found is dense stereo matching. Dense stereo

algorithms use a pair of images from cameras with known

relative pose to find a disparity map mapping each pixel in

one image to its matching pixel in the other. Some optimi-

sation algorithm is used to estimate a disparity map min-

imising an objective function. The objective function mea-

sures both the similarity in appearance between matching

pixels, and how well the disparity map matches assump-

tions about the structure of the world. Objective functions

often constrain the depth map to be piecewise planar or

piecewise continuous [5, 19]. Approaches using dynamic

programming for the optimisation also impose an ordering

constraint on matched pixels—along two epipolar lines, the

order in which features appear must be the same [10, 15].

Other approaches implicitly prefer reconstructions where

ordering is preserved between images by minimising ob-

jective functions which assign lower costs to smaller depth

discontinuities [5, 19].

If the objective function is minimised exactly, then the

depth map found is a maximum likelihood estimate, given

the assumptions represented by the objective function, al-

though in practice, optimisers which find approximate so-

lutions are generally used. Modern dense stereo algorithms

allow pixels to be unmatched if they are occluded (often

near to depth discontinuities), however penalty terms ensure

that as many pixels as possible are matched [15, 19].

In summary, dense stereo algorithms find a correspon-

dence between views by using assumptions about the struc-

ture of the scene to resolve ambiguities. These algorithms

perform well in many environments, but can perform poorly

in environments where ordering and depth continuity as-

sumptions are inappropriate. In these situations, model-

based approaches which use knowledge of the scene to

resolve ambiguities may be more appropriate. A model

based approach is used to find a correspondence between

fingertips for a hand-tracking application by Dorfmuller

and Schmalstieg [9], who use the epipolar constraint to-

gether with a model of the dimensions of a hand to con-

strain matches. Chen et al. [6] match networks of arteries

between views of the retina by first identifying a minimal

set of junctions which can be matched unambiguously, then

using these matches, together with the shape of the retina,

to disambiguate remaining matches. Zou et al. [22] esti-

mate the trajectories of a swarm of fruit flies by estimating

the correspondence between detected flies which minimises

a cost function. The cost function combines the epipolar er-

ror, differences in measured sizes, and velocity information

from tracking. The optimal correspondence is selected us-

ing dynamic programming, subject to a one-to-one match-

ing constraint. Detected flies are always matched unless

there is no suitable match candidate.

Of these contemporary solutions to correspondence

problems, dense stereo and model-based approaches tend

to match as many features as possible, even when there is

a high risk of incorrect matches. However, incorrect 3D

reconstructions can cause significant problems, so it may

be more appropriate to choose not to match features, rather

than risk reconstructing objects incorrectly. By contrast,

feature based approaches often discard large numbers of po-

tentially ambiguous matches, at least until a subset of good

correspondences is found. In this paper we propose a novel

framework for selecting which features to match, which bal-

ances the risk of incorrectly matching features with the ben-

efits of obtaining a more complete 3D reconstruction. Un-

like a maximum likelihood approach, the new framework

will leave features unmatched if the most probable match is

likely to be incorrect, and unlike contemporary stereo algo-

rithms, we avoid making assumptions about the 3D struc-

ture of the scene.

4. Proposed minimum expected loss matching

framework

This section describes our proposed system for selecting

a correspondence from a set of ambiguous feature matches.

Our proposed system is designed to give as complete and

accurate a 3D reconstruction as possible. The method de-

pends on estimating the probability that each feature match

is correct, so we first describe how feature match probabili-

ties, conditional on other matches, are computed. Secondly,

we describe how to estimate marginal probabilities for each

feature match by Gibbs sampling. Thirdly, we derive a de-

cision rule for selecting the minimum expected loss corre-

spondence, based on these marginal probabilities.

4.1. Estimating feature match probabilities

This section describes how to estimate the probability

of a pair of features (r, s) from R × S being correctly

matched, given attributes of the features. Estimating can-

didate feature match probabilities directly is challenging,

because different matches to a particular feature are mutu-

ally incompatible, and hence the probabilities are all inter-

dependent. However, estimating the probability of a fea-

ture being correctly matched conditional on the state of

every other feature match is considerably easier, as each

match can be considered in isolation. We write P ((r, s))
for the probability that r and s are correctly matched. As-

suming a correspondence C consists of correctly matched

features, we compute P ((r, s) | C−(r,s)), where C−(r,s) is

the correspondence C excluding the match (r, s). If either

of r or s are matched in C−(r,s) then (r, s) cannot also



be correctly matched, so P ((r, s) | C−(r,s)) = 0. If nei-

ther r nor s are matched, then we compute the probability

P ((r, s) | C−(r,s)) from a vector of attributes of the feature

match, x(r,s). x(r,s) includes knowledge about the match

including errors in the epipolar constraint, and differences

in the appearance of the two features. For correctly matched

features, x(r,s) is sampled from a distribution with prob-

ability density function (PDF) pc(x(r,s)). For example, if

components of x(r,s) represent differences in pixel colour

values, and we use a normal distribution to model the dif-

ference in colour between correctly matched features, we

would choose pc(x(r,s)) = φµ,Σ(x(r,s)), where φµ,Σ is the

normal PDF with mean µ and covariance Σ, and µ and Σ
can be estimated by fitting a model to training data. Simi-

larly, we fit a model with PDF pc̄(x(r,s)) to the attributes of

feature pairs which are not correctly matched. From these

distributions, and given that the prior probability of r or s
having any match is π, Bayes rule gives us the probability:

P ((r, s) | C−(r,s))

=















πpc(x(r,s))

πpc(x(r,s))+(1−π)pc̄(x(r,s))
,

if (r, s) compatible

with C−(r,s)

0, otherwise.

(1)

The same model and formula are used by Christmas et

al. [7] to compute labelling probabilities given feature at-

tributes. In practice, most pairs (r, s) ∈ R × S can

be considered infeasible because pc(x(r,s)), and hence

P ((r, s) |C−(r,s)), is negligibly small, for example because

the match violates the epipolar constraint by a large mar-

gin. We are only interested in selecting matches from the

remaining set of feasible matches F .

4.2. Estimating marginal probabilities by Gibbs
sampling

Gibbs sampling [14] is an algorithm for sampling from a

multivariate distribution where the distribution of each com-

ponent, conditional on every other component, is known.

This is precisely the case for feasible correspondences. We

use Gibbs sampling to sample mutually compatible sets of

feasible matches C ⊂ F , given the conditional probabilities

of each match being correct.

To represent the set C as a random vector, we encode

it as a vector fC of length |F | of Bernoulli (true/false) ran-

dom variables. Each component fC
i of fC indicates whether

the match (r, s)i is in C. Each element fC
i has probabil-

ity P ((r, s)i | C−(r,s)
i
) given by Equation 1. We then use

Gibbs sampling to sample feasible correspondences. Each

iteration of Gibbs sampling computes a sample Ct from the

previous Ct−1 by initialising Ct = Ct−1 and then sampling

each fCt

i from Bernoulli
(

P ((r, s)i |Ct−(r,s)
i
)
)

in turn. We

use the resulting sample to estimate the marginal probability

of each feature match being correct. Asymptotically:

P ((r, s)i) = lim
T→∞

1

T

T
∑

t=1

fCt

i . (2)

After a fixed number of iterations T , we use the estimate:

P ((r, s)i) ≈
1

T

T
∑

t=1

fCt

i . (3)

The Gibbs sampler cannot sample incompatible correspon-

dences, e.g. containing both (r, s1) and (r, s2), so each sam-

ple contains at most one match to each feature, and hence

the total probability of a match to each feature is at most 1.

For each r, 1−
∑

s∈S P ((r, s)) is the probability that r has

no match in S.

4.3. Selecting the minimum expected loss corre­
spondence

We formulate the problem of choosing the best corre-

spondence C∆ as a problem in decision theory [1]. We de-

fine a loss function L(A,C), which represents the cost of

choosing the correspondence C if the true correspondence

is the set A. The choice of loss function is application-

dependent; for 3D reconstruction we should choose a cost

function which penalises incorrect matches, as these lead

to incorrect 3D models, but which also penalises matches

which are missing from C. Our proposed loss function is:

L(A,C) = |C \A|+ α|A \ C|, (4)

where ‘\’ is the ‘set minus’ operator, |C \A| is the number

of incorrect matches in C, |A \ C| is the number of correct

feature matches which were not selected, and α is a penalty

for not identifying matches, relative to the cost of incor-

rectly matching a feature. Normally 0 < α ≤ 1, indicating

that missing matches are less of a problem than incorrect

matches. We then select the correspondence set C∆ which

minimises the expected loss:

C∆ = argmin
C⊂F

E(L(A,C)). (5)

The expected loss from choosing correspondence C is de-

fined in terms of the probabilities P (A) of each possible

correspondence A being correct:

E(L(A,C)) =
∑

A⊂F

P (A)L(A,C). (6)

For our proposed loss function, losses from different fea-

sible matches are independent, so the loss function can be

decomposed into a sum of losses due to different feasible

matches:

L(A,C) =
∑

(r,s)∈F

(

I
(

(r, s) ∈ C\A
)

+αI
(

(r, s) ∈ A\C
)

)

,

(7)



where I is the indicator function. Substituting Equation 7

in Equation 6 gives

E(L(A,C)) =
∑

A⊂F

[

P (A)
∑

(r,s)∈F

(

I
(

(r, s) ∈ C \A
)

+ αI
(

(r, s) ∈ A \ C
)

)]

(8)

=
∑

(r,s)∈F

∑

A⊂F

P (A)
(

I
(

(r, s) ∈ C \A
)

+ αI
(

(r, s) ∈ A \ C
)

)

. (9)

Each marginal probability P ((r, s)) is the probability that

A contains (r, s), so:

∑

A⊂F

P (A)I
(

(r, s) ∈ A
)

= P ((r, s)). (10)

By substituting these marginal probabilities in Equation 9,

we can write the expected loss as a sum of the losses due to

each feasible match:

E(L(A,C)) =
∑

(r,s)∈F

(

(

1− P ((r, s))
)

I
(

(r, s) ∈ C
)

+ αP ((r, s))I
(

(r, s) /∈ C
)

)

. (11)

Including each (r, s) in C results in an expected loss of

1 − P ((r, s)), whereas not including (r, s) in C results in

an expected loss of αP ((r, s)). The loss for each match is

minimised when we select each (r, s) where P ((r, s)) >
1/(1 + α), therefore the total expected loss is minimised

when we select:

C∆ = {(r, s) ∈ F : P ((r, s)) > 1/(1 + α)}. (12)

If α ≤ 1, this decision strategy will only select matches

(r, s) with P ((r, s)) > 1/(1 + α) ≥ 1/2. As the total

probability of matches to either r or s cannot exceed 1, this

guarantees that at most one match to each feature will be se-

lected. This ensures that C∆ satisfies the one-to-one match-

ing constraint, and also that if a match is selected, it is the

most probable match to both r and s.

Note that in general we cannot compute C∆ by evalu-

ating the loss for every C in our Gibbs sample using Equa-

tion 6, because C∆ may be unlikely to ever actually occur—

C∆ is selected by a decision strategy designed to give a 3D

reconstruction with a low error rate, it is not an estimate of

the actual correct correspondence.

The proposed decision strategy can also be used to select

correspondences when α > 1, i.e. when the cost of miss-

ing a match is higher than the cost of incorrectly matching

a feature. In this situation multiple matches to each fea-

ture may be found. Applications where this is the case in-

clude robot path planning, where failure to reconstruct an

object correctly could result in a collision. In this case it

may be appropriate to select multiple candidate matches to

each feature.

The Gibbs sampler is also used to estimate the maxi-

mum likelihood (ML) correspondence—this is simply the

correspondence which is sampled most often. The ML cor-

respondence is useful for evaluating our proposed strategy,

however finding it by Gibbs sampling can be slow for large

feature sets, as a large number of samples are needed to find

one which clearly occurs more often.

In contrast to the ML correspondence, the proposed

method will often choose not to match a feature which has

multiple feasible match candidates, even when the event

that the feature has no match is unlikely. In contrast to

heuristics based on comparing the most likely match to the

second most likely, the proposed method selects matches

when the absolute risk of each match being incorrect is low,

rather than only considering only the risk of the second most

likely candidate being the true match.

5. Experimental results

We first evaluate the proposed method using simulated

data. We simulate matches between two images, with 10 or

100 features in each image, each of which could be matched

to any feature in the other image. Attributes are simulated

for each feature match, with correct matches having at-

tributes sampled from N (0, 12) (so pc = φ0,12 ), and incor-

rect matches having attributes sampled from N (0, 202) or

N (0, 1002) respectively (so pc̄ = φ0,202 or pc̄ = φ0,1002 ).

For real data, these attributes might be the epipolar error

in pixels. Equation 1, with prior probability π = 0.5 then

gives the conditional probability of each match being cor-

rect.

When 10 features per image are simulated, each has

an average of 2.2 feasible match candidates; and for each

feature there is an incorrect match with higher conditional

probability than the correct match with probability 0.19.

This is a relatively low level of ambiguity, and a high level

of accuracy can be obtained. When 100 features are sim-

ulated, each has an average of 4.3 feasible match candi-

dates; and for each feature there is an incorrect matches

with higher conditional probability than the correct match

with probability 0.36, providing a greater level of ambigu-

ity and making accurate matching challenging. All results

given are averages over at least 500 runs.

We compared the proposed approach with the maximum

likelihood correspondence (from Gibbs sampling), and with

a heuristic which selects the most probable match to each

feature, except when there is another candidate match to

either with probability within a threshold β of the most

probable match. This heuristic uses either the probabilities

computed from Equation 1 (labelled ‘Left-Right heuristic’),

or marginal probabilities from Gibbs sampling (labelled



(a) 100 features per image with an average 4.3 feasible matches per feature. (b) 10 features per image with an average 2.2 feasible matches per feature.

Figure 1. Precision-recall for different correspondence selection criteria.

Figure 2. Mixing times for Gibbs sampler: as the number of sam-

ples (T ) increases, the maximum absolute error in marginal prob-

abilities falls, and the probability that a feature’s match is selected

or not selected incorrectly (according to Equation 12) falls.

‘Left-Right heuristic (Gibbs)’). The ‘Left-Right heuristic’

is based on common heuristics used for discarding ambigu-

ous matches between features [2, 17, 18].

We evaluated each of these approaches with a range of

values for α and β; results are shown in Figure 1. These re-

sults show that by varying α, the tradeoff between precision

and recall of the proposed approach can be adjusted. α can

be chosen so that the proposed approach outperforms any

other method on precision or recall.

Next, we test how many samples are needed before the

Gibbs sampler converges to a useful level of accuracy. Fig-

ure 2 shows the mean proportion of incorrect decisions (the

proportion of matches which were incorrectly selected or

incorrectly omitted, according to Equation 12) when the

sampling is terminated after different values of T . The ex-

periment with 100 features has more interdependencies be-

tween matches, and is slower to converge than the experi-

ment with 10 features. With 10000 samples and the 100-

feature simulation, the sampler makes an incorrect decision

11% of the time, whereas for the 10 feature simulation, only

4% of decisions are incorrect. These errors have a surpris-

ingly small effect on the precision or recall of the proposed

Figure 3. Effects of different choices for the prior inlier probability

π. Features have a correct match with probability 0.5.

method: with α = 0.5 and 100 features, using 100000 sam-

ples rather than 5000 samples increases precision by just

0.6%, with the same level of recall. The explanation for

the good performance given the significant numbers of in-

correctly selected matches is that these matches are close

to the decision boundary, so lead to only a small increase

in the expected loss when selected incorrectly. All other

experiments are carried out with 5000 samples, which en-

ables a correspondence to be selected in 19ms for the 100-

feature simulation, and 1ms for the 10-feature simulation

(using C++ code compiled with clang and running on a sin-

gle core of an Intel i7 2.93GHz processor). These results in-

dicates that the proposed approach is suitable for real-time

matching applications.

One parameter for any system computing match proba-

bilities is the prior probability, π, of a feature having any

correct match. Figure 3 shows that π does not strongly af-

fect the accuracy of minimum expected loss or MLE selec-

tion criteria for selecting a correspondence set.

5.1. Application to model­based 3D reconstruction

Our intended application is the 3D reconstruction of

vines for a vine pruning robot. A 3D reconstruction which is



Figure 4. 3D vine reconstruction pipeline. Top-left: vines (yellow) and wires (orange) are detected in each frame. Candidate matches

between vines are shown, with matches selected by the proposed minimum expected loss corresponder in green. Top-right: 3D model of

vines and trellis backprojected onto a video frame. Bottom: 3D model built up incrementally over many frames, with cutpoints selected

(cut vines highlighted in orange).

as complete and structurally correct as possible is required,

so that a robot arm can prune the vines. The trellis over

which the vines grow is also reconstructed so that wires are

not accidentally cut. The robot images the vines with colour

cameras, and vines, wires and posts are detected in each 2D

image by applying standard computer vision methods (Fig-

ure 4; [2, 3]). To build a 3D model, a correspondence be-

tween pairs of 2D vines and a correspondence between pairs

of 2D wires is found. The system attempts to reconstruct ev-

ery pair of vines or wires, then the conditional likelihood of

each match being correct is computed from measurements

including thicknesses, curvature, and (where available) the

reprojection error.

We tested the proposed minimum expected loss corre-

spondence method on 12 sets of stereo images of 4 differ-

ent plants with ground-truth. In these images the positions

of 1127 2D vines and 486 wires, and all correspondences

between them, have been hand-labelled. Figure 5 shows the

precision and recall of each of the correspondence methods.

The 2D vines are challenging to match because occlu-

sions lead to many 2D detections being incomplete or miss-

ing (the 2D vine detector has a precision of 73% at a recall

of 75%, but most are incompletely-detected). 423 pairs of

2D vines can be reconstructed; of these 226 are correctly

matched. Figure 5 shows that the proposed minimum ex-

pected loss corresponder gives a small improvement in pre-

cision over the MLE corresponder (77% versus 74% with

α = 1) at the same level of recall. Performance is similar to

the heuristics for removing ambiguous matches.

The 2D wires are easier to detect than the vines (with a

precision of 87% at a recall of 93%, with most detections

being complete), but are challenging to match because they

all appear similar, and because the epipolar constraint can

eliminate few of the possible matches. Each matched wire

part has feasible matches to an average of 2.1 wires in the

other image, and just 99 of the 283 feasible matches found

are correct. Figure 5 shows that the proposed minimum ex-

pected loss corresponder gives a substantial improvement

in precision over the MLE corresponder—64% versus 56%

at same level of recall. The biggest advantage of the pro-

posed corresponder however is that α can be chosen to give

a much higher level of precision, e.g. 83% at 44% recall.

We integrated the minimum expected loss corresponder

into the 3D vine reconstruction pipeline. As the pruning

machine moves, detected 2D vines are either assigned to

existing 3D vine models, or are corresponded to generate

new 3D models. The 3D vines are connected into a com-

plete model and are optimised in an incremental bundle ad-



Figure 5. Precision-recall for the correspondence problem involving vines (left) and wires (right).

justment framework. Figure 4 shows 2D detected features,

feature correspondences, and a 3D vine model. Finding cor-

respondences takes less than 4ms of the 500ms required per

frame; this framerate is sufficient for a speed of 0.1m/s.

6. Discussion

This paper described a novel system for selecting a cor-
respondence (set of feature matches) between features de-
tected in two stereo images. The method is designed to
select the correspondence which gives as complete and ac-
curate a 3D reconstruction as possible in the presence of
ambiguous matches between features. The method uses a
decision rule to select the minimum expected loss corre-
spondence, where the proposed loss function quantifies the
risk of selecting matches incorrectly, and of missing cor-
rect matches. A parameter of the loss function controls
the tradeoff between precision and recall. The proposed
approach outperforms alternative selection criteria in terms
of precision and recall on real and simulated stereo match-
ing problems. For a model-based sparse 3D reconstruction
problem, the 3D model is more accurate and complete than
with other correspondence selection criteria. The proposed
method can be applied to other sparse stereo matching prob-
lems where matches are ambiguous.
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