
Finding a vine’s structure by bottom-up
parsing of cane edges

Tom Botterill and Richard Green
Department of Computer Science

University of Canterbury, Christchurch, NZ

Email: tom.botterill@canterbury.ac.nz

Steven Mills
Department of Computer Science

University of Otago Dunedin, NZ

Abstract—A vine pruning robot uses stereo cameras to build a
3D model of vines. The robot’s 3D reconstruction scheme requires
the 2D structure of the vine to be extracted from each image. This
paper describes how the 2D structure is extracted. We propose an
image grammar-based model for how a vine generates an image.
We extract cane edges from each image, then apply a bottom-
up parse of the cane edges to find a vine structure explaining
the image. The method is efficient and accurate, and the 2D
structures are complete enough that complete 3D models of vines
can be reconstructed. The scheme demonstrates the power of the
image grammar model for solving complex image interpretation
problems.

I. INTRODUCTION

Our team is developing a vine pruning robot that uses

images from trinocular stereo cameras to make a 3D model

of vines. The robot uses the 3D model to decide which canes

to remove, and to plan a path for the robot arm which makes

the cuts. The 3D model must be as complete and structurally-

correct as possible so that the vines are pruned correctly.

The robot uses a feature-based 3D reconstruction pipeline to

reconstruct a model of the vines. This paper describes the first

stage of this pipeline: extraction of the structure of the vine in

2D from each image. In subsequent stages, 2D structures from

multiple images are corresponded between views to give a 3D

model. The 3D model which is refined in a bundle adjustment

framework, and is extended as the robot moves and more

vines come into view [1]. An example of three stereo frames,

the extracted 2D structure, and a reconstructed 3D model are

shown in Figure 1.

Each vine consists of many individual branches (‘canes’),

which are connected in a tree structure. Our proposed algo-

rithm is designed to find the 2D structure of the vine present

in each image, including the positions of each individual cane,

and the connections between them, as shown in Figure 1. The

method is robust to occlusions between canes, variations in

scale, and the presence of junk such as tendrils and dead

leaves. To extract the structure as accurately as possible, the

system is guided by knowledge of the structure of vines, for

example that canes are smoothly curved and have uniform

thickness, and that the vines have an acyclic tree structure.

To represent this knowledge, we use an image grammar-based

model. This model is a set of rules describing how a vine

978-1-4799-0883-7/13/ c©$31.00 c©2013 IEEE

Fig. 1. The robot captures trinocular stereo frames (top), then the 2D structure
of the vine is extracted from each frame (middle). The 2D structure is used
to reconstruct a 3D model (bottom, shown backprojected onto one frame).

generates an image. To find the vine structure explaining

an image we first extract cane edges from the image, then

‘parse’ the image by recursively joining cane edge segments

to form longer cane edges, cane segments, then complete

canes. Resolving joins between these canes gives a complete

2D model of the vine. The proposed bottom-up approach is

relatively simple, but is effective at extracting the 2D structure

from the image: when used in the robot’s 3D reconstruction

system, near-complete 3D models of vines are reconstructed.

II. BACKGROUND

The process of extracting a 2D network structure from

an image is known as skeletonisation, and many different

skeletonisation algorithms have been developed. Gittoes et

al. [2] applied five different skeletonisation algorithms to

segmented images of vines, however the resulting cane net-

works contained many errors including gaps in the structure,

false detections due to junk in the images, artefacts from the

algorithms, and detections of different structures at different

scales. Bucksch et al. [3] and Huang et al. [4] recently applied

state-of-the-art skeletonisation methods to images of branch-

ing plants, and in both cases many branches are incorrectly

connected or missed entirely. The fundamental problem is

that the models implicit in the skeletonisation algorithms are

not appropriate for vines, and don’t use all of the available

information.

Systems for interpreting images which incorporate knowl-

edge of objects’ structure include those based on Stochastic

Image Grammars [5]. These methods describe how images are

generated by sets of objects, based on probabilistic rules about

object co-occurrences, relationships between objects, and de-

compositions of objects into image primitives. The Stochastic

Image Grammar model is analogous to the grammars used

by computer scientists to describe languages. The aim is that

images can be parsed in order to identify and interpret the

set of objects they contain [6]. To parse an image, a set of

primitives is extracted from the image (e.g. edges or segments),

then a sequence of rules (e.g. explaining how combinations

of parts form objects) which is likely to have generated that

image is found.

Image grammar researchers aim to develop methods to

represent thousands of object classes, and to automatically

learn rules from vast training datasets, so that almost any

image can be interpreted by a computer [5]. While these aims

has not yet been realised, grammar-like models are still useful

for representing knowledge in more restricted application

domains. Han and Zhu [6] used a six-rule model to segment

rectilinear manmade structures from cluttered scenes, and Lin

et al. [7] used grammers representing a small number of object

classes to detect objects despite occlusions.

More common model-based methods to locate objects in

images include boosted classifiers [8] and Active Shape Mod-

els [9], however image grammars can be more powerful than

these methods, as they can model objects with structural vari-

ation, they use knowledge about relationships between objects

to improve accuracy, and they provide an interpretation of the

scene as a whole [7]. In this paper we use a model of vines in

order to interpret images of vines. The image grammar model

is ideal for this purpose as vines have underlying structure

that can be represented by the grammar’s rules. Stochastic

grammars have long been used in computer graphics for

generating plant structures [10], [11]; these grammars generate

acyclic tree structures with curvature, thickness variation, and

fork angles sampled from approprate distributions.

III. FINDING THE VINE STRUCTURE IN AN IMAGE

To apply the ideas from image grammars to the problem of

finding a vine’s structure, we must first create a set of rules

to describe how a vine generates an image. To find a vine in

an image, we extract a set of primitives (cane edge segments)

from the image, then apply a bottom-up parse to these to find

a vine structure and parse tree which can generate the image.

Each stage is detailed in the following sections.

A. Hierarchical vine model

The hierarchical vine model describing how a vine creates

an image is illustrated in Figure 2. A vine consists of a set of

canes connected in a tree structure. Each cane is decomposed

into a sequence of shorter cane sections. Each cane section has

two edges, each of which is approximated by a polyline. Each

cane edge can be decomposed into a set of straight line cane

edge segments. These cane edge segments are the terminal

nodes in the grammar. The task we now aim to solve is to find

the vine structure given a set of cane edge segments extracted

from an image.

B. Extracting terminal nodes

The robot captures colour images showing the vines against

a blue background (Figure 1). A variant of background sub-

traction which models lighting and shadows is used to segment

the foreground from the background [1]. Next, wires are

detected and removed from each image [1]. The edges between

vines and the background are now simply the outline of the

foreground segments (Figure 3).

Before extracting vine edge segments, we apply a 3 × 3
median filter to reduce image noise and remove very small

features (tendrils), while preserving edges. We then use

OpenCV’s [12] contour finding function to extract the cane’s

outline. The Ramer-Douglas-Peucker algorithm [12], [13] is

applied to simplify the edge contours into sequences of straight

edge segments (polylines). Each straight edge segment forms

a terminal node. We compute a thickness attribute for every

cane edge segment by measuring the distance to the closest

segment on the foreground side of each.

C. Parsing a cane edge image

Our proposed model describes how any vine structure

generates a set of set of cane edges in an image. We now solve

the inverse problem of finding a vine structure which generates

this image. We find this vine structure with a bottom-up parse

of the cane edge segments, as follows:

1) Recursively join cane edge segments to form cane edges

(polylines)

TERMINALS: Individual
cane edge segments

STAGE 1: Join cane edge segments
to form complete edges

STAGE 2: Join complete edges
to form cane parts

STAGE 3: Join cane parts to
form canes

STAGE 4: Resolve endpoint and
connection statuses ForkEdge

Tip

Tip

Fig. 2. Our vine model explains how a vine creates an image, and enables the image to be parsed to recover the underlying vine structure.

2) Recursively join pairs of adjacent cane edges to form

cane parts

3) Recursively join cane parts to form complete canes

4) Resolve endpoint and connection statuses

The first three stages all involve repeatedly joining pairs of

parts (P1, P2) until no more pairs can be joined. Each stage

requires a binary predicate J(P1, P2) for deciding whether two

parts P1, P2 should be joined. These predicates are trained to

make accurate join decisions for vines, i.e. they encode the

knowledge about the vine’s structure.

In Stage 1, cane edge segments (or polylines) are joined

to make longer polylines. We consider pairs of cane edge

segments as join candidates if they are nearby and have similar

direction. We then decide if candidates should be joined by

considering the following attributes:

1) The angle, offset, and separation at the join

2) The thicknesses, length, and curvature of each cane edge

segment

We pose this problem as a binary classification problem: the

attributes above are concatenated to make a feature vector for

each pair of canes, then we use a Support Vector Machine

(SVM) to classify each as ‘join’ or ‘don’t join’.

We train the SVM on hand-labelled cane edge join candi-

dates, as shown in Figure 4. We use a ν-SVM with a Radial

Basis Function kernel and set hyperparameters to maximise

the two-fold cross-validation score—for details of SVMs

see [14] and [15]. The SVM is very effective at correctly

joining long edge sequences, as shown in Figure 5. Alternative

classifiers such as random forests or neural networks could

be used, however SVMs are computationally efficient and

outlier tolerant, and very often these classifiers all have similar

performance [16].

In Stage 2, we join pairs of adjacent cane edges to form

cane parts (Figure 6). We use two mesurements to decide

which edges to join: the median separation and maximum

separation relative to the cane edge’s thickness attributes. This

classification task is easier than Stage 1—we could use an

SVM again, but in practice a simpler model results in almost

no incorrect joins being made. We assume each attribute

is independent and Normal (with parameters estimated from

correctly-joined edges), then compute the likelihood of each

join. Pairs where the likelihood is above a threshold are joined.

In Stage 3, we join cane parts to form complete canes

(Figure 7). These joins connect cane parts separated by junk

Fig. 3. Images are segmented into foreground and background, posts and wires are detected and removed, and a median filter is applied to reduce noise. The
contours of the vines are extracted (left), then the Ramer-Douglas-Peucker algorithm is applied to the contours to find cane edge segment primitives (right).
Individual cane edge segments are shown in different colours.

Fig. 4. The SVM decides when to join cane edges, based on a range of
attributes including their thickness and curvature. This image shows typical
positive training examples in green (edges which should be joined), and
negative training examples in red (edges which should not be joined).

in the images (dead leaves) and across complex occlusions.

The attributes used to decide which cane parts to join are the

cane’s relative thicknesses and orientations, and the offset at

the join. Again, we compute the likelihood of a join being

correct, then join cane parts where the likelihood is above a

threshold.

The final stage, Stage 4, is to label the endpoints of the

extracted canes (Figure 8). We label each end ‘E’ for ‘edge’

endpoints which finish at the image edge; ‘T’ if the cane end

is a tip finishing in free space away from other canes, and

‘F’ if the endpoint is a fork from another cane. Ambiguous

endpoints are labelled ‘E’, as the 3D reconstruction framework

is designed to expect some parts to be incomplete [1].

Fig. 5. Edge sequences joined by the SVM. Most cane edges are joined
in long sequences corresponding to unique canes, and the SVM makes few
incorrect join decisions.

IV. RESULTS

Our vine extraction framework is designed to provide input

for building 3D models of the vines, so the best measure of

its performance is how well our system can use the 2D vines

to reconstruct the vines in 3D. The 3D reconstruction system

corresponds 2D canes between views, and then triangulates

their positions in 3D. As the robot moves, more 2D canes are

Fig. 6. Adjacent pairs of cane edges joined at Stage 2. These joins are
comparatively easy to detect.

Fig. 7. Two pairs of cane segments which are joined at Stage 3.

detected. The new 2D features are either assigned to existing

3D canes, or are used to extend the 3D model. Finally, an

incremental bundle adjustment jointly refines the structure and

camera positions [1]. Figure 1 shows the 2D structure and 3D

model of Riesling vines. The 3D model is almost complete—

the canes that are missed are only just in view. A video of the

2D vine extraction and 3D vine reconstruction is available as

supplementary material, and online at http://www.hilandtom.

com/tombotterill/vines.avi.

We also reconstructed 3D models of complex Sauvignon

Blanc vines. Extracted features, and the 3D model are shown

in Figure 9. In 2D, the majority of canes are recovered

correctly, but a few are missed or are incomplete. The 3D

reconstruction is only 62% complete however, due to the

difficulties in corresponding vines between views.

The system is implemented in C++ and runs on a single core

of an Intel i7 3.6GHz processor. The entire system requires

Fig. 8. Endpoint and connection statuses are resolved by comparing pairs
of canes. The vertical cane forks from the bottom cane and ends at a tip. The
endpoints of the bottom cane have not been resolved, so are given status ‘E’.

around 3 seconds per frame. Extracting the vine structure takes

between 70ms and 900ms, depending on the complexity of

the vines, however the code has not yet been optimised, and

optimisations will reduce these times considerably. The vine

structure extraction is efficient because the purely bottom up

approach rapidly reduces the number of parts which must be

considered (from pixels to edge pixels to cane edges to canes).

V. FUTURE WORK

The 3D reconstruction compensates for canes not being

detected in every image by incrementally building the model as

more canes are detected. However, the reconstruction would be

more complete and more accurate if more canes were detected

in each frame. Fortunately it is relatively easy to improve the

performance of our grammar-based vine extractor, because at

each stage of the algorithm, it is clear when decisions are

correct or not. We trained the system on just two images of

one vine species, and more training will improve performance

substantially. Other planned improvements include:

• Investigating alternative terminal nodes for the image

grammar, for example by detecting cane segments di-

rectly [17].

• Using Feature Subset Selection [18] to eliminate unnec-

essary descriptor components.

• Using intra-cane edges for model fitting, in addition to

the cane’s silhouette.

• The current bottom-up parser incorporates top-down

knowledge by rejecting joins, which results in canes being

missed. A more sophisticated parser could backtrack to

correct earlier mistakes [6], [7].

VI. CONCLUSION

This paper described an image grammar-based model which

describes how a vine creates an image. The model is used to

Fig. 9. 2D structure extracted from images of Sauvignon Blanc (left), and the corresponding 3D model (right; backprojected onto a different image).

identify the structure of vines in images by bottom-up parsing

of a set of cane edges. The structure found is sufficiently

accurate that the detected canes can be used in a 3D recon-

struction framework. The 3D vine models are near-complete

for simple vines, and are 62% complete for highly complex

Sauvignon Blanc vines. Planned improvements to both the 2D

cane extraction and the 3D reconstruction will improve the

completeness further.

This paper demonstrates the effectiveness of the image

grammar model for breaking down a complex image inter-

pretation task into a sequence of decisions. Similar models

could be applied in many different application domains where

complex structures are extracted from images, for example in

medical imaging problems.

REFERENCES

[1] T. Botterill, R. Green, and S. Mills, “Reconstructing partially visible
models using stereo vision, structured light, and the g2o framework,” in
Proc. Image and Vision Computing New Zealand, 2012.

[2] W. Gittoes, T. Botterill, and R. Green, “Quantitative analysis of skele-
tonisation algorithms for modelling of branches,” in Proc. Image and

Vision Computing New Zealand, 2011.

[3] A. Bucksch and S. Fleck, “Automated detection of branch dimensions in
woody skeletons of leafless fruit tree canopies,” in SILVILASER, 2009.

[4] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen,
“L1-medial skeleton of point cloud,” ACM Trans. Graph., vol. 32, no. 4,
pp. 65:1–65:8, 2013.

[5] S. C. Zhu and D. Mumford, A stochastic grammar of images. Now
Publishers Inc, 2007, vol. 2, no. 4.

[6] F. Han and S.-C. Zhu, “Bottom-up/top-down image parsing with attribute
grammar,” Trans. Pattern Analysis and Machine Intelligence, vol. 31,
no. 1, pp. 59–73, 2009.

[7] L. Lin, T. Wu, J. Porway, and Z. Xu, “A stochastic graph grammar for
compositional object representation and recognition,” Pattern Recogni-

tion, vol. 42, no. 7, pp. 1297–1307, 2009.

[8] M. Jones and P. Viola, “Fast multi-view face detection,” Mitsubishi

Electric Research Lab TR-20003-96, vol. 3, p. 14, 2003.

[9] T. Cootes, C. Taylor, D. Cooper, J. Graham et al., “Active shape
models—their training and application,” Computer vision and image

understanding, vol. 61, no. 1, pp. 38–59, 1995.

[10] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang, “Image-
based plant modeling,” in ACM Transactions on Graphics, vol. 25, no. 3,
2006, pp. 599–604.

[11] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan, “Development models
of herbaceous plants for computer imagery purposes,” in ACM SIG-

GRAPH, vol. 22, no. 4, 1988, pp. 141–150.
[12] OpenCV Computer Vision Library, n.d., http://opencv.org/.
[13] U. Ramer, “An iterative procedure for the polygonal approximation of

plane curves,” Computer Graphics and Image Processing, vol. 1, no. 3,
pp. 244 – 256, 1972.

[14] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector
classification,” 2003.

[15] B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett, “New support
vector algorithms,” Neural computation, vol. 12, no. 5, pp. 1207–1245,
2000.

[16] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine under
test,” Neurocomputing, vol. 55, no. 1, pp. 169–186, 2003.

[17] R. D. Castaneda Marin, T. Botterill, and R. Green, “Split-and-Merge EM
for vine image segmentation,” in Proc. Image and Vision Computing New

Zealand, Wellington, NZ, November 2013, pp. 1–6.
[18] A. Jain and D. Zongker, “Feature selection: Evaluation, application,

and small sample performance,” Trans. Pattern Analysis and Machine

Intelligence, vol. 19, no. 2, pp. 153–158, 1997.

