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Abstract—This paper proposes a novel solution to the problem
of scale drift in single camera SLAM based on recognising
objects of known scale. When reconstructing the trajectory of
a camera moving in an unknown environment the scale of
the environment, and equivalently the speed of the camera, is
obtained by accumulating relative scale estimates over sequences
of frames. This leads to scale drift: errors in scale accumulate
over time. Our solution is to correct this scale estimate by
recognising objects of known size. A Bag-of-Words-based scheme
to learn object classes, to recognise object instances, and to
use these observations to correct scale drift is described, and
is demonstrated reducing scale drift by 75% while navigating a
large indoor environment.

I. INTRODUCTION

To work autonomously in an a priori unknown environment

a mobile robot must be able to position itself using its sensors.

A cheap, passive, compact and very common sensor is a single

camera, and several practical schemes for navigation using

monocular vision have recently been demonstrated [1]–[5].

Most [1], [3]–[5] operate within a Simultaneous Localisation

and Mapping (SLAM) framework [6] in which a map is esti-

mated as the robot explores. This map is used to correct errors

that accumulate in any position estimate obtained through

dead-reckoning, and is essential for long-term positioning [6],

however for SLAM schemes to function reliably, and to allow

the navigation of long paths away from previously mapped

areas, these accumulated errors must be minimised [7].

A significant source of error unique to monocular vision is

scale drift. A robot with a single camera can only work out

the scale of the world, and hence its speed, by identifying and

reconstructing the 3d structure of objects of known size (i.e.

the calibration objects used to initialise some single camera

SLAM schemes [1], [3], or previously mapped landmarks). As

the robot explores (away from previously mapped areas), small

errors in the robot’s scale estimate accumulate, eventually

rendering position estimates useless.

This paper describes a new algorithm exploiting a novel

solution to this problem of scale drift: object classes are

identified from the robot’s internal SLAM map, the distribution

of size within classes is measured, and this information is

used to improve the robot’s scale and speed estimates where

more of these objects are observed. This algorithm is known as

SCORE (Scale by Object Recognition), and it is demonstrated

successfully reducing scale drift for a robot navigating a large

indoor environment by sometimes 75%.

The following section describes the object recognition (OR)

and machine learning techniques that SCORE is based on, and

previous use of OR by mobile robots. Section III describes

the problem in detail, and Section IV describes the SCORE

algorithm. Section VI shows SCORE in operation, success-

fully reducing scale drift in single camera SLAM, and the

final sections discuss our conclusions and SCORE’s possible

extensions.

II. BACKGROUND

This section describes previous use of OR by mobile robots,

and the OR schemes SCORE is derived from. Note that OR

schemes either aim to recognise classes of objects (e.g. trees),

or aim to identify particular objects (e.g. the small plane tree

outside our office).

Fig. 1. Typically several objects are recognised and measured in each frame
pair (University of Alberta dataset).

A. Real-time Object Recognition

For recognising a small database of distinctive objects local

area descriptors such as SIFT [8] or SURF [9], or colour

histograms [10] are commonly used [11]. These schemes do

not scale to larger object databases however as individual

descriptors are not sufficiently distinctive. Instead, combina-

tions of descriptors are used, and the most popular model

to represent these descriptors is the Bag-of-Words (BoW)



model [12]. This model describes an image by mapping

each descriptor to its closest match from a ‘dictionary’—

a discrete set of representative features (also known as a

‘codebook’ or ‘vocabulary’). This makes testing whether and

image contains a particular set of ‘image words’ very fast,

allowing large image databases to be searched for features

from a particular object or location. This is often highly

accurate despite ignoring the image geometry.

The BoW image representation also facilitates the auto-

mated learning of object classes or categories. These classes

are usually defined by a weighted set of image words that tend

to co-occur (and hence are assumed to arise as a result of an

object in that class being visible). An image containing many

of the words defining a class, particularly those that are most

distinctive (those having the highest weights), is likely to con-

tain the same objects as other images containing many of the

same words. The original algorithm for automatically identify-

ing these classes was Latent Semantic Analysis, or LSA [13]

(popular variants include Probabilistic Latent Semantic Anal-

ysis [14] and Latent Dirichlet Analysis [15]). In LSA a sparse

matrix is constructed where rows represent images, columns

represent image words, and elements are the occurrence counts

of each word in each image. These occurrence counts are

weighted by the word’s distinctiveness (measured using e.g.

term-frequency-inverse document frequency, or TF-IDF [15],

[16]). The principal components of this matrix are then found

by by singular value decomposition (SVD). These principal

components represent sets of co-occuring features that best

partition images into those containing particular classes of

objects; the three strongest might characterise for example

‘cars’, ‘trees’ and ‘bikes’, depending on the contents of the

training images.

BoW-based OR is particularly suited for autonomous mo-

bile robots as many SLAM schemes already maintain BoW

databases in order to detect global loop-closure [4], [5], [17],

and because many BoW schemes manage at least recognition

is real-time [12], [16], [18], and sometimes training and

recognition in real-time [19], [21]. Other more complex OR

schemes, e.g. involving matching of 3d structure [22], non-

feature-based approaches (e.g. texture analysis [23]), or hybrid

approaches [24] are often highly accurate but are rarely fast

enough for real-time OR (taking several minutes per object in

these examples).

B. Object Recognition by Mobile Robots

Several mobile robots have been equipped with OR capa-

bility, but to our knowledge, all recognise particular object

instances from an manually-trained database and none detect

object classes for the purpose of scale estimation. Ahn et

al. [25] and Castle et al. [26] manually construct databases

of planar objects, then recognise these (using simple SIFT

matching) and use them as robust landmarks for stereo EKF-

SLAM and MonoSLAM [1] respectively. Castle et al. extended

their scheme to incorporate the known size of particular

objects into the SLAM solution [27], however the major

limitation of these schemes is that they are only beneficial in

environment with objects that have been mapped. This is much

more restrictive than most SLAM schemes where emphasis is

on exploring unknown environments.

Other applications of OR include spotting and tracking

manually-tagged objects for Augmented Reality [28], and for

planning task execution [11].

III. ANALYSIS OF PROBLEM

A robot observes classes of objects with particular size

distributions as it explores an unknown environment. As it

travels into previously unmapped areas its estimate of scale

drifts and as a result its position and speed estimates deteri-

orate. However when it observes objects belonging to classes

observed earlier, it can combine this information with its

uncertain scale estimate to improve this scale estimate.

The major source of error in an object measurement from

two frames is often the error in the estimated ‘scale’ between

them (this equals the estimated speed of the robot between

these two frames, which is also the baseline length from which

points are reconstructed). This source of error applies equally

to all objects measured in the same two frames. In addition as

scales are accumulated sequentially, errors in each estimated

scale are highly correlated with all other scale estimates from

which this scale was calculated or will be used to calculate,

and hence all object measurements are also correlated.

As with the SLAM problem [6], [7], these correlations

are important for scale estimation. Kalman-filter-based SLAM

algorithms [29] estimate matrices of correlations between

landmark measurements. This is only feasible for moderately

sized problems because blocks of this matrix are sparse, and

has only been demonstrated on a larger scale when this map

may be partitioned into local submaps of landmarks (e.g.

[30]). Unlike landmarks however, object instances can not be

assumed to easily partition into sets that are not observed at the

same time, and due to the propagation of scale errors a matrix

of object and scale covariances would be considerably more

dense. This would makes a naive SLAM-like scale estimation

computationally infeasible for real-time navigation. Instead,

the following section describes our approximate solution.

IV. SCORE: A BAG-OF-WORDS SPEEDOMETER SCHEME

The SCORE (Scale by Object Recognition) algorithm is out-

lined in Figure 2, and is detailed in the following subsections.

In summary:

As we re-train periodically to learn new environ-

ments, we also learn new object classes. The mea-

sured sizes of objects in these classes are used to

improve existing and new scale estimates.

SCORE is designed to integrate with BoWSLAM, the

monocular SLAM scheme described by [5]. BoWSLAM rep-

resents every frame as a ‘Bag-of-Words’ using the scheme

by [21]. This high-level representation is used for active

loop closure detection, fast stereo matching, and to select the

sequence of frames used to position each new frame relative

to. This representation is also ideal for object recognition. The

scheme described here could easily be adapted to other single



For each frame:

When re-training:

1) Identify (learn) the B object classes

2) Measure each object (subject to scale estimate from SLAM)

3) Estimate distribution parameters

4) For each edge combine the most likely scale given the observations with the measured scale

When a new edge (relative pose estimate) is added:

1) Observe any objects reconstructed here

2) Combine the most likely scale given the observations with the measured scale

Fig. 2. Overview of the SCORE algorithm

camera SLAM schemes which index a subset of frames into

a BoW database [4], [17], [31].

The effect of this algorithm is to propagate the reliable

scale estimates from better mapped areas to areas where the

scale is much less certain but where the same kinds of objects

are visible. In practice there is often a dramatic distinction

between scale estimates in different areas, for example scale

estimates are reasonably accurate when the robot is moving is

a straight line in a feature-rich environment, then deteriorate

suddenly when the robot corners.

A. Classes of Measurable Objects

This subsection describes how SCORE defines a class of

objects, and how the distribution of sizes within that class are

measured.

For this application, two important requirements are that

object classes can be learnt and identified in real-time, and that

identified objects can be measured. The object classes recog-

nised in real-time by contemporary OR schemes (Section II-A)

consist of occurrences of one or more of a set of features

defining that class. The most obvious measure of an object

in one of these classes is the distance between two features

on the object. We do not consider measurements of more than

two features as this would add to the complexity (there are
(

n
2

)

possible measurable distances between n points), and would

introduces difficulties in coping with partially-observed and

partially-reconstructed objects. As a result SCORE’s object

classes are each defined by the co-occurrence of two image

words. Multiple instances of the same object are likely to

be visible in many scenes; however by assuming objects are

separated by more than the separation of the features within

them we only need to observe the least separation from all

possible pairs of two features visible in a scene.

To identify co-occuring image words we use the same term-

document matrix as LSA. Elements of this matrix represent

the frequency each word occurs in each image, multiplied by

their TF-IDF weight to favour distinctive words. We only count

features that are successfully reconstructed to avoid learning

object classes which cannot often be measured. As computing

the SVD of this matrix (which can realistically have 10 000

rows and 50 000 columns) is infeasible for a real-time system,

and because we are only interested in simple two-word objects,

we use this matrix to select the B pairs of reconstructed words

that are most likely to co-occur.To learn these two-word object

classes we multiply every pair of co-occuring word’s matrix

elements, and sum these products for each co-occurrences. The

B pairs of words with the highest total are selected as defining

the object classes. This method is derived from LSA: in the

simplified case where two-word objects occur independently

and each word arises only as a result of one of these objects,

the objects we select are exactly the same as those that would

be selected by LSA.

Once this set of object classes has been identified, the

instances of these objects are identified (by searching each of

the sets of 3D points reconstructed between pairs of frames)

and measured.

B. Estimating Object Class Size Distribution Parameters

This subsection describes how a distribution is fitted to

these noisy measurements, that incorporates both errors and

variability in object sizes within each class. There are five

sources of variability in these observed feature sizes:

1) Uncertainty in the baseline length (scale) from which

objects are reconstructed.

2) Variation in true size of objects (e.g. cars are 1.5 to 2.5m

high).

3) The same two-word combination occuring in multiple

contexts.

4) Errors in reconstructing 3d point positions.

5) Errors from measurements of multiple partially-visible

objects, or features occuring in multiple objects.

The combination of these variables is assumed Normal;

a heavy-tailed distribution is likely to provide a more ac-

curate model but makes the combination of distributions

intractable.All we assume about measurements of an object

is they are drawn from the same distribution (this is unlike

SLAM observations which should be distributed about their

actual values). Examination of measurements (Figure 5) sug-

gests these assumptions are not unreasonable.

In BoWSLAM the estimated scales have certainty measured

by a condition number [5], which measures the additional

error in a subsequent scale estimates calculated by adding

this relative scale estimate to others (a scale estimate with

condition c ∈ (0, 1) will give a standard deviation estimate

slater = searlier/c where was the previous estimated s.d. in

scale). This condition number is a heuristic, but is a useful



simplification when measuring uncertainties that propagate by

multiplication (a very similar heuristic is used in other SLAM

schemes [4], [17] based on the ATLAS framework [20]).

We then assume measurement errors (including errors due

to scale uncertainty) are independent; for each object class

this allows the parameters of a Normal distribution to be

estimated by taking the weighted sample mean µ and weighted

sample variance σ2 of the N measurements xi, weighted by

the (normalised) condition numbers wi.

µ =
n

∑

i=1

wixi (1)

σ2 =
1

1 −

∑n

i=1
w2

i

N
∑

i=1

wi (xi − µ)2 (2)

Variance is scaled to avoid any single object measurement,

even one much bigger or smaller than any previously observed

values, from overly distorting scale estimates (these observa-

tions are not generally outliers, and are the reason a heavy-

tailed distribution would be more appropriate).

Fig. 3. Objects from the same class observed on several similar-looking
doors, University of Alberta dataset. (Each object is measured in one place
per pair of frames, however in BoWSLAM each frame is registered to many
others, so the same type of object may be measured in several places in the
same frame.)

C. Object Observations and Improving Scale Estimates

Following re-training [21], every scale estimate (between

pairs of frames) is updated with information from measure-

ments of objects reconstructed between these two frames. The

same method is used to update new scale estimates as new

edges are added.

Given two frames where 3-D points have been recon-

structed, a set of image words corresponding to these re-

constructed points are found. This list is searched for each

of the objects. These objects are measured, assuming a unit

baseline, giving measurements x. Our assumptions imply

sx ∼ N(µ, diag(σ2)), where s is the scale. The MLE of

s given object measurements, s
OR

is then given by:

s
OR

=

∑M

j=1

xjµj

σ2

j

∑M

j=1

(

xj

σj

)2
(3)

This estimate is derived by differentiating the likelihood of s
given x and has variance:

v
OR

=
1

∑M

j=1

(

xj

σj

)2
(4)

We now have two scale measurements: the estimated scale and

its variance from SLAM (s
SLAM

and v
SLAM

, Section IV-B),

and the estimated scale and its variance from object measure-

ments (s
OR

and v
OR

, Equations 3 and 4). The MLE of the

scale between these two frames under our assumptions is then

given by Equation 5 (this is equivalent to two Kalman Filter

updates):

s =
s

OR
v

SLAM
+ s

SLAM
v

OR

v
OR

+ v
SLAM

(5)

D. Analysis of SCORE

SCORE measures the size distributions of object classes,

weighted towards the observations with the least uncertainty

in scale. When updating scales, those that have low initial

certainty are often significantly adjusted, whereas the most

reliable scale estimates are barely adjusted at all. This propa-

gates the certainty of the best position estimates to those that

are less good. It does not matter that in many frames few or no

objects are observed—scales are calculated by accumulating

sequences of scale estimates, so just the occasional observation

can improve local estimates.

Note that prior scale estimates from the SLAM algorithm

alone are used to measure object sizes every time we re-train;

iteratively updating scale estimates from previous object sets

would cause the measured object sizes to converge incorrectly

to a tighter distribution (not reflecting true variations in object

sizes) when only a small number, of objects are observed in

a pair of frames.

V. COMPLEXITY

For long-term SLAM constant time complexity in the

number of frames n is essential, however no SLAM schemes

to-date has quite achieved this, and many [1], [30] have

O(n2) complexity. BoWSLAM has O(n log(n)) complexity

(updating the map and retraining the BoW dictionary). Iden-

tifying the B best object classes gives the SCORE algorithm
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Fig. 4. Maps of robot poses from University of Alberta dataset: a robot travels 75m around a rectangular coridoor at constant speed. With no scale correction
large scale-drift is seen, stretching the map (a). SCORE successfully reduces this scale drift (b). (Maps’ scales are arbitrary due to global scale ambiguity.)

complexity O(n log(n) + Bn). As B may be fixed then

SCORE does not add to the complexity of BoWSLAM. In

practice with a database of 100 objects only about 10% (20ms

per frame) to BoWSLAM’s running time; this is still fast

enough for real-time performance. Other schemes [4], [17]

representing images as bags of words index images at a similar

or slower rate, which would make this a small additional cost.

If an object database good enough for indefinite use is found

(or if a manually-trained database with known scales was used)

the complexity would be reduced to just O(B) per frame,

giving the SCORE algorithm potential to be used for long-

term navigation.

VI. RESULTS

The first dataset demonstrates object recognition and scale

estimation in a typical indoor environment. The dataset, from

the University of Alberta [32], consists of a 75m rectan-

gular loop around corridors and landings, traversed at an

approximately constant speed. Figure 4 shows three maps

of this loop; one has no scale correction, and exhibits large

scale-drift (speeding up to several times its original speed).

The next map used the SCORE algorithm to improve scale

estimates. SCORE successfully reduces the scale drift: on the

final re-training, after 300 frames, SCORE improves the mean

speed estimate between all pairs of frames from 0.17 of the

original speed to 0.79 (the true value is approximately 1.0).

Previously, BoWSLAM has used a heuristic that the measured

depth of points cannot fall outside an allowed range [5]. The

assumption this heuristic is based on is not true in general,

and it can never eliminate scale drift within the allowed range,

however it does work reasonably well in practice, as shown

by the third map. This dataset shows that SCORE can match

the performance of this heuristic.

SCORE selects 100 objects each time it is re-trained.

Typically several of these are found in each frame (Figure 1).

The repeating structures indoors help SCORE find reliable

objects—one of these occuring on several similar doors is

shown in Figure 3.

The second dataset was captured outdoors in a suburban en-

vironment. Figure 5 shows some of the measurements made of

two of the objects that were detected, and a histogram of these

measurements (15 and 19 measurements were made). One

measures ‘round edged shadows’ and another ‘car wheels’.The

distributions of these objects are significantly different, with

weighted means 1.0 and 5.9, however large standard deviation

estimates (4.2 and 6.2) limit their impact when updating

scales. While SCORE is successfully detecting and measuring

objects outdoors, the scale estimates from these observations

do not significantly improve the estimates from SLAM. This is

probably due to the large distributions of object sizes outdoors,

and the high depth disparities of distant reconstructed points.

Future work will investigate these issues in detail.

VII. CONCLUSIONS

This paper has demonstrated that BoW Object Recognition

may be used to learn to recognise objects, measure their

distribution of sizes, and use this information to correct for

scale drift in single-camera SLAM. Our SCORE algorithm is

the first solution to this problem which has the potential to

correct scale drift over indefinitely long tracks, and results in

only a small increase in the computational cost. Experiments

on indoor and outdoor datasets demonstrate that object classes

with a variety of different size distributions are found. Indoors,

this can be used to greatly reduce scale drift, reducing errors

by an average of about 75% in one example. Outdoors, the

SCORE algorithm does not perform well, however this is only

the first version and analysis of the problem has has suggested

possibilities by which a future version of SCORE may be

extended to work well in all environments.

VIII. FUTURE WORK

There are certainly many small improvements that would in-

crease the reliability of our scheme (in particular investigating

methods for choosing and robustly measuring more complex

objects, maybe even manually defining object classes), how-

ever the obvious major extension would be to improve the



(a) Distances measured of two objects, ‘round shadows’, and
‘car wheels’.
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ments are made respectively).

Fig. 5. Object classes measured in the outdoor dataset have a variety of significantly different size distributions.

model so that scales and object size distributions are measured

simultaneously, taking advantage of the correlation between

them. This problem has high complexity, does not partition

easily, and has no well-defined choice of objective function,

however future research may solve some of these issues in

similar ways as difficulties in SLAM are being overcome [30].

Viewing the correlations between scales and objects as a graph

to be optimised may provide insight [33].

ACKNOWLEDGMENT

The University of Alberta CSC data set was obtained from

the Robotics Data Set Repository (Radish) [32]. Thanks go to

Jonathan Klippenstein for providing this data.

REFERENCES

[1] A. Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in Proc. Int. Conf. Computer Vision, Oct. 2003.

[2] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicle applications,” Journal of Field Robotics, vol. 23, no. 1, 2006.

[3] E. Eade and T. Drummond, “Scalable monocular SLAM,” in Proc.

CVPR, vol. 1. Los Alamitos, CA, USA, 2006, pp. 469–476.

[4] E. Eade and T. Drummond, “Unified loop closing and recovery for real
time monocular SLAM,” in British Machine Vision Conference, 2008.

[5] T. Botterill, S. Mills, and R. Green, “Bag-of-Words-driven single
camera SLAM,” Geospatial Research Centre, Tech. Rep., 2009.
[Online]: http://open.grcnz.com/papers/Botterill-etal-2009b-preprint.pdf

[6] R. Smith, M. Self, and P. Cheeseman, Autonomous Robot Vehicles.
Amsterdam: Springer Verlag, 1990, ch. Estimating Uncertain Spatial
Relationships in Robotics, pp. 435–461.

[7] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-
ping (SLAM): Part I the essential algorithms.” IEEE Robotics and
Automation Magazine, vol. June, pp. 1–9, 2006.

[8] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. Int. Conf. Computer Vision, 1999, pp. 1150–1157.

[9] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, 2008.

[10] P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno, “Integrating slam and
object detection for service robot tasks,” in IROS 2005 Workshop on

Mobile Manipulators: Basic Techniques, New Trends and Applications.
Edmonton, Canada, 2005.

[11] A. Ramisa, S. Vasudevan, D. Scharamuzza, R. L. de Mántaras, and
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