
 

Abstract—Digital Image-based Elasto-Tomography (DIET) is a 

prototype system for breast cancer screening. A breast is imaged 

while being vibrated, and the observed surface motion is used to 

infer the internal stiffness of the breast, hence identifying 

tumours. This paper describes a computer vision system for 

accurately measuring three-dimensional surface motion. A 

model-based segmentation is used to identify the profile of the 

breast in each image, and the 3D surface is reconstructed by 

fitting a model to the profiles. The surface motion is measured 

using a modern optical flow implementation customised to the 

application, then trajectories of points on the 3D surface are 

given by fusing the optical flow with the reconstructed surfaces. 

On data from human trials, the system is shown to exceed the 

performance of an earlier marker-based system at tracking skin 

surface motion. We demonstrate that the system can detect a 

10mm tumour in a silicone phantom breast.  

Index Terms—Cancer detection, Image motion analysis, 3D 

reconstruction, Object segmentation  

I. INTRODUCTION 

igital Image-based Elasto-Tomography (DIET) is a 

prototype system for breast cancer screening. It works by 

inducing steady-state oscillation in a breast, then imaging its 

surface with cameras. The observed surface motion is used to 

infer the internal stiffness of the breast, hence identifying 

tumours [1]. The system is intended to provide a safer, 

cheaper, and pain-free alternative to mammograms.  

The first DIET system measured the skin surface motion by 

tracking hundreds of coloured markers [2]. Detected marker 

positions are matched between consecutive images, and 

between neighbouring cameras, enabling the 3D motion of 

each marker to be reconstructed. The time and inconvenience 

needed to apply markers to the breast is undesirable in a low-

cost screening system, hence we have developed a system that 

reconstructs the surface motion without markers. The 

proposed system first reconstructs the breast’s surface in 3D 

by fitting a model to the profiles of the breast observed in the 

images, then measures the surface motion of the skin by 

computing the optical flow between frames. The 3D 
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trajectories of points on the breast’s surface are given by 

combining the optical flow with the 3D surface model. This 

paper describes this new computer vision system, and 

demonstrates that its accuracy exceeds the accuracy of the 

previous marker-based system on images from human trials.   

A. The DIET imaging system 

The DIET system uses elastography to detect tumours. The 

breast hangs freely in the machine while being mechanically 

actuated from below at a frequency   (between 20Hz and 

80Hz), with an amplitude of approximately 1mm. The breast 

enters a steady-state motion with period    . The breast is 

imaged by five cameras arranged in a ring (Figure 1). At   

equally spaced points in the cycle (usually     ), the five 

cameras each image the breast, giving   images per camera 

showing the breast at   stages throughout the motion cycle. 

The cameras and actuator are synchronised by strobing a set of 

LEDs at specific phases in the cycle. 

The current marker-based approach to 3D surface motion 

estimation tracks and reconstructs the positions of about two 

thousand coloured markers (paper dots) attached to the breast. 

Markers are detected by thresholding by pixel colour, and 

each marker’s centroid is computed. Frame-to-frame motion is 

small compared with the size of the markers, enabling markers 

to be tracked between frames. To reconstruct the breast 

surface motion, all possible correspondences between pairs of 

markers (along epipolar lines) are computed, and the correctly 

reconstructed marker positions are selected using a local 
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Figure 1: The DIET machine, showing two of the five 

cameras, the actuator, and a silicon phantom breast. 

The cameras are 25cm from the breast, and the 

machine measures 80cm by 71cm by 38cm. 
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Random Sample Consensus (RANSAC)-based approach [2].  

To detect tumours we examine the phase of the motion with 

respect to the actuator across the breast; this approach can 

detect tumours in silicone ‘phantom’ breasts, as the region 

around the tumour has a smaller phase difference than other 

parts of the breast [3]. Preliminary human trials have shown 

differences in surface motion between breasts with and 

without tumours [4]. An alternative approach we are currently 

investigating is to build a finite element model of the breast, 

and to optimise the internal stiffness so that the modelled 

surface motion matches the observed motion [5].  

Alternative methods for measure breast stiffness include 

ultrasound elastography and Magnetic Resonance (MR) 

elastography. Ultrasound elastography identifies stiffer 

regions by measuring the relative speed and attenuation of 

ultrasound through tumours and healthy tissue, and is widely 

used for assessing breast tumour malignancy [6, 7], however 

requires skilled operators. MR elastography systems induce 

vibrations in the breast while imaging the tissue motion using 

an MR scanner [8], however MR imaging is expensive. The 

limitations of these approaches motivate the development of 

alternatives such as DIET. 

The focus of this paper is our new system for measuring the 

3D surface motion of breasts imaged in the DIET machine 

without requiring markers. The main contribution is to 

describe the computer vision system which measures this 

motion, and to demonstrate that it matches the performance of 

the old marker based system at accurately recovering the 

surface motion, and at detecting tumours in silicone phantom 

breasts. 

II. BACKGROUND 

3D surface reconstruction is a common task in computer 

vision and medical imaging, and many techniques are 

available. Similarly, many techniques have been developed for 

computing optical flow. This section first reviews techniques 

for 3D surface reconstruction from images; and second, 

evaluates the optical flow methods best suited to the 

application.  

A. Image-based 3D surface reconstruction  

Many applications require a parameterised 3D model of an 

object to be estimated from a set of images, e.g. [9, 10, 11, 

12]. There are two basic approaches to model fitting from 2D 

images: one approach is to reconstruct some 3D data directly 

from the images, then to refine the model parameters so that 

the model matches the 3D data. The second approach is to use 

the object’s properties to locate the model in each 2D image, 

and then refine model parameters so the object's projection 

back into the images matches its observed location [13, 14]. 

Common approaches for estimating 3D data directly from 

2D images include dense stereo algorithms [15], feature 

matching algorithms [14, 16], and Shape from Shading 

algorithms [17]. These algorithms make assumptions about the 

scene in order for the reconstructions to be unambiguous, for 

example dense stereo algorithms make the assumption that the 

surface is either smooth or piecewise planar [18, 19]; feature-

matching approaches generally discard ambiguous matches 

[16], and can only reconstruct objects where matchable 

features can be identified; and Shape from Shading algorithms 

assume the surface has uniform colour [17]. These 

assumptions are not appropriate for breast surfaces, where 

matchable features aren’t present, and where there is 

significant variation in colour from lighting and reflectance 

variation across the breast. Other active sensors suitable for 

3D imaging in clinical settings include structured light 

systems or Time-of-Flight cameras, however these sensors add 

to the cost of a system. 

A 3D reconstruction method that is well suited to breast 

surface reconstruction is Shape from Silhouette [20]. Shape 

from Silhouette methods find an object’s outline in each 

image, then optimise model parameters so that the model 

backprojected into each image matches the silhouette [21, 22]. 

The error term which is minimised is analogous to the 

reprojection error in bundle adjustment [13, 14], and as with 

bundle adjustment, additional knowledge of the object’s 

structure can be incorporated into the optimisation. Shape-

from-silhouette is ideal for breast surface reconstruction, as 

the outline of breasts can easily be extracted from images, and 

knowledge that the breast surface is smooth can be used to 

constrain the reconstruction. 

For fitting smooth 3D solid objects to a set of silhouettes, 

Jones and Oakley proposed the radial intersection set 

representation [23], where objects are represented as a 

parametric function of the angles       in spherical polar 

coordinates. The surface is discretised into a grid of       

points. For each      , the set of points where that ray 

intersects the surface is estimated, enabling complex non-

convex 3D shapes to be represented. A similar representation 

is proposed by Staib and Duncan [24], who represent smooth 

3D surfaces by a function of two parameters. The Fourier 

coefficients are optimised to match the surface to image edges. 

Prior knowledge is incorporated by adding constraints on the 

Fourier coefficients to the optimisation. The method is used to 

reconstruct the surface of a brain from MRI images. A similar 

approach is used by Zheng et al. [12] to fit parametric models 

of femurs to X-ray images. Hybrid silhouette and feature-

based systems are the current state-of-the-art methods for 

markerless hand tracking and human motion capture [11, 25].  

B. Breast model reconstruction 

Systems for estimating 3D models of breasts have been 

developed for monitoring the effects of breast surgery. These 

use a range of 3D imaging sensors, including NMR and laser 

scanners [26], and structured light [27]. Carter [28] uses a 

combination of stereo images, detected markers, and 

structured light for modelling the breast position during 

surgery, so that the position of a tumour can be tracked as the 

breast deforms. Any of these sensors could be used for breast 

model reconstruction in the DIET system, however the current 

colour camera-based system is inexpensive, provides 

sufficiently accurate 3D models, and is also well suited for 

surface motion estimation.  



 3 

C. Surface tracking and optical flow estimation 

When two images of a moving scene are captured in quick 

succession, the positions of objects in the scene move a small 

amount between views. Optical flow algorithms find the 

mapping between the positions of objects in two successive 

views. There are two basic types of optical flow algorithm: 

sparse optical flow algorithms select a set of points in the 

image which make good features to track (by applying a 

corner detector), then identify the location of the same points 

in the second image, e.g. by using the Lucas Kanade tracking 

algorithm [29]. By contrast, dense optical flow algorithms find 

a continuous, or piecewise continuous, vector field mapping 

each pixel in one image to its corresponding location in the 

other [30]. Modern dense optical flow algorithms  [31, 32] are 

generally based on the classic formulation by Horn and 

Schunck [33]. These algorithms optimise an optical flow field 

to minimise both the difference in appearance between 

corresponding pixels and its smoothness. Both dense and 

sparse optical flow methods are subject to outliers (incorrect 

motion estimates) when the motion is ambiguous, however 

dense methods have the advantage that smoothness constraints 

enforce consistent flow estimates across untextured surfaces. 

A further advantage for our application is that small variations 

in texture can be tracked, without having to identify trackable 

features. 

Dense optical flow was used by Bradley et al. for tracking 

skin surface motion for modelling facial expressions [34]. The 

skin texture is sufficient that very small (subpixel) motions 

can be tracked, enabling optical flow-based systems to replace 

earlier marker-based systems. Dense optical flow is often used 

for deformable image alignment, for example for aligning 

Magnetic Resonance (MR), Computed Tomography (CT), or 

ultrasound images of organs as they deform [35]. These 

applications are susceptible to lighting or image intensity 

variation, so lighting should be controlled in hardware or 

corrected in software to ensure accurate results.  

III. PROPOSED MOTION RECONSTRUCTION ALGORITHM 

This section describes the combination of algorithms used 

to compute the 3D motion of points on the breast surface, 

given a set of     images captured by the five cameras. This 

process consists of four stages: first, each image is segmented, 

to accurately localise the profile of the breast. Second, for 

each timestep, a 3D surface model of the breast is estimated 

by fitting a model to the breast profiles. Third, the skin surface 

motion between images from each pair of consecutive 

timesteps is computed with a dense optical flow algorithm. 

Fourth, the 3D surface motion is estimated by combining the 

optical flow fields with the reconstructed surfaces. An 

overview of this processing pipeline is given in Figure 2.  

Extensive use is made of standard methods in multi-view 

geometry, in particular the Levenberg-Marquardt algorithm 

for nonlinear optimisation, and the projective geometry of 

calibrated cameras. Details of these methods are in Hartley 

and Zisserman [13]. 

A. Model-based segmentation of breast 

The DIET machine is designed to image a range of breast 

shapes and sizes, so the position of the breast and actuator in 

each image varies substantially between trials. The positions 

of the boundaries of these components are prerequisites for 

reconstructing the breast surface so are computed first. To 

segment these components, a sequence of standard computer 

vision methods is used. First, images are normalised to reduce 

the effects of variation in colour and lighting between datasets 

and at different timesteps. Second, a simple colour-based 

segmentation of the different components of the scene is 

performed. Third, a model-based approach is used to find 

different scene components in the colour-segmented images. 

For the colour-based segmentation, the distributions of the 

intensity and saturation on the breast, background, and 

actuator are each modelled as a 2D Gaussian. These models 

1. Segment breast images 
For each camera: 

Localise breast and actuator 

For each timestep: 

Refine contour location to accurately 

match breast edge 

2. Reconstruct surfaces 

For each timestep: 

Reconstruct breast surface 

3. Compute optical flow 

For each camera: 

For each consecutive pair of frames: 

Compute optical flow 

4. Reconstruct surface motion 

Project optical flow onto surfaces to recover 

surface motion.  

Figure 2: Overview of image processing pipeline. 

 
Figure 3: A silicone phantom breast without markers, 

showing the segmentation of the breast's profile and 

actuator location. 
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give the likelihood of each pixel being background, breast or 

actuator. This segmentation produces an ‘actuator image’ 

where the actuator components are clearly visible, and a ‘skin 

image’, from which the breast location and profile can be 

extracted. 

The model-based segmentation extracts the actuator from 

the actuator image, and the breast from the skin image. The 

approximate positions of both the actuator and the breast are 

initialised by applying Kadane’s two-dimensional Maximal 

Subarray Algorithm [36] to these images. The actuator 

position is refined using Levenberg-Marquardt’s method to 

optimise the parameters of the model (a rod connected to an 

ellipse) to match each image. 

To locate the breast in the skin image, an Active Contour 

Model (or ‘snake’) is used [37]. The Active Contour Model 

fits a polyline to the breast profile by iteratively moving the 

polyline control points to maximise the fit of the line to the 

image (minimise ‘external energy’), while minimising a 

measure of the line’s curvature (‘internal energy’). External 

energy is computed from the response of an edge detector 

applied to the skin image. Once refinement is complete, 

knowledge of the approximate hole location is used to divide 

the polyline into three parts: the two breast profiles (left and 

right), and the profile of the circular hole around the breast. A 

segmented image is shown in Figure 3. 

To ensure that the segmentation is efficient, and to aid 

convergence, an image pyramid is used: the segmentation is 

first performed on a downsampled image, then the results of 

this segmentation is used to initialise the segmentation at a 

larger scale. For each camera, the segmentation algorithm is 

applied first to the average of the   images, then this 

segmentation is used to initialise the segmentation for the 

other images. The breast profile and actuator position change 

from frame-to-frame, so are refined for each image. 

Once the segmentation is computed, the 3D positions of the 

actuator, and the circular hole around the breast, are found by 

fitting a 3D circle to each using Levenberg-Marquardt 

optimisation. On each iteration, points are sampled from the 

3D circles and projected into the images. The distance 

between these points and the measured hole or actuator 

positions (the reprojection errors) are minimised. 

B. 3D surface reconstruction from profile 

The next stage of the reconstruction is to estimate a 

parametric 3D model of the breast surface from the segmented 

images, for each of the   frames. The surface model is 

estimated so that the profile of the breast model projected back 

into the images matches the contours detected in the images 

(Figure 4). 

We use a parametric representation of the breast surface in 

spherical polar coordinates        . The origin is fixed at the 

centre of the machine’s circular hole. We estimate the radial 

distance r for each of a grid of       points by using 

Levenberg-Marquardt optimisation to minimise both the fit 

between the model and the breast contours and a measure of 

surface smoothness. The reprojection error, which measures 

the fit between the model and the breast contours, is computed 

by projecting model points into the images, then comparing 

these points with the measured profile positions. To impose 

the smoothness constraint we minimise the difference between 

values of r for neighbouring points. A grid of reconstructed 

3D surface points backprojected onto a breast image is shown 

 

(a) Each camera views the breast from one side. 

The 2D profile of the breast (dashed) gives a 

constraint on the 3D surface. 

 
(b) View showing the five cameras and five 

profiles from below the breast. The profiles, 

together with a smoothness constraint, 

enable the 3D surface to be recovered. 
 

 

 

Figure 4: The DIET machine contains five cameras arranged in a ring around the breast. The 3D surface is found by 

fitting a model to the five profiles. 
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in Figure 5. 

C. Optical flow computation 

We estimate skin surface motion by applying a modern 

dense optical flow algorithm to pairs of successive frames. 

The aim is to recover this motion by tracking the skin’s 

texture. There is sufficient variation in skin texture on a small 

scale that the surface motion is obvious when images are 

displayed successively; however a larger source of variation 

between frames is the illumination change caused by the skin 

angle changing with respect to the lights, and by spatial 

variation in light intensity [38]. To ensure accurate optical 

flow estimation, we have adapted the method of Sun et al. 

[31], to correct for variations in lighting, and to enforce 

smooth and continuous optical flow.  

Given two images,   ,    with grey (or colour) values       

and       at a pixel location  , optical flow algorithms seek to 

estimate a 2D vector field   with value      at each pixel, 

with the properties that   is (piecewise) smooth, and the 

appearance of    warped by   matches the appearance of   . 

  is found by minimising a global error function which 

penalises differences in appearance between    warped by   

and    (the ‘data’ term), and which enforces   to be smooth 

(the ‘spatial’ term). At each pixel  , the data term is given by: 

                       (      )   

(1)  

      measures the similarity of corresponding points in the 

two images. The spatial error term is given by: 

            ∑ (        (          ))
          

      

  

(2)  

         measures the smoothness of   at  .       and          

are cost functions penalising errors in the data and spatial 

terms.   is then estimated by minimising the total cost: 

∑ [                      ] 

            

 

(3)  

where   controls the relative importance of these two 

constraints.  

  is estimated by an iterative gradient descent procedure: 

on each iteration Equation 3 is linearised and an update to   is 

computed.   is estimated on a sequence of downsampled 

images (an image pyramid), the results from each of which is 

used to initialise the next higher resolution level. This allows 

large motions (tens of pixels) to be tracked. 

Horn and Schunck [33] used quadratic cost functions 

         and      , however a key innovation in modern 

optical flow algorithms is to use robust cost functions which 

enable optical flow discontinuities at occlusion boundaries to 

be estimated correctly [31]. On the breast surface, these are no 

occlusion boundaries, so a cost function penalising large flow 

discontinuities (i.e. a quadratic         ) is appropriate. 

Another important innovation in optical flow estimation is to 

apply a median filter to smooth optical flow updates, which 

suppresses artefacts introduced by image noise, while 

preserving flow discontinuities [31]. As before, there are no 

flow discontinuities on the breast, so a Gaussian filter is more 

appropriate. 

A limitation of dense optical flow techniques is their 

 
Figure 5: 3D surface backprojected onto a breast 

image, showing rings of 3D surface points and the 

detected positions of the breast profile and actuator. 

           
Figure 6: Silicone phantom breast with markers attached. Left: before correcting for lighting variation; right: after 

lighting correction. 
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sensitivity to lighting variation [31, 35]. Without prior 

knowledge of the scene, methods such as the Rudin-Osher-

Fatemi method [39] are often applied to reduce the effects of 

lighting variation and image noise. The lighting variation is 

spatially smooth on the breast surface, so lighting levels across 

the breast are estimated by convolving the greyscaled image 

with a large Gaussian kernel. We then correct for lighting 

variation by scaling each pixel colour so that the lighting 

across the breast is uniform (Figure 6). 

The optical flow implementation has several free 

parameters to set, including the filter sizes for spatially 

averaging updates and for removing the effect of lighting 

variation (equivalent to the scale on which variations in 

intensity are due to lighting variation rather than texture), and 

the parameter   controlling the relative importance of the 

spatial and data terms. These parameters are set using a grid-

search. An image set not used elsewhere is used, and 

parameters for colour and greyscale are set separately.  

The optical flow field is computed independently for each 

pair of consecutive frames, for every camera. The following 

section describes how these optical flow fields are combined 

with the 3D surfaces to estimate the 3D surface motion. 

D. 3D surface motion reconstruction 

The final stage of our proposed processing pipeline is to 

reconstruct the motion of a set of 3D points on the breast 

surface. We can reconstruct the motion of any 3D point on the 

breast surface by using another optimisation to fuse the optical 

flow and the 3D surface model. 

Each 3D surface point has coordinates             
over   timesteps. These points each lie on the corresponding 

surface  , the estimate of which has errors which are assumed 

to be independent and normally distributed with standard 

deviation   . We seek   minimising: 

 

        
  ∑ (

       

  

)

  

   

 

(4)  

where         is the distance of point    from the surface  . 

Each point’s motion is also constrained by one camera’s 

optical flow fields. This camera has a projection function   

mapping points from 3D space to pixel coordinates. For each 

 , this introduces the constraint: 

   
  ∑ (

                                

   

)

  

   

 

(5)  

where     is the error in estimating the optical flow.  

For each point track  ,    is fixed and           are 

optimised to minimise         
     

 . The smoothness 

constraints imposed earlier when estimating the surface and 

optical flow fields ensure that neighbouring points have 

similar motion. The motion of each of a set of 2500 random 

points is reconstructed in this way. These points provide input 

for the DIET diagnostic system. 

E. Efficiency and implementation considerations 

The system is implemented in C++, and makes extensive 

use of the Eigen matrix library [40] and the OpenCV computer 

vision library [41]. Reconstructing moving points on a breast 

takes 60 seconds on a Windows PC with an Intel i7 12-core 

processor running at 3.2GHz. This reconstruction includes 

segmenting 50 images sized          , reconstructing 10 

3D surface profiles, computing 50 optical flow fields, and 

reconstructing 2500 moving surface points. A similar time is 

required by each of these four stages, each of which could be 

further optimised to reduce the time required. Image sets 

captured at multiple frequencies for each patient are required; 

however data from different frequencies could be processed in 

parallel, enabling a diagnosis to be made within minutes of the 

images being captured.  

IV. DATA COLLECTION AND ACCURACY EVALUATION 

In this paper we evaluate the system on data from human 

trials, on images simulated from human data, and on images of 

silicone phantom breasts.  

Data from a preliminary human trial conducted in October 

2010 is used. 16 patients receiving routine screening at 

Canterbury Breastcare volunteered to participate in the trial. 

All subjects were imaged with markers, and nine also had one 

breast imaged without markers. These nine datasets are used 

to evaluate the accuracy of the markerless system. 

Silicone phantom breasts are used for the development of 

the DIET system. The phantom breasts are moulded from 

room temperature vulcanizing (RTV) silicones which are 

selected to match the elastic properties of human breasts. 

Inclusions of denser silicone are used to simulate 

tumours. The construction of the phantom breasts is 

described in detail in [42].  

V. QUANTIFYING OPTICAL FLOW ACCURACY 

For the human data, absolute ground truth is not available, 

but we can still quantify the errors in the optical flow by using 

the knowledge that the motion of the breast surface is cyclic. 

This section describes how. 

The   images captured from each camera show the breast 

at   points throughout its cyclic motion.   optical flow fields 

are computed, between every pair of consecutive frames and 

between the  th and first frames. If there were no errors in the 

optical flow, then a point tracked through the   optical flow 

fields should return to its start position. Because of errors in 

estimating the optical flow, the point’s track does not return to 

exactly the same start point, as shown in Figure 7. We use this 

difference between the start and end positions of a set of tracks 

to estimate the error in the optical flow estimates.  

A point on the breast is tracked through the   optical flow 

fields by accumulating   optical flow estimates   ̂     ̂   
along its path through the   images. We assume that each 

component of the optical flow estimate  ̂ ,  ̂ 
         , is 

normally distributed about the true optical flow   
  with mean 

0 and standard deviation  |  
 |. Because the motion is cyclic, 
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each point on the breast moves back to exactly the same 

position after   frames, so ∑     
 

   
. We use this property 

to estimate the relative error   in the optical flow as follows: 

 ̂ 
     (  

  (   
 )

 
)  ∑ ( ̂ 

 ) 
 

   
   (    ∑ (  

 )
 
 

 

   
) 

(1)  

If we assume      , so that  ̂ 
    

 , then 

     

∑  ̂ 
  

 

   

√∑   ̂ 
    

 

   

 

(2)  

is a sample from        . By computing   at   points across 

the breast,        , where we assume the errors to be 

independent, we estimate  ̂   √
 

 
∑     

  
    . 

For each dataset, we compute   at       points across the 

breast, and hence estimate the relative error   ̂.  

A. Simulating data to evaluate optical flow accuracy 

To verify that the errors in optical flow are being quantified 

correctly, we also evaluate the system on simulated image 

pairs, where the optical flow between the images is known. 

For one image from each dataset, we simulate an optical flow 

field and use it to warp the image to generate a second image. 

The warps are spatially variable, and have magnitude between 

0 and 15 pixels. To simulate sensor noise, Gaussian noise with 

standard deviation of 5 greylevels is added to each pixel of 

each colour channel. To simulate lighting changes, a large 

specular reflection (50% brighter) is added to one image. The 

image noise, lighting change, and optical flow all have similar 

magnitude to those seen in real image pairs. We then compute 

the optical flow between the pairs of two images, and compute 

the relative error  .  

VI. RESULTS 

This section evaluates the accuracy of the proposed system, 

and compares it with the marker-based system. In Section 

VI.A, the accuracy of the 3D surface reconstruction is 

quantified. In Section VI.B, the accuracy of the optical flow 

estimation is estimated, and the effects of different 

implementation choices are evaluated. In Section VI.C, the 

surface motion reconstruction is compared with the surface 

motion computed by the marker tracking scheme. In Section 

VI.D, the system is used to detect tumours in silicone phantom 

breasts. 

A. 3D surface reconstruction accuracy 

The accuracy of the 3D surface reconstruction is evaluated 

by refining the surface to fit only one side of each profile. The 

RMS error between the backprojected 3D surface and the 

other side of the profiles gives an estimate of the error in the 

surface.  

The surface reconstruction accuracy is evaluated on the nine 

human datasets without markers. The breasts vary 

significantly in size and shape. The RMS error along the five 

half-profiles not included in the optimisation is 9.8 pixels, or 

2.3mm, which is less than 2% of the breast diameter. When all 

ten constraints are included in the optimisation, surface height 

errors between profiles will be considerably lower.  

A second measure of surface reconstruction accuracy is 

given by comparing breast volumes for the reconstructions 

from each of the   timesteps. We computed the standard 

deviation of the   breast volumes for each of the nine 

 
 

Figure 7: Points on the breast move back to the same position after   frames, but when we track a point through the   

optical flow fields, the point does not return to exactly the same point because of errors in the optical flow. We use the 

sum of the optical flow vectors around these point tracks to quantify the error in the optical flow (best viewed in colour). 
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datasets. The average standard deviation is 1.8% of the breast 

volume. The breast volume is cubic in the measured surface 

heights, so assuming errors in computing the   breast volumes 

for each dataset are independent, the mean error in surface 

height is about 0.6%, or about 0.8mm for each breast.  

B. Optical flow accuracy 

This section quantifies the accuracy of the optical flow 

estimates, and provides justification for the different 

implementation choices made. Three implementation choices 

for the optical flow algorithm are considered: whether to use 

greyscale or colour images, whether to correct for lighting 

variations, and whether to use an edge-preserving median 

filter for spatial averaging of the optical flow field.  

The relative errors in the optical flow are evaluated firstly 

on data simulated by warping real images, so that an absolute 

ground truth is available, and secondly on data from human 

trials, where the accuracy is inferred from the surface’s cyclic 

motion. Figure 8 shows how different implementation choices 

affect accuracy. The choice with the largest impact is the 

lighting correction, which improves accuracy by an average of 

69%. With lighting correction, the relative error   averages 

6%, corresponding to an average error of 0.13 pixels. On the 

real images, there is no advantage of using colour 

information—intensity variations are sufficient to capture the 

texture information present in the images, most likely because 

colour changes from Bayer interpolation artefacts and image 

noise are larger than variations from local differences in skin 

colour. On the simulated image pairs, colour information 

together with lighting correction gives substantially better 

performance than when using greyscale images; however the 

simulation is not modelling the Bayer imaging process, or the 

fact that colours measured by the camera vary with lighting 

levels. These factors account for the differences between real 

and simulated images. 

For both real and simulated data the performance of a 

median filter for spatially averaging updates is relatively poor 

compared to a Gaussian filter, indicating that the spatial 

continuity of the optical flow field imposed by the Gaussian 

filter is effective at supressing the effects of noise.  

C. Comparison with marker-based system 

To compare the new system directly with the marker-based 

system, both were used to reconstruct points on 12 human 

datasets with markers. The point cloud computed by the 

marker-based system is compared with the surface and surface 

motion estimated by the new system. 

The marker-based system reconstructs the 3D position of 

each marker at each timestep from its measured location in 

images from two cameras. Each marker is tracked over the   

 
(a) Effects on accuracy of different implementation choices, using simulated image pairs. 

 

 
(b) Effects on accuracy of different implementation choices, inferred from cyclic motion of points in real data. 

 

Figure 8: Accuracy of optical flow estimates (λ) on nine human breasts without markers with different optical flow 

implementation choices. Box-and-Whisker plots show the range, median, and interquartile range of the estimates from 

the nine breasts.  
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timesteps, giving   3D points. Errors in localising markers 

lead to errors in reconstructed positions, particular in the depth 

direction. The marker-based system does not constrain points 

to fall on a smooth surface, so points lie in a cloud scattered 

around the true surface. We compared these points with the 

surfaces reconstructed by the proposed markerless system. For 

the 12 datasets, the mean difference between marker positions 

and the surface from the new system is 0.14mm, indicating 

that the difference between the surfaces estimated by the two 

systems is very small. The RMS distance from the surface is 

1.30mm, indicating that the variation in point depths from the 

old system is considerably higher than the error in surface 

reconstruction in the new system. 

The old marker locations are projected to the surface from 

the new system, and the positions of consecutive marker 

positions are compared to the computed optical flow vectors. 

The RMS difference in position is 1.9 pixels; this is large 

relative to the motion of points (approximately 4 pixels on 

average) and is large compared with typical errors in optical 

flow, but is biased by a small number of poorly localised or 

incorrectly matched markers. Our system to detect tumours 

based the phase of the surface motion averages motion across 

segments of the breast to reduce the effects of outliers and to 

remove the need for points to be constrained to the surface [4]. 

The new system explicitly constrains points to lie on a surface, 

and the motion of nearby points to be consistent, and hence 

the motion of individual points is more accurate. The new 

system’s increased accuracy on a small scale will help with 

the development of finite element-based tools to detect 

tumours, which require a higher density of surface motion 

measurements [5].  

D. Locating tumours in phantom breasts 

Previous work on the DIET system with markers has 

indicated that variation in the phase of the surface motion 

indicate the presence or absence of a tumour [3]. Figure 9 

shows plots of the phase difference with respect to the actuator 

in the    direction for a healthy silicone phantom breast, and a 

phantom breast with a 10mm diameter tumour. Close to the 

tumour, the surface motion has a smaller phase difference, 

because the breast is stiffer here, and the induced wave moves 

more quickly through the breast. Figure 10 shows that the 

faster motion is present near to the tumour at a range of 

frequencies.  

VII. CONCLUSION 

This paper has demonstrated a computer vision system for 

measuring the 3D surface motion of a breast which is being 

mechanically vibrated in the DIET breast cancer screening 

machine. The measured surface motion will be used to infer 

the breast’s internal stiffness, and hence to identify tumours. 

The proposed system uses a model-based shape-from-

silhouette method to reconstruct a 3D model of the breast’s 

surface, and uses a modern dense optical flow algorithm to 

estimates the skin surface motion between pairs of frames. 

The 3D surface and the optical flow are fused in order to 

reconstruct the skin surface motion.  

Results indicate that the proposed system can reconstruct 

the breast surface with average errors of less than one 

millimetre, and the optical flow fields have an average relative 

error of 6%, corresponding to subpixel accuracy. A 

comparison with a previous marker-based system shows that 

the new system more accurately estimates the skin surface 

motion. Plots of the phase of the breast surface motion show 

the presence of a 10mm tumour in a phantom breast. The new 

system demonstrates that the time and inconvenience needed 

to apply markers to the breast are unnecessary for an 

elastography-based breast cancer screening machine. 
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