
Design and calibration of a hybrid computer vision

and structured light 3D imaging system

Tom Botterill

Department of Computer Science,

University of Canterbury,

Christchurch, NZ.

Email: tom.botterill@grcnz.com.

Steven Mills

Department of Computer Science,

University of Otago,

Dunedin, NZ.

Richard Green

Department of Computer Science,

University of Canterbury,

Christchurch, NZ.

Abstract—This paper describes a structured light system for
generating a dense 3D reconstruction of crops viewed by a robot,
as the robot moves. A line laser is used to project a plane of
light into the image, which is viewed by a colour camera. The
laser line is localised with subpixel accuracy despite variations in

colour and texture of the surface being imaged, and challenging
lighting conditions. A dense depth map with errors from laser
line localisation of just 0.15mm is constructed.

A simple calibration procedure is described, where a large
number of constraints are automatically extracted from images
showing where the laser line crosses a checkerboard pattern.
Errors in calibration are estimated at 2.3mm.

I. INTRODUCTION

This paper describes the design and calibration of a hybrid

computer vision and structured light sensor, designed to gen-

erate a detailed 3D model of crops viewed by an agricultural

robot. Images are captured from multiple cameras, and each

camera captures a colour image of the crops, onto which a

structured light pattern is projected by a set of high powered

line laser modules. This paper describes how the system is

calibrated, how laser lines visible in the images are detected,

and how a dense depth map is constructed as the robot moves.

In addition, the errors in the dense map are quantified.

Structured light (SL) systems have long been used for 3D

reconstruction [1], [2], [3], [4]. These systems project a pattern

of light onto an object, which is imaged with a digital camera.

The position of the light pattern in the image is used to

compute the 3D structure of the object.

One common SL pattern is a laser line (also known as a

laser stripe): a laser diode is lensed so that a plane of light

is projected into the scene [1]. The camera and laser move

with respect to the object being scanned, and the positions

where the line is visible are used to reconstruct the profile of

the object being scanned, one slice at a time. Line-laser SL

patterns can give very accurate depth measurements, however

a sequence of many images are needed to build a dense depth

map [3], [4].

Many more complex light patterns can also be used, for

example the pattern of dots used by the Microsoft Kinect [5],

multiple laser lines, or rainbow-coloured bands [6]. These

patterns are often designed to provide dense reconstructions

from a small number of images, however a limitation of these

more complex patterns is that the localisation of the light

pattern in the image can be ambiguous [2], [6]–there may

be multiple possible 3D objects compatible with a particular

pattern (particularly in the presence of many occlusions, for

example it may be ambiguous which of two laser lines is

visible if one is occluded).

In the system we are building, the SL will be used to aug-

ment a 3D reconstruction from multiple images. A limitation

of multi-view reconstruction is that similar-looking features

may be incorrectly matched, leading to an incorrect recon-

struction, so a SL system which does not suffer from similar

ambiguities is desirable in order to provide complementary

measurements which can be used to resolve these ambiguities.

The crops imaged by the robot are illuminated by both natural

and artificial light, so a further requirement is that the light

projector must be powerful enough that the light pattern is

clearly visible in the images. An additional requirement is that

a reasonably dense reconstruction can be made despite the high

levels of occlusion present in the scene—other SL schemes

sometimes assume objects are locally convex in order to fill-

in gaps in a dense reconstruction, however this assumption is

not valid for the tangles of branches and wires which are being

imaged.

To meet these requirements, we use a line laser module. A

high-power (e.g. 100mW) line laser module is used to project

a single plane of laser light into the scene. By positioning

the laser plane perpendicular to the camera’s scanlines, the

line is visible at most once in each scanline, so if line laser

pixels are identified correctly, the reconstruction obtained is

unambiguous. As the robot moves, the planes of 3D points

are combined with an odometry estimate in order to provide

a dense reconstruction.

This paper is organised as follows: Section II outlines

how the location of a laser line is identified in an image;

Section III outlines how the positions of detected laser lines

are converted into a 3D map; Section IV describes how

the system is calibrated; Section V analyses the accuracy of

the reconstructions obtained; and Section VI describes our

conclusions and further work.

II. DETECTING A LASER LINE IN A COLOUR IMAGE

This section describes how the position of the laser line

is extracted from a colour image. Many SL systems assume



Fig. 1. The position of a laser line viewed in an image is used to reconstruct
the 3D structure along its length.

that the scene is illuminated only by the SL source [7], or

that other colours of light can be removed with a filter [5],

however this is not the case for our system, where the scene

is illuminated by both natural and artificial lighting, and we

are imaging both the scene and the laser line in the same

images (Figure 1). The crops which are imaged vary in colour

on a small scale, and the illumination levels (even following

an illumination correction) vary significantly across the image.

A 1.3 megapixel colour camera is used, however a laser line

is only visible for the pixels of the same colour (i.e. the red

pixels for a 635nm red line laser), so only these pixels in the

Bayer pattern are used for line localisation (so only a 640x480

subset of the 1280x960 pixels available are used).

To detect the line, the crops being imaged are assumed

to be approximately grey, so that all colours of light are

reflected approximately equally from each pixel (a reasonable

assumption for the woody crops and galvanised wires being

imaged). On the laser plane, there is more red light than

other colours, so the crops will reflect the red light more

strongly, in proportion to the reflectance of the crops at that

point. In addition, the perceived colours do vary a small

amount (partly due to sensor noise, and from variation in

reflectivity on the same scale as the Bayer pattern). The green

channelG (computed as an average of the 4 pixels surrounding

every red pixel in the Bayer pattern) is used as an estimate

of reflectivity. Under these assumptions, the increase in red

light over other colours at a point (x, y) is then proportional

to L(x, y) = (R(x, y) − G(x, y))/G(x, y). In addition, the

constraint R(x, y) > G(x, y) + N for a noise threshold N
(e.g. N = 5 greylevels) is used to reject increases in red due to

noisy measurements. Along each scanline y, the x∗ coordinate

with L(x∗, y) significantly higher than L(x, y) for any other

x on the scanline is assumed to be on the laser plane.

Naidu and Fisher [7] evaluate several methods for subpixel

localisation of laser line positions in images where the only

significant light source is the line laser. When the response is

always greater than zero, and the sensor is never saturated, the

most accurate subpixel method involves fitting a Gaussian to

the pixel with the greatest illumination level. This approach

does not work for these noisy images however, as L is

significantly affected by noise and reflectance variation (the

constraintL(x) > 0 is required). Instead, we use the ‘Parabolic
Estimator’, also described by Naidu and Fisher [7], in which

the laser line profile is assumed locally quadratic. A quadratic

is fitted to the 3 values L(x∗ − 2, y), L(x∗, y), L(x∗ + 2, y)
(with ±2 as pixels of the same colour in the Bayer pattern

are 2 pixels apart). The x-coordinate of the maximum of this

quadratic is given by x∗ + δ, where:

δ =
L(x∗ − 2, y)− L(x∗ + 2, y)

L(x∗ − 2, y)− 2L(x∗, y) + L(x∗ + 2, y)
(1)

This is equivalent to finding the 0-crossing point of the deriva-

tive ∂
∂x

L(x, y) by linear interpolation between the derivatives

computed by finite differences.

III. 3D RECONSTRUCTION FROM LASER LINE LOCATIONS

The camera is first calibrated using standard techniques

(OpenCV’s [8] implementation of the camera calibration

method by Zhang [9]). The intrinsic parameters obtained

define a mapping between pixel coordinates and normalised

image coordinates (a normalised homogeneous image coordi-

nate gives the direction of a ray passing through that pixel).

Lens distortion (i.e. radial distortion) is corrected by this

mapping.

The laser projects a plane of light into the scene (errors in

the laser’s optics are assumed to be negligible). The plane is a

perpendicular distance K from the origin, and has unit normal

n̂. Points X on the plane satisfy:

X.n̂ = K, (2)

or equivalently

X.n = 1 where n = n̂/K. (3)

To find the 3D position of a laser line point in the image,

(x, y, 1) in homogeneous coordinates, we need to find the

scalar λ where λ(x, y, 1) lies on the plane. This λ is given

by:

λ =
1

(x, y, 1).n
(4)

and the function π projecting calibrated image points to the

plane is therefore given by:

π((x, y, 1)) =
1

(x, y, 1).n
(x, y, 1) (5)

This equation maps any point in the image on the laser plane

to its corresponding 3D point in the world. The full procedure

for 3D reconstruction is outlined in Figure 2.

As the robot moves, a sequence of frames is captured.

The 3D points reconstructed from each image are combined



For each Bayer image:

For each scanline (y):

For pixels of one colour (red) on scanline:

Find two largest extrema in L(x, y), x∗ and x2

If L(x∗, y) >> L(x2, y) and noise threshold exceeded:

Find subpixel location of extrema (x∗ + δ)
Reconstruct 3D point π((x∗ + δ, y, 1))

Fig. 2. Overview of reconstruction procedure

Fig. 3. As the camera and laser move, a 3D depth map is built (coloured
by depth).

with the robot’s odometry information to generate a dense

depth map (Figure 3). Even without any additional outlier

removal, very few outlier points are present. In future, the

depth measurements from the SL system will be integrated

with other measurements from the images to build a 3D model

of the crops.

IV. CALIBRATION USING A CHECKERBOARD PATTERN

Calibrating the laser line SL system involves estimating

the vector n defining the laser plane. SL calibration schemes

involve measuring an object with known 3D dimensions. Early

calibration schemes such as [2], [4] use an object with known

position with respect to the camera, however in general only

the 3D structure of the object is needed.

One suitable object for calibrating a line laser system is a

checkerboard pattern. Code to detect the location of a checker-

board pattern in an image with high (subpixel) accuracy is

provided in the OpenCV computer vision library [8]. The laser

line is clearly visible where it crosses the checkerboard, and

using a checkerboard it is easy to automatically capture a

large number of images for calibration, across a high range

and depth of field. Conveniently, the same checkerboard is

also used for calibrating the intrinsic and extrinsic camera

parameters.

Fig. 5. Segments of the laser line crossing squares in the checkerboard are
detected automatically.

The procedure for calibrating the SL system from a checker-

board pattern is outlined in Figure 4. First the checkerboard

corner locations are detected with subpixel accuracy, and

the locations of laser line pixels in the image are identified

(Section II). All coordinates are mapped to normalised ho-

mogeneous image coordinates (all lens distortion is corrected

here; in addition the laser line is assumed straight). Sections

of the laser line which cross squares on the checkerboard

are now identified, by iterating over the laser line pixels

(sorted by y coordinate) and finding sequences with similar

x coordinates (Figure 5). In general the laser line is vis-

ible on black but not white squares if lighting levels are

high, and white but not black squares if lighting is lower.

When a sequence is found, the four checkerboard corners

surrounding it are identified, and sections not lying within

the checkerboard, or crossing multiple squares, are discarded.

A straight line is fitted to the sequence of laser line loca-

tions, and the intersection points p1,p2 where the straight

line intersects the square edges are found. The size of the

squares is known, so the real distance between p and q,



For each frame:

1) Detect checkerboard corner locations with subpixel accuracy

2) Detect laser line locations with subpixel accuracy

3) Calibrate points

4) Find continuous sequences of pixels on the laser line

5) For each of these line sections:

Find 2 closest checkerboard corners to each section endpoint

If the corners found form a square:

Fit a straight line to segment

Find points p,q where straight line intersects square edges

Compute length d of line crossing square

Add constraint: ‖π(p)− π(q)‖ − d = 0

Levenberg-Marquardt optimisation to find n minimising squared errors in constraints

Fig. 4. Overview of calibration procedure

Fig. 6. The distance between points where the laser line crosses the
checkerboard square boundaries is computed. Each distance measurement
provides a constraint on the laser plane position; the SL system is calibrated
by minimising the error in these constraints.

d, can be computed easily by Pythagoras (Figure 6). Each

measurement introduces a constraint ‖π(p)− π(q)‖ − d = 0;
once many constraints, (pi,qi, di), i = 1...N , have been ex-

tracted, Levenberg-Marquardt optimisation is used to find n

minimising the residual
∑N

i (‖π(pi)− π(qi)‖ − di)
2.

This procedure doesn’t make optimal use of the information

available, but is relatively simple to implement, and is robust

to incorrect measurements and noise–hundreds of constraints

without any errors or outliers can be extracted automatically.

Examples of the measurements made are shown in Figure 7

Fig. 7. 3 constraints are added where the laser line crosses a checkerboard
pattern.

V. CALIBRATION AND RECONSTRUCTION ACCURACY

This section analyses the errors in reconstructed depths from

errors in the calibration, and from errors from locating the

laser line in the image. The camera’s intrinsic parameters are

assumed to be accurate.

A. Quantification of errors from calibration

The SL system was calibrated using 317 constraints ex-

tracted from around 200 images (1200 images in total were

captured, but many do not show the laser line and the entire

checkerboard). The RMS error in the measurements made is

0.69mm, which corresponds to an error of less than 1 pixel

in each measurement (the checkerboard squares have 41mm

sides).

To estimate the error in the calibration from errors in

extracting the constraints from these images, the system is



also calibrated on two disjoint random subsets of 50% of

the constraints, and the errors in depth is estimated from

the difference between the depths of a set of points (chosen

throughout the image), each reconstructed with each of the

different calibrations. The RMS error in depth computed using

this method is 2.3mm, which corresponds to a relative error

in depths of 0.6%. The errors decrease steadily as more

measurements are made, and in future more calibration data

will be used to further reduce errors.

B. Quantification of errors from line localisation

The second source of errors in reconstruction is from errors

in locating the laser line in the image. These errors are

challenging to quantify, as they vary with the range, texture,

colour, and local lighting levels of the object being measured.

Previous experiments have quantified errors by measuring

ranges to planar Lambertian objects of constant colour [7],

however these results are not necessarily applicable to real-

world conditions.

To estimate a lower bound on real-world localisation errors,

the line segments detected on the checkerboard pattern are

considered. These lines should actually be straight, as the

checkerboard pattern is planar. The checkerboard also has

approximately constant colour, and no significant texture. The

most likely variance about the true value of measurements is

computed by fitting a straight line to segments of N points,

P = {(xi, yi), i = 1...N}, then measuring the deviation of

each point from the line. If the least-squares line through P

has equation y = α+βx, then the measurement variance, σ2,

can be estimated by:

σ2(P) =

∑N

1
yi − (α+ βxi)

N − 2
, (6)

with divisor N − 2 as 2 degrees of freedom are lost when the

line is fitted.

This estimator is influenced by random variations between

point sets (particularly when point sets are small, e.g. 3

points), however it is unbiased, so by the central limit theorem,

the average measurement variance over many line segments,

{Pj, j = 1..M}, gives a suitable estimate of point localisation

error:

σ2({Pj}) =
∑M

1
σ2(Pj)

M
. (7)

This estimate of measurement variance is verified to be

correct by simulation (to 3 significant figures).

For straight line segments on the checkerboard, measure-

ments are estimated to be distributed about their true values

with standard deviation 0.23 pixels, which is considerably

more accurate than the 1/
√
3 = 0.58 pixels which is the best

which could possibly be obtained without subpixel refinement

(considering only the red pixels in the Bayer pattern). For our

system setup, a line localisation error of 1 pixel corresponds

to a depth error of 1.0mm; hence depth measurements of

the checkerboard are distributed about their true values with

standard deviation of approximately 0.23mm.

TABLE I
LINE LOCALISATION ERRORS; MEASUREMENT STANDARD DEVIATIONS IN

PIXELS FOR DIFFERENT SURFACES, CONSIDERING ONLY RED PIXELS IN

BAYER PATTERN.

Surface Measurement s.d. (pixels)

Wooden frame 0.19

Crops < 0.15

Checkerboard 0.23

Best possible pixel-accurate location 0.58

For real data, the surfaces being imaged can be assumed to

be approximately flat on a small scale, and the same formula

can be applied for many sets of 3 approximately collinear laser

line points. The estimate of variance can be considered an

upper bound, as surface texture will on average increase the

errors estimated using this formula. Remarkably, the results

show that line localisation is more accurate on the textured

crops than on the checkerboard pattern, or even on planar

wooden items present in the scene. The reason for this is that

the laser line is close to saturating the camera’s sensor on the

light-coloured wood, and white squares on the checkerboard

pattern, and on the dark checkerboard squares it is less visible

(so more influenced by sensor noise), and subject to some

specular reflection off the black ink. The crops are more matt,

and the laser line is more clearly defined here. Estimates of line

localisation errors on these different surfaces are summarised

in Table I.

Naidu and Fisher [7] perform a similar experiment on a

similar scale where geometric shapes are imaged using a line

laser system. The points reconstructed using the Parabolic

Estimator (the same method used here) have errors with

standard deviations of approximately 0.06mm (versus around

0.05mm for the Gaussian Estimator, which is not practical

for our application; Section II). While more accurate than

our system, their imaging conditions are more controlled,

with little ambient light other than from the line laser, and

a uniformly coloured, untextured surface.

VI. CONCLUSION

This paper described a hybrid computer vision and struc-

tured light sensor for building a dense 3D reconstruction

of crops imaged by a robot. In real data, measured depths

have errors from line localisation with standard deviation

approximately 0.15mm.

A simple scheme to calibrate the laser line system which

uses the image of the laser line on a checkerboard pattern is

also described. The system is designed so that large numbers

of measurements for calibration can be collected easily using

a robust automated process. Errors in the calibration from

317 measurements have standard deviation of approximately

2.3mm, and accuracy will improve further with additional

measurements.

Future work will focus on more robust identification of the

laser line in images under variable lighting conditions, and on

the integration of the measured depths into a system to build

a complete 3D reconstruction.
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