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ABSTRACT

A vine pruning robot builds a 3D model of vines using a
model-based feature matching and bundle adjustment pipeline.
It is important to model the entire structure of each vine in
order to plan collision-free paths for a robot arm, and to gen-
erate a connected vine structure. Each vine has a complex
lump of old growth known as the head, which is challenging
to model within the feature-based pipeline, so we use voxel
carving to find the visual hull of the head from many views.
The visual hull is a volumetric model containing the head,
so is ideal for collision avoidance.

This paper describes how the voxel carving algorithm is
integrated into the 3D vine modelling system. For our ap-
plication it is convenient to model the vine head as a set of
spheres, so we modify a standard voxel carving pipeline to
to fit a set of spheres to images of the vine head. We evalu-
ated the system on 300 stereo images of 15 vines: the voxel
carve is computationally efficient, and the models found are
over 90% complete.

Categories and Subject Descriptors

Computing methodologies [Artificial intelligence]: Com-
puter vision— Vision for robotics, Shape representations, 3D
imaging; Applied computing [Computers in other do-
mains|: Agriculture
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1. INTRODUCTION

We are developing a robotic system for automatically prun-
ing vines (Figure 1). The vines are imaged with three colour
cameras, then a computer vision system builds a 3D model
of the vines (Figure 2). An Al algorithm decides which canes
to cut, a path planner plans a collision-free path to reach the
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Figure 1: The vine pruning robot. The robot arm
and cameras are inside.

cuts, then a robot arm reaches and cuts the vines. The sys-
tem is mounted on a mobile platform which straddles the
row of vines, so that lighting is controlled and the vines are
imaged against a blue background.

The computer vision system for building 3D models is
based on a standard 3D reconstruction pipeline where fea-
ture locations are extracted from each image, a correspon-
dence between sets of features in different frames is found,
matched features are triangulated to make a 3D model, and
then the model is optimised using incremental bundle ad-
justment [8, 17]. Building a 3D model of vines by computer
vision is challenging however, because each image shows a
tangled network of overlapping canes, so to reconstruct a
complete and accurate model we customise each stage of
the 3D reconstruction pipeline to work well for vines. The
features extracted from each image are the positions of indi-
vidual canes, with the knowledge that each cane is a smooth
curve of uniform thickness used to guide the feature extrac-
tion [2]. The correspondence and 3D reconstruction of canes
is guided by the fact that the vines have an underlying tree
structure [3]. The resulting 3D model is a connected net-



work of 3D polylines, a polyline is a sequence of straight line
segments defined by a sequence of control points.

The head of a vine is a complex lump of wood which grows
around the top of the trunk over many years (Figure 2).
The system needs to model the head so that it can infer the
connections between canes and the trunk, and so that the
robot arm doesn’t collide with it (collisions with the head
and trunk could cause expensive damage to the arm). To
model the head we use vozel carving, a method for building
volumetric 3D models from many views, and which is ideal
for modelling complex-shaped obstacles for collision avoid-
ance. The following section reviews different 3D reconstruc-
tion methods, and explains why voxel carving is the method
most suitable for reconstructing the vines’ heads.

2. 3D RECONSTRUCTION METHODS

There are three common methods for estimating 3D mod-
els from 2D images: feature-based methods, dense-stereo
methods, and voxel carving, or silhouette-based, methods.
General-purpose feature-based methods for 3D reconstruc-
tion match point features (e.g. blobs described by SIFT
descriptors [12]) between views, triangulate them into 3D,
then use bundle adjustment to optimise the 3D structure [8,
17]. These methods generate sparse sets of 3D points from
multiple views, and perform best when objects have visually
distinctive features.

Another common method for 3D reconstruction is dense
stereo. Images from a pair of calibrated cameras are rectified
so that matching scanlines in the two images show the same
objects [16]. Dense stereo methods find a disparity map, a
dense mapping from pixels in one image to pixels on corre-
sponding scanlines in the other image. The disparity map
is optimised to jointly maximise a data term describing the
similarity of matching pixels, and a smoothness term impos-
ing regularisation constraints on the 3D structure (e.g. that
the disparity map should be piecewise smooth). From the
disparity map, a depth map of the surface of the 3D object
visible to the cameras is computed.

//Initialise: Fill space with 3D grid of voxels

//Carve:
foreach frame I with camera P do
foreach vozel X do
Project into frame: P : X — x
if I(x) is background then
| delete X
end
end
end

Result: Set of voxels defining visual hull of the
foreground segment.

Algorithm 1: Overview of standard voxel-carving al-
gorithm. Efficient implementations normally use octree
representations.

Voxel carving methods discretise 3D space into a set (e.g.
a regular grid) of small 3D regions known as voxels, analo-
gous to pixels. Initially, 3D space is filled with voxels. In its
simplest form, voxel carving involves considering each view
in turn, projecting every voxel into that view, then remov-

ing (carving) voxels inconsistent with that view, e.g. be-
cause they project to the background (Algorithm 1). There
are numerous variations and extensions for different appli-
cations: many approaches carve voxels which are not photo-
consistent, i.e. the voxel’s colour is not consistent with the
colour seen when projected into different images [10, 16],
other systems use octree representations of space to reduce
the number of voxels needed to model large objects [15]. An
alternative approach is to approximate object boundaries in
the image with polylines, and edit a mesh enclosing occu-
pied space to match all of the boundaries [13]. All of these
formulations lead to a 3D volume which encloses the actual
3D shape; this volume is known as a visual hull [10, 11].

Voxel carving methods work well when the foreground can
easily be segmented from the background [10, 9], and with
images from a large number of viewpoints. Kumar et al. [9]
use voxel carving to model plants imaged against a white
background. This allows the use of multiple views to resolve
the shape of similar-looking branches, although accurate cal-
ibration is essential to ensure that these fine structures are
not lost. Voxel carving methods can be computationally
expensive if a high resolution (i.e. a large number of vox-
els) is required, and using knowledge of the 3D structure to
regularise the reconstruction is challenging.

For our problem of modelling vines’ heads, we have mul-
tiple images of each head against a blue background. Cam-
era positions are available from the incremental bundle ad-
justment used to reconstruct the rest of the vines [1]. The
most reliable visual information about the head is its sil-
houette, as much of the texture on the head is caused by
occlusion by canes, shadows from canes, self-occlusions, and
because lighting and shadows vary as the mobile platform
moves. Reconstruction methods based on feature match-
ing often perform poorly in conditions like these, and unlike
voxel carving, provide only a sparse reconstruction, with no
guarantee that the entire object is modelled. Dense stereo
methods could be parametrised to work around the head
regions, but it is challenging to make efficient use of mul-
tiple views, and to ensure accurate reconstruction around
occlusions. In addition, dense stereo methods constrain the
shape of the 3D surface (e.g. force it to be smooth [16] or
piecewise fronto-parallel-planar [18]), so there is no guaran-
tee that it will enclose the actual head, leading to a risk of
collision [10]. As only the visible surface of the object is
reconstructed, there is also the problem of how to avoid col-
lisions with parts which were never viewed. The visual hull
computed by voxel carving avoids both of these problems:
any regions which are not observed to be obstacle free are
part of the visual hull, which is exactly the property needed
for computing collision free paths for a robot arm.

The intended uses of the head model are firstly, path plan-
ning for the robot arm; secondly, resolving joins between
canes and the head; and thirdly, visualising the vines. An
efficient representation of the head for all of these tasks is a
collection of spheres, each with a position and radius (Fig-
ure 2). Spheres are ideal as input for the path planner, as
computing collisions with spheres is simple, and because it
is trivial to add a “safety margin” [6] around spheres by in-
creasing their radius. Spheres are also suitable for connect-
ing the vine structure for the same reason. Spheres produce
“realistic-looking” vine models when rendered (Figure 2); im-
portant as the vine models are shown to human pruners who
‘prune’ digital vine models in order to label training data for



(a) One set of stereo frames from the robot’s three cameras

(b) 3D vine model reconstructed from many frames

Figure 2: A vine pruning robot uses a model-based feature matching and bundle adjustment pipeline to
reconstruct vines. The models are used for deciding which canes to prune (highlighted in orange), and for
planning collision-free paths for the robot arm. The complex head regions are challenging to model, so we

use voxel carving to fit volumetric models.

the AI [5]. In the following section we describe our modifi-
cation to voxel carving so that the resulting model is a set
of spheres.

3. VOXEL CARVING FOR VINE HEAD MOD-

ELLING

The robot arm and cameras are mounted on a mobile plat-
form which completely straddles the row of vines, so that the
vines are viewed against a blue background (Figure 3a). The
foreground vine pixels are segmented from the background,
then the 2D structure of the canes and trunks are found in
each image [2]. The head is the large region of foreground
pixels which is not explained by the canes or trunk. We iden-
tify this region by masking out the vines and trunk, then ap-
plying morphological opening [4, 16], a standard computer
vision technique which removes small features (remaining
canes and junk) from the images (Figure 3b).

Modifying voxel carving to fit a set of spheres (‘spherical
voxels’) to the head regions is simple: initialise 3D spheres
throughout a volume of space, then for every background
pixel in every image, intersect its ray with every sphere.
If the ray intersects the sphere reduce the sphere’s radius
(Algorithm 2). This approach is too inefficient for practical
use, as it has complexity O(INV'), where [ is the number
of images, N the number of pixels in each image, and V' the
number of voxels.

We use the fact that spheres project to circles to reduce
the complexity of the spherical-voxel carve, as outlined in
Algorithm 3. First, we compute a distance transform (Fig-
ure 3c) of the each foreground/background segmented im-
age. The distance transform, D, is an image where every
pixel value is the minimum Euclidean distance to the near-
est background pixel in the original image, and it can be
computed in time linear in the number of pixels [7]. Each
spherical voxel (X, R) is projected to a 2D point and radius



(a) Vine head region in original image
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Figure 3: Standard 2D image processing methods are used to identify the head region in each image.

//Initialise spheres:
Fill space with spheres centred at regular 3D grid.

//Carve:
foreach frame I with camera P do
foreach background pizel x do
foreach vozel (X, R) do
//R(x) is the ray through x
//Compute ray-voxel distance d:
d + distance(R(x), X)
R < min(R,d)
end

end
end

Result: Set of spheres defining visual hull of the
foreground segment.

Algorithm 2: Modification of standard voxel-carving
algorithm to fit spheres (simple but inefficient).

(x,7) in each image. The distance transform D(x) gives the
closest distance to the background, and forward-projecting
this distance back to the spherical voxel’s centre gives the
distance between the spherical voxel and the closest ray from
this image. As previously, if the distance is less than the
sphere’s radius then we reduce this radius. This approach
has complexity O(IN + IV for the distance transforms and
voxel carves respectively.

Two further optimisations reduce the computational cost
considerably, but do not reduce the complexity. Firstly, we
initialise only the voxels consistent with one image: vox-
els are initialised along a ray through each foreground pixel
at a suitable range of depths, with radii given by the dis-
tance transform. Secondly, we remove voxels smaller than a
threshold.

The region defined by the set of voxels has the prop-
erty that every sphere meets the outside of the region (this
is true when voxels are initialised because they meet the
ray through the nearest background pixel, then remains un-
changed when either the radius is reduced, or other voxels
are deleted). However, most small spheres are almost en-
tirely contained within a larger sphere. These can be deleted



foreach frame do

Identify head region (morphological opening)
Compute distance transform D

end

//Initialise spheres from one image I with camera P:
foreach pizel x where D(x) > 0 do
for depths d in dmin...dmaez do
Initialise new spherical voxels along ray
(X, R) « P~(x, D(x), d)
end

end

//Carve:
foreach frame with camera projection matriz P do
foreach spherical vozel (X, R) do
Project spherical voxel into frame:
P:(X,R)— (x,7)
if r < D(x) then
| R+ P7H(D(x))
end
end
end

//Model simplification heuristic:
foreach spherical vozel (X1, R1) do
foreach smaller (X2, R2) do
if || X1 — X2|| + R2 — R1 > thresh then
| Delete (X2, R2)
end
end
end

Result: Set of spheres defining visual hull of the
foreground segment.

Algorithm 3: Overview of sphere-carving algorithm.

with minimal change to the 3D model (worst case complex-
ity O(V?) but fast in practice).

4. RESULTS

We integrated the spherical voxel carve into the vine prun-
ing robot’s 3D vine reconstruction system. The system runs
online and asynchronously, with each frame captured after
the previous frame has been processed. Currently the sys-
tem takes 600ms per frame, corresponding to a robot speed
of up to 0.1m/s. The voxel carve takes an average of 20ms
per frame, and runs concurrently with other processes, so
does not increase the computational cost of the system sub-
stantially. 3D models containing both vines and spherical-
voxel head models are shown in Figure 2.

We ran the system on 300 images of Sauvignon Blanc
vines, reconstructing a total of 15 head models. We use
a 10mm voxel resolution, so that on average 7142 voxels are
initialised and 2090 remain after voxel carving. Figure 4
shows how the volume, and number of voxels, decrease as
more images are used in the carve. Each head models is re-
constructed from an average of 10.3 viewpoints, with a range
of 6 to 17. The volume of the reconstruction and number
of voxels falls as more viewpoints are used to carve voxels,
and as expected, most voxels are removed after the first few
viewpoints.
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Figure 5: Increasing the ‘safety margin’ around the
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Figure 6: The average number of foreground pix-
els missed increases as the number of viewpoints in-
creases, due to errors in camera pose.

The heuristic model simplification (deleting spheres al-
most entirely within others, with a 5mm threshold) reduces
the number of spheres from an average of 2090 to an av-
erage of 284, while reducing the model’s volume by only
2.0%. The main sources of error are quantisation errors,
errors from model simplification, errors in segmenting the
head model, and errors in camera pose. All of these errors
can cause the model to be smaller than the actual head re-
gion. A measure of these errors is the proportion of head
pixels which are not explained by the model (‘unmodelled
pixels’). On average, 9.8% of head pixels lie outside the
projection of the head model. Without a heuristic model
simplification this is 5.9%, indicating that the model simpli-
fication is an area for future improvement. For path plan-
ning, we add a safety margin to all models to minimise the
chance of collisions. Figure 5 shows that safety margin of
50mm reduces the proportion of unmodelled pixels to 2.5%,
but with a 380% increase in model volume. Figure 4 shows
that the average number of missing pixels increases as more
viewpoints are used, due to variations in segmentation and
errors in camera pose. Figure 4 showed that the volume de-
creases slowly after the first few models are added; together
these figures suggest that a safe (and efficient) strategy for
avoiding incomplete models is to use a smaller subset of all
available viewpoints for each head model. We also plan to
investigate more robust voxel carving criteria, e.g. reducing
sphere size to avoid the nth closest background pixel rather
than the closest, which has the potential to mitigate all of
these sources of error.
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Figure 4: 15 head models (different colours) are reconstructed from between 6 and 17 viewpoints each. The
number of voxels, and volume of the head model, fall as more images are added.

Figure 7: The ROS Movelt path planner’s visuali-
sation of the 3D head model and robot arm.

The 3D vine and head models are used to plan paths for
a six degree-of-freedom robot arm, using the Movelt path
planner library in Robot Operating System (ROS) [14]. Fig-
ure 7 shows ROS’s visualisation of the robot arm and vines.

S. CONCLUSIONS

This paper described how voxel carving is used by a vine
pruning robot to model complex ‘head’ parts of vines, in
order to generate complete 3D models for robot collision
avoidance. Voxel carving is ideal for this application as it
uses multiple views to fit a volumetric model which contains
the vine head (a ‘visual hull’).

For our application, it is convenient to model the head as a
set of spheres, so we modify a standard voxel carving pipeline
to do this. The system is evaluated on 300 stereo images of
15 vines: the 3D models generated are over 90% compatible
with the images of the vines, and for path planning this
can be increased to 97.5% with a 50mm safety margin. The
voxel carve takes 20ms to fit a head model, compared with
600ms per frame for the rest of the vision pipeline.
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