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ABSTRACT 

This paper describes a framework for model-based 3D 

reconstruction of vines and trellising for a robot equipped with 

stereo cameras and structured light. In each frame, high-level 2D 

features, and a sparse set of 3D structured light points are found. 

Detected features are matched to 3D model components, and the 

g2o optimisation framework is used to estimate both the model’s 

structure and the camera’s trajectory. The system is demonstrated 

reconstructing the trellising present in images of vines, together 

with the camera’s trajectory, over a 12m track consisting of 360 

sets of frames. The estimated model is structurally correct and is 

almost complete, and the estimated trajectory drifts by just 4%. 

Future work will extend the framework to reconstruct the more 

complex structure of the vines. 

Categories and Subject Descriptors 

I.4.8 [Image Processing and Computer Vision]: Scene 

Analysis—Motion, shape, stereo, time-varying imagery, tracking 

General Terms 

Algorithms, performance, measurement, theory, verification. 

Keywords 

Model-based 3D reconstruction, bundle adjustment, stereo vision, 

structured light, sensor fusion, nonlinear optimisation, tracking, 

data association. 

1. INTRODUCTION 
This paper describes the development of a 3D reconstruction 

framework for reconstructing a topologically correct 3D model of 

vines viewed by a robot. The robot uses a hybrid imaging system 

consisting of three colour cameras and three line lasers which 

project a sparse structured light pattern into the scene.  

The vines which are imaged grow over a trellis consisting of wires 

stretched between posts (Figure 1). The computer vision system 

must model the trellis in addition to the vines in order to avoid 

confusing wires and vines, to avoid accidentally cutting the high 

tension wires and because the position of the wires affects 

decisions made by the robot. The current system models the 

trellis, and is designed to incorporate measurements of vines once 

available. 

The vine imaging robot consists of a tractor-mounted module 

which is driven along a row of vines. Three wide-angle machine 

vision cameras in a trinocular stereo rig image the vines, and three 

planes of structured light are projected into the scene by high-

power line lasers. The points of structured light are extracted from 

the images to give a sparse set of reconstructed 3D points [2]. 

Around 20 3D points are found per image; all on canes and wires. 

Currently, the tractor moves at 0.25m/s and the cameras run at 7.5 

frames per second, capturing a set of three frames every 3 to 4cm. 

 

Figure 1: Example of a complete image of the vines, showing 

posts, wires, and structured light pattern. 

To fit in the confined space under the tractor, while still imaging 

enough of the vines to reconstruct a model, a high field of view 

(110 degrees) and depth of field (20cm to 80cm) are necessary. 

This creates challenges for the machine vision system, including 

variation in lighting [3] and feature sizes at different depths. In 

addition, the structure being imaged consists of a network of 

overlapping, occluding, and similar looking canes and wires, 

making the problem of correctly matching features to other 

features and to the model’s component parts challenging.  

In order to make cut decisions, and to plan a path for a robot arm, 

a topologically correct 3D model of the complete vine plants is 
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required. The approach described in this paper is to incrementally 

build a model, consisting of connected wire and post segments 

(and eventually vine segments), each parameterised by 3D control 

points. Knowledge of the structure of the features (posts, wires 

and vines) is used to identify and localise model parts in the 

images, despite occlusions. The structured light pattern visible in 

the images is used to assign 3D points to some of these features. 

These 3D points, together with the usual epipolar constraints are 

used to correspond features between images and to initialise 3D 

model components. Further observations are assigned to 3D 

components as they are observed, and an accurate 3D structure, 

together with the robot’s trajectory, are estimated using the 

modern optimisation framework g2o (a “general framework for 

graph optimisation”; [14]).  

This paper is organised as follows: Section 2 discusses bundle 

adjustment, the g2o framework, and other options considered for 

building 3D vine models from images; Section 3 describes the 

proposed system; Section 4 evaluates the system on real images, 

and on simulated rendered images; Section 5 discusses the 

strengths and limitations of the system, and Section 6 describes 

our conclusions and plans for further work. 

2. BACKGROUND 
Many methods for 3D reconstruction from images have been 

proposed. The most successful general purpose approaches 

include various dense stereo algorithms, and approaches based on 

feature matching followed by bundle adjustment [19]. Of these, 

dense stereo algorithms are generally unsuitable for the vine 

reconstruction problem, because most cannot model the variation 

in ordering in the appearance of features between images, and 

many perform poorly along occlusion boundaries [16]. Bundle 

adjustment (BA)-based approaches are much more flexible 

however, and can incorporate prior information on the scene [21].  

BA is a generic framework for photometric reconstruction which 

computes the maximum likelihood estimate of both the positions 

of the cameras and the positions of objects by minimising an 

appropriate function of the reprojection error (the difference 

between the position of objects back-projected into the image, and 

their measured locations). The classic formulation of BA 

corresponds point features detected in the image with 3D points in 

the world, however any image measurement can be used, for 

example line segments or detected model parts. As BA is 

fundamentally a nonlinear optimisation, additional measurements 

(e.g. 3D structured light points), and constraints from knowledge 

of the structure of the scene, can easily be incorporated, and will 

improve the accuracy of the solution [19].  

BA is traditionally an algorithm for photogrammetry, however the 

problem is equivalent to the Simultaneous Localisation And 

Mapping (SLAM) problem in robotics. When a mobile robot 

explores an unknown environment, the position of the robot must 

be reconstructed, while simultaneously estimating a map of the 

environment, so that the robot can navigate without getting lost. 

Leading contemporary SLAM algorithms estimate both the 

robot’s trajectory (i.e. its sensors’ positions) and the positions of 

observed landmarks in a nonlinear optimisation framework (e.g. 

[13, 20]). For both SLAM and for photogrammetry, thousands of 

camera/sensor poses, and millions of 3D points/landmarks may be 

reconstructed, so optimisation algorithms must exploit the sparse 

structure of the problem in order to be efficient [21]. Recently, 

there has been convergence between SLAM and photogrammetry 

algorithms, and the general purpose frameworks g2o [14] and 

iSAM2 (incremental Smoothing And Mapping; [12]) are designed 

to be applied to either problem. Both are Levenberg-Marquardt-

based optimisers which operate directly on sparse graphs, where 

the nodes of the graphs are parameters (i.e. camera poses and 3D 

points), and the edges represent the constraints between nodes 

introduced when measurements are made. These graphs can be 

built incrementally as the camera/robot moves, with the 3D 

structure being refined as more measurements are made. 

Before any BA algorithm can be applied, a matching between 

features observed in images and the 3D model must be 

established. This problem is challenging when many features are 

similar in appearance (e.g. wires), or are only partially visible, as 

correspondences are ambiguous and may be matched incorrectly. 

Incorrect measurements can corrupt the 3D model and camera 

trajectory1, so must be avoided. 

When many feature measurements (e.g. points) in an image are 

matched to each other, or to 3D structure, RANSAC [9], or one of 

its variants, can be used to find a large, mutually compatible 

subset of measurements which are likely to be inliers. RANSAC 

only works when the number of inlier measurements is 

considerably greater than that the number of degrees of freedom 

of the model however, so can’t be applied to small sets of 

measurements, such as is the case when only a few incomplete 

parts of a larger model are imaged. Instead, measurements can be 

considered individually, with measurements which are unlikely or 

ambiguous given the estimated camera pose rejected. This idea is 

used in 1-point RANSAC [5], in Innovation Gating [1], and when 

fitting Active Shape Models to images [6], however when outliers 

are incorrectly accepted by these approaches the solution can drift, 

leading to subsequent incorrect data associations and eventually 

positioning failure.  

In our system, knowledge of the structure of the trellis (and vines) 

is used to guide the entire reconstruction process, however another 

option is to attempt to build a 3D mesh or point cloud from 

images, and only then to fit a model. A 3D point cloud can be 

computed by detecting and matching point-features, removing 

outliers using RANSAC, and then applying BA to reconstruct a 

3D point cloud. This approach is used by Dey et al. [7] to 

reconstruct 3D points on images of vines with foliage. Local 

structure is classified as branch, leaf or fruit, so that yields can be 

estimated, however the method is clearly not suited to 

reconstructing topologically correct structures, as results show 

many obvious gaps and errors in the structure of branches where 

no suitable features were matched. This is because the points 

where canes overlap (occlusion boundaries) cause image features 

which will be detected by corner or blob detectors, but which do 

not actually correspond to 3D points [4].  

An alternatively 3D reconstruction method, voxel carving, has 

considerable potential for reconstructions where the foreground is 

sparse compared with the background. Paproki et al. [18] use 

voxel carving on images of cotton plant roots, with a root network 

model fitted to the voxels after reconstruction. This method was 

considered for our application, however preliminary experiments 

gave poor results in regions of high cane density. 

An alternative to using vision for the 3D reconstruction would be 

to use a 3D camera or scanner, e.g. a LiDAR laser scanner or a 

                                                                 

1 BA can be made partially robust to outliers by assuming heavy-

tailed distributions for measurement errors (e.g. by minimising a 

Huber cost function of the reprojection error), however outliers 

can still bias the solution, leading to subsequent errors, and 

gross outliers which are unlikely even under these assumptions 

will still corrupt the model estimate. 



Time-of-Flight camera. For our application, the lighting 

conditions, FOV requirements, and robot’s motion limit options 

for using these sensors, however LiDAR scanners have been used 

successfully for reconstructing the structure of tree branches by 

Gorte and Pfeifer [11], and by Livney et al. [15]. 

3. PROPOSED SYSTEM 
This section describes how the g2o optimization framework is 

applied to reconstruct 3D models from high-level features 

extracted from 2D images. Figure 2 gives an overview of the 

processing pipeline, and the following sections describe each 

stage in turn. 

3.1 DETECTING POSTS AND WIRES 
The first stage in processing each frame is to detect and localise 

posts and wires. A series of standard computer vision techniques 

is used; these methods perform well but are somewhat heuristic. 

Other methods may perform better. 

The wires in the trellis are supported by wooden or steel posts 

every few metres (Figure 1). The posts are approximately vertical, 

and the wires approximately horizontal, and both generally extend 

off the top and bottom of images. Both vary significantly in size 

in the images, because of variation in both depth and size.  

The first stage in reconstruction is to separate the foreground and 

background. Bayes formula is used to compute the probability of 

each pixel being foreground or background, given a background 

image. Sensor noise is assumed to be normally distributed (with a 

standard deviation of 5 greylevels for each channel), and shadows 

on the background are modelled (each pixel may be darker than 

the background image, with the level of shading uniformly 

distributed between 0% and 100%). This gives a ‘foreground 

image’, where each pixel’s value is the probability, under this 

model, that the pixel shows foreground. 

To detect posts, the foreground images are filtered with a box 

filter, then thresholded, to remove small features (wires and many 

canes). The image derivative in the horizontal direction is 

computed, and a Hough transform [8] is applied to find the 

approximately-straight edges of the post. A hypothesis test is used 

to reject detections which are too narrow or too short to be posts.  

Wires appear in the foreground image at thicknesses of between 1 

and 6 pixels. To detect wire pixels, each pixel’s neighbours above 

and below are considered—those with background both above and 

below are likely to be wires. Wire pixels are merged into 

candidate wire segments by scanning left to right across the 

image, and merging pixels collinear to the pixels already in each 

candidate segment. Collinear segments are merged (Figure 3), and 

remaining short segments are discarded.  

Long, thin canes are often detected as wires; most of these are 

rejected by finding the average colour of each detected wire and 

estimating the likelihood of that colour—on average wire pixels 

are more grey and vines more brown.  

Preliminary work has been carried out on extracting the structure 

of the vines by skeletonisation [10], however currently there are 

too many structural errors in the 2D skeletons for successful 3D 

reconstruction. 

3.2 STRUCTURED LIGHT SYSTEM 
The design and calibration of the structured light system was 

described in [2]. Three planes of laser light are projected into the 

scene, and the locations of the red and green points in each image 

are identified by colour. The 3D location of each of these points 

can then be computed by finding the point where the ray through 

that pixel intersects the plane of structured light.  

Each of the 3D points from the structured light system is assigned 

to a 2D feature extracted from the images. Those with ambiguous 

assignments are rejected. 

3.3 CORRESPONDANCE 
The 2D image features observed are now matched with parts of 

the 3D model. Firstly, image features are assigned to existing 

parts of the model, and secondly, unassigned image features are 

 

Figure 4: Features are only assigned to model parts if the 

match is unambiguous. 

 

Figure 3: Wire pixels are detected, and merged into short 

wire segments (left). Short segments are merged to form 

longer segments. Different colours show different candidate 

segments. 

For each new frame: 

1. Detect 2D features (wires, posts and vines) 

2. Detect and reconstruct structured light points 

3. Assign SL points to 2D features 

For each new set of stereo frames: 

1. Initialise new robot pose 

2. Repeat until no change in assignment: 

o Assign 2D features to 3D objects 

o Optimise with g2o 

3. Correspond unassigned 2D features to initialise new 

structure 

4. Optimise with g2o  

Figure 2: Overview of proposed framework 
 

 



corresponded together to initialise new model components. 

For matching 2D features to 3D model parts, a simple and safe 

approach is taken, which minimises the chance of incorrectly 

matching features. The estimated camera pose, and its associated 

uncertainty, is used to project each model part (post or wire 

segment) into the image, then the distance of the projected model 

from each 2D feature is measured (the reprojection error if the 

assignment is correct). All matches which could be ambiguous are 

rejected (Figure 4). 

2D image features which are not assigned to any model parts, and 

which are not marked as ambiguous, are now used to initialise 

new 3D parts of the model. Every pair of 2D image features from 

two frames which could possibly be matched is reconstructed in 

turn, and the likelihood of each candidate reconstructed model is 

computed, given knowledge of the scene structure (e.g. wires are 

approximately parallel to the direction of motion, and go close to, 

but do not intersect posts). The matches which are most likely to 

be correct and where each 2D features is matched unambiguously 

are accepted, and new 3D model parts are initialised. 

For both matching and assignment, 3D structured light points 

associated with the 2D features can be used to exclude many 

incompatible matches. 

3.4 MODEL FOR G2O OPTIMISATION 
The g2o framework estimates the parameters associated with 

vertices in a graph, subject to constraints between these vertices. 

For our application, the vertices are the set of camera poses, and 

the 3D control points in the model. When a 2D feature is assigned 

to a model part, constraints (edges) are added to the graph to 

represent this measurement. When a new camera pose is added, 

edges are added to impose a motion model. When new 3D 

structure is initialised, constraints are added between 3D 

components, to incorporate knowledge of the scene’s structure. 

Some of these constraints connect more than two vertices; these 

are known as multiedges (technically, g2o operates on a 

‘hypergraph’), and each residual has an associated standard 

deviation σ. Examples of these constraints are shown in Figure 5, 

and include the following: 

(A) Each 2D feature (wire or post segment) introduces 

constraints (multiedges) between the camera pose and 

the two model control points. The residuals used are the 

shortest vectors between the measured 2D feature’s 

endpoints and the reprojected model (σ=1 pixel for 

wires, σ=10 pixels for posts). 

(B) Each reconstructed laser line point introduces a 

constraint between the camera pose and two control 

points. The residual is the shortest vector between the 

laser line point and the 3D model (σ=0.02m). 

(C) The high-tension wires are piecewise-straight, with 

small kinks. A multiedge connecting each set of three 

consecutive control points imposes this constraint 

(σ=0.02 rads). 

(D) Wires pass close-to, but not through posts.  A multiedge 

connecting wire and post control points imposes this 

constraint (σ=0.1m). 

(E) A constant velocity motion model (σ=1m/s2) is imposed 

with a constraint between each triple of consecutive 

camera poses.  

Currently Gaussian error distributions are assumed, so the 

optimisation minimises the squared residual errors, with residuals 

normalised by the appropriate σ.  

These constraints were chosen to model observed properties of the 

scene, and illustrate how easily additional knowledge and 

measurements can be incorporated into the framework.  

The g2o optimisation is run after 2D features are assigned to 

model parts, and after new model parts are initialised. Currently 

the full structure and trajectory are optimised, however for long-

term operation, the optimisation should be restricted to nearby 

structure so that computational costs do not grow with time. 

4. RESULTS 
The system is first evaluated on rendered images of simulated 

vines. These images are designed to recreate all of the features of 

the vines, posts and wires, and include a simulated structured light 

pattern. 

The system is started when a post comes into view, and the post is 

reconstructed first. Not all wires are in view in every frame, but 

five wires are reconstructed after the first four frames, and the 

sixth wire is added after 18 frames. After 24 frames the post goes 

out of view, however positioning can continue because of the 

combination of the wire observations and the motion model. Five 

wires are reconstructed and tracked all of the way to the next post, 

which is ten metres, 260 frames, and 35 seconds away. In many 

frames, some wire features are partly occluded, and are not 

detected, but overall, sufficient measurements are made that five 

wires are reconstructed all the way to the next post. One 

additional wire is reconstructed incorrectly from a thin, straight 

cane, however this does not affect the rest of the reconstruction, 

 

Figure 5: Control points for the 3D model components, 

and camera poses form the vertices in the g2o graph 

(marked with dots). Every time a set of frames is 

captured, a new camera pose and set of constraints (g2o 

edges or multiedges; dashed arrows) are added to the g2o 

graph (see text for explanation). 

 

 

Figure 6: 3D model backprojected onto a simulated 

rendered image (Frame 350), after passing the second post. 



and several other false detections are ignored. When the second 

post comes into view, it is reconstructed and added to the 3D 

model (Figure 6).  

Positioning continues beyond the second post, however the 

optimisation becomes slow as the size of the structure grows, so 

the system is stopped after 360 frames. At this point, the drift in 

estimated camera pose is 0.48m, or 4% of the 12m travelled, 

however this is partly due to the motion closely matching that 

predicted by the motion model. The drift does not affect the 

relative accuracy of the local 3D reconstruction. The final 

optimisation includes approximately 40 000 edges between 150 

3D point vertices and 360 camera pose vertices, with the 

optimisation itself still taking less than one second per iteration. 

The system is now run with the structured light disabled. The 

structure and trajectory are reconstructed correctly over the first 

few frames, however without structured light, the data association 

is more likely to be ambiguous. By frame 24, no wires are 

assigned to any part of the existing model, and the estimated 

trajectory drifts away from the 3D model.  

The system is now evaluated on real data collected in a vineyard. 

Again, wires and posts are initialised successfully, and are 

matched to measurements in subsequent frames. Figure 8 shows 

assignment statuses of some of the wires detected in a frame, and 

Figure 7 shows the 3D model backprojected into the frame 10. 

Before long, an incorrect correspondence causes a wire to be 

reconstructed incorrectly. The correspondence was not rejected as 

ambiguous because other nearby wires were occluded by canes, 

and were not detected. Subsequently, too few image features are 

matched unambiguously to the model, and the position drifts away 

after 16 frames. In another real dataset, positioning also fails after 

just a few frames because of a different kind of data association 

error: this time two 3D structured light points (on a small vine in 

the foreground) are incorrectly assigned to two wire parts. As a 

result, two new wires are initialised incorrectly, and subsequent 

data association fails.  

5. DISCUSSION 
The framework proposed in this paper is demonstrated to be 

capable of reconstructing the camera trajectory and a trellis 

structure from images of real and simulated vines. Positioning 

continues even when only wires are visible, and a model is 

reconstructed despite ambiguous correspondences, poor lighting, 

and the presence of complex vine structures. Modelling the 

properties of the scene being imaged is key for robust feature 

detection and for reconstructing the model. 

The main weakness of the system is the challenges involved in 

data association. Many features cannot be matched 

unambiguously because there are multiple similar-looking match 

candidates. In addition, some features are matched incorrectly, 

because other features are occluded and are not detected. These 

incorrect assignments can cause subsequent incorrect 

assignments, which eventually cause reconstruction to fail. Work 

on robustifying the system, and on better modelling uncertainty in 

pose is required in order to address these challenges. One 

promising solution could be to consider all possible assignments 

jointly, with a mutually compatible subset selected. The Joint 

Compatibility Branch and Bound algorithm [17] searches over 

possible assignments of image features to 3D points, and a similar 

approach could be applied to matching parts to models. An 

alternative approach being investigated is to use the optimisation 

framework to detect gross outliers: measurements which lead to 

structure which is unlikely given the model will be detected and 

removed.  

The processing time per-frame is around one second (after 50 

frames) half of which is feature extraction. The system has not yet 

been optimised, and currently all 3D structure is refined on each 

iteration. By limiting the optimisation to recent structure, and by 

parallelising and optimising the feature extraction, real-time 

(7.5Hz) operation should easily be achievable. 

6. CONCLUSIONS AND FUTURE WORK 
This paper has described how the g2o framework can be applied 

to a model-based 3D reconstruction problem. A partially-visible 

trellis which supports vines is reconstructed, and the system will 

now be extended to reconstruct the vines as well. By fitting a 

model to high-level features extracted from the image, including 

wire sections and posts, an accurate model is obtained. On 

rendered images of simulated vines, the reconstructed camera 

trajectory drifts by just 4% over 12 metres. On real data from a 

 

Figure 8: Most detected wire parts are assigned to the 3D 

model (green) although some are ambiguous (yellow) and 

one false detection is unassigned (red). 

 

 

Figure 7: 3D model backprojected to a real vine image. Not 

all wires are reconstructed, due to matching ambiguities. 

 



vineyard, the 3D structure is initially reconstructed successfully, 

despite poor lighting and occlusion, although eventually incorrect 

data association causes reconstruction to fail.  

Sparse 3D information from a structured light system is used to 

help match image features to model parts, and this enables 

matches to be resolved that would otherwise be ambiguous. Using 

the structured light, positioning continues for over 360 frames on 

the simulated images. 

The model-based framework proposed will now be extended to 

reconstruct a 3D model of the vines. The vines have a 

considerably more complex structure than the trellis however, and 

many canes are partially visible or occluded. Before the vines can 

be reconstructed in 3D, two challenging problems must be solved: 

firstly, the problem of extracting the topological structure of the 

vines from the images, and secondly, the problem of correctly 

corresponding 2D vine segments. We propose to address both of 

these problems by modelling the connected tree structure of the 

vines. As demonstrated with posts and wires, incorporating 

knowledge of the scene into the reconstruction framework enables 

complete models to be built even when components are only 

partly visible. 
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