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Abstract

This paper describes a new scalable scheme for the real-time detection of identical scenes for mobile
robot localisation, allowing fast retraining to learn new environments. It uses the Image Bag-of-Words
algorithm, where images are described by a set of local feature descriptors mapped to a discrete set of
‘image words’. This scheme uses descriptors consisting of a combination of a descriptor of shape (SURF)
and a hue histogram, and this combination is shown to perform better than either descriptor alone. K-
medoids clustering is shown to be suitable for quantising these composite descriptors (or any arbitrary
descriptor) into visual words.

The scheme can identify in real-time (0.036 seconds per query) multiple images of the same object from
a standard dataset of 10200 images, showing robustness to differences in perspective and changes in the
scene, and can detect loops in a video stream from a mobile robot.
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1 Introduction

The problem of localisation and navigation for an
autonomous mobile robot in an unknown environ-
ment is widely studied, as a solution would enable
many useful applications [1]. Methods for building
internal maps and positioning robots from them
are collectively known as Simultaneous Localisa-
tion and Mapping (SLAM). Computer vision, ei-
ther alone or integrated with other sensors (INS,
laser range-finders, odometry) is often used to infer
motion and hence position. A key part of most
SLAM implementations is loop closure [2]: this
involves detecting when the robot is in a previously
visited location by identifying landmarks that have
been mapped previously. Errors that have accumu-
lated in internal maps can then be corrected.

Originally loop closure detection relied on the ac-
curacy of the current position estimate, however
recently techniques from object recognition have
been used to recognise when the robot is in a previ-
ously visited location without needing an estimate
of the current position. This is useful as we can
re-localise even when the robot is completely lost–
robots navigating using vision alone can easily be-
come disorientated due to mismatched image fea-
tures, featureless environments, or due to motion
blur. However, if a loop is closed incorrectly, the
internal map can be corrupted.

The original Bag-of-Words algorithm is a popu-
lar algorithm for document classification, where
documents are described (and categorised) by the
set of words that they contain, and their frequen-
cies. The Image Bag-of-Words algorithm was de-
veloped from this for object recognition: images
are described by the set of features they contain.
Recently it has been used for the recognition of
scenes: Sivic et al. [3] use it to segment movies into
different locations, and Nı́ster and Stewénius [4]
describe a fast and accurate implementation allow-
ing real-time searching of image databases. These
implementations both require a slow training pro-
cedure before recognition can begin. Angeli’s [5]
implementation allows new locations to be learned
as they are encountered, but real-time (1Hz) per-
formance is limited to about 2000 images. This
paper describes our improved Image Bag-of-Words
implementation which can learn to recognise scenes
reliably within seconds of them first being encoun-
tered, and can search all previous scenes (ten thou-
sand or more) in real-time (0.036 seconds per query),
identifying those that appear the same.

To test and refine our method, we use Nı́ster and
Stewénius’s [4] dataset, which consists of four im-
ages of each of 2550 objects (Figure 1). A system
that can reliably identify the four images of the
same object given one of the images should be



Figure 1: A sample of pictures from the test dataset

able to identify scenes that have been seen before.
Scores given in this paper are the average number
of correct matches out of the top four returned.

1.1 Applications

Potential localisation applications are not limited
to SLAM: they include location detection for hand-
held or wearable computers, which may associate
locations with information from previous visits, or
detect scenes where Augmented Reality graphics
may be inserted. Alternatively it could be used for
localisation using a camera phone, with the current
cell limiting the search space.

2 Approach and Relation to Ex-
isting Implementations

The Image Bag-of-Words algorithm allows us to
measure the similarity of two images rapidly. In
this section we describe how different parts of it
work and the implementation choices we have made
to enable its use for fast robot localisation.

2.1 Image Bag-of-Words Algorithm

Given a set of descriptors representing some im-
ages, choose a subset of N of them (a ‘dictionary’).
All descriptors can now be mapped to the closest
word in this dictionary, enabling an image to be
described by the N-dimensional vector of word-
frequencies. Images are compared by comparing
these vectors. The total frequency of a particular
word is used as a measure of its distinctiveness:
a rare word occurring in two images strongly sug-
gests the images contain the same object.

Some SLAM implementation [2, 6, 7] detect loops
by brute force comparisons of descriptors, but this
is slow despite the small number of images involved
(typically a few hundred), and further limiting of
the image search space is required for real-time
performance. A Bag-of-Words approach can be
made hugely faster than a brute-force approach
because distances between descriptors are only ever
compared when we look up a word in the dictio-
nary. Sivic et al. [3] show that brute force compar-

isons work no better than Bag-of-Words, as Bag-
of-Words takes into account the distinctiveness of
features.

2.1.1 Classifiers

A wide range of classifiers for comparing these vec-
tors have been used, but many (such as Support
Vector Machines [8] and Latent Dirichlet Anal-
ysis [9]) are aimed at categorisation rather than
recognition, and training a classifier for each image
would be much too slow for our application. Näıve
Bayes classifiers, or direct weighted vector com-
parison are suitable for rapid comparisons without
training. We found that the direct weighted vector
comparison used by Nı́ster and Stewénius [4] eas-
ily outperforms the Bayes classifier, or unweighted
vector comparison. The vector of word frequencies
is weighted by the log of the words’ relative fre-
quencies (proportion of all words seen), and vectors
are compared using the L1 norm.

2.2 Features

Features are points of interest in an image: ei-
ther a random scattering of points, or ‘distinc-
tive’ points (blobs or corners) that are likely to
be repeatable [10]. Sampling the same feature set
from two images using a distinctive point detector
appears to be a good strategy, however many au-
thors [9, 11, 12] have shown that random points
are as good or better for object recognition. While
existing scene recognition implementations usually
use a blob detector [3, 4], we have found that ran-
dom points perform better, and save the computa-
tional cost of extracting corners.

2.3 Invariant Descriptors

An invariant descriptor is some data describing a
patch around a feature in an image. Two patches
can be compared using the ‘distance’ between them;
patches that are close together appear similar, and
hence may be the same object. Ideally this will
be true regardless of the orientation, scale, posi-
tion (to a few pixels), or illumination, hence these
descriptors are described as invariant. It is also de-
sirable for descriptors to be distinctive, that is fea-
tures with dissimilar appearance have distant de-
scriptors, therefore we will use descriptors of both
colour and shape.

2.3.1 Appearance/Shape Descriptors

Common descriptors of local appearance are SIFT
(Scale-Invariant Feature Transform) [13] and SURF
(Speeded-Up Robust Features) [10]. Each encodes
a blurred patch around a feature as a vector of
frequency components. Image bag-of-words im-
plementations for scene recognition generally use
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Figure 2: These hue-histograms appear similar, but are

far apart if compared using the Euclidean distance.

128D SIFT vectors [4, 5, 8, 9, 14], however SURF
descriptors have been shown to out-perform SIFT
in both speed and accuracy for image correspon-
dence extraction [10], and for robot localisation [15].
The shorter 36D SURF descriptor performs almost
as well as the standard 64D one for our application
so we have chosen to use these.

2.3.2 Colour Descriptors

A popular descriptor of colour is the hue-histogram.
These are used by Filliat [14] as a descriptor for
robot localisation, where they are an independent
aid to localisation using SIFT features. In this pa-
per we use hue-histograms of a small patch around
each feature (typically 11 × 11 with a Gaussian
weighting function). We have found they greatly
improve the recognition results over SURF alone,
while being considerably faster to compute (3 ×
10−5s vs. 5× 10−4s for SURF descriptors).

A range of metrics are used for computing dis-
tances between histograms. Rubner et al. [16] com-
pare several methods and find the Earth Mover’s
distance is best; however this is complex to com-
pute. Jeffrey divergence is found to outperform
other simple metrics, with the χ2 metric perform-
ing almost as well. Androutsos et al. [17] compared
a different range of simple metrics and found the
cosine distance performed best, with the L1 and
L2 norms performing reasonably well. These pa-
pers both compare whole-image histograms how-
ever. Filliat [14] uses the χ2 metric for comparing
histograms of patches. We have found that this
and the L2 norm have very similar performance,
and outperform several other simple norms (Ta-
ble 1). Those that performed poorly probably did
so because many of our bins are empty (as a result
of using small patches), and these are designed for
the comparison of strictly positive functions.

2.4 Building the Dictionary

To initialise (or re-train) a Bag-of-Words imple-
mentation a set of representative descriptors must
be chosen as our ‘dictionary’, and all of our im-
ages must have their descriptors encoded as these
‘words’. Completing this quickly is key to learning
new environments as we encounter them.

Table 1: The χ2 and L2 metrics performs best for

hue-histogram comparison. Metrics are scaled to the

same range, and combined linearly with the score

from comparing SURF descriptors, giving each similar

importance.

Metric Score (top 4)
Euclidean (L2) 3.25± 0.01
χ2 3.24± 0.04
L1 3.15± 0.00
Sum of squared diff. 3.15± 0.06
Max (L∞) 2.25± 0.02
Jeffrey’s 1.92± 0.08
Cosine 1.87± 0.01
Bhattacharyya 1.51± 0.04

2.4.1 Hierarchical Approach to Dictionary

A simple approach for mapping n descriptors to k
words requires nk comparisons. For the test data
used in this paper, n may be 5 million and k one
hundred thousand. If comparisons require 200 op-
erations then this process could take around three
hours. Ideally rebuilding a dictionary will take
just a few seconds, as a background process as we
explore new environments. Fortunately Nı́ster and
Stewénius [4] proposed a hierarchical dictionary
where each descriptor needs to be compared to 100
or fewer centres to find the closest: the descrip-
tors are first partitioned around a small number
of words (e.g. 20), then each of these partitions is
partitioned again into a sub-dictionary, and so-on.
In this way descriptors can be mapped to one of
hundreds of thousands of words at the bottom level
with only a few comparisons.

2.4.2 K-Means Clustering

Intuitively, clustering the data and using cluster
centres for our dictionary appears to be a good
dictionary-building strategy. Many previous at-
tempts [4, 8, 9] at exact image recognition using a
Bag-of-Words approach have used k-means cluster-
ing (Lloyd’s algorithm) for this purpose. However,
it is not necessarily easy to achieve substantially
better results than a random selection of centres
(as found by Nowak et al. [11]).

Another problem with k-means is that it treats all
descriptors as a vector space with Euclidian dis-
tances (an optimal k-means clustering minimises
the sum-of-squared differences (SSD) between vec-
tors and their closest centre), even though this
metric may be inappropriate for some descriptors,
e.g. histograms (Figure 2). Lloyd’s algorithm in-
volves taking averages of sets of descriptors. The
meaning (or appearance) of a feature partway be-
tween two hue histograms, with shape partway be-
tween the shapes of two features, is unclear.

Jurie and Triggs [12] proposed a fixed-radius clus-



Figure 3: When a large number of points are being

clustered into a small number of clusters, clustering a

random subset is likely to give a good overall result.

tering algorithm which out-performs k-means for
object recognition. Centres of regions of high den-
sity are repeatedly chosen from unassigned descrip-
tors. This would be inappropriate for our top-down
approach to clustering (as it involves finding dense
regions rather than a good partitioning), however
it would be interesting to use this for clustering at
lower levels.

2.4.3 K-Medoids

K-medoids clustering allows us to cluster any set
of descriptors that form a metric space. A set
of representative descriptors is chosen that (usu-
ally) minimises the sum of the distances (using
our metric) between descriptors and their nearest
cluster centre. This allows us to cluster a set of
composite descriptors with a metric consisting of
any combination of metrics on the composite de-
scriptors. Kaufman and Rousseeuw [18] describe a
brute-force k-medoids algorithm (Partitioning About
Medoids, or PAM) to iteratively improve on a set
of centres. Each iteration has complexity O(kn3),
where n is the number of descriptors and k is the
number of cluster centres, and even when limiting
the number of iterations (rather than stopping only
when no simple refinement improves the cluster-
ing) this method becomes infeasibly slow for more
than around 1000 descriptors.

2.4.4 Clustering Subsets

Even with a hierarchical dictionary we still have
to cluster the entire set of descriptors at the top
level. This is potentially very slow when millions
of descriptors are involved. However because of the
hierarchical approach used we never need to clus-
ter into very many clusters. The CLARA (CLus-
tering LARge Applications) algorithm, described
by Kaufman and Rousseeuw [18], is ideal for this
application. A random subset of a few hundred
descriptors is selected and centres are chosen using
the k-means or k-medoids algorithm (Figure 3).
The average distance from all descriptors to the
nearest centre is computed; this is what we are
attempting to minimise. Further random subsets
are selected and clustered, with each containing the
set of centres from the best clustering found so far.

2.5 Clustering Results

Table 2 shows analysis of the clustering of 100 000
64D SURF descriptors into 21 clusters (the top-
level clustering step of three with 10 000 words at
the bottom level, indexing 250 images). Each test
is run five times and the mean score and sample
standard deviation are given. The same test was
run three times for each of two other subsets of the
test images and have obtained very similar relative
performance for the different methods (although
uniformly poorer recognition rates for some less
distinctive images, such as flowers). All words and
all descriptors are used in comparisons.

Performance is compared to a choice of random
descriptors as centres. It is possible that all clus-
tering is doing is finding a set of descriptors dis-
tributed throughout the space, so we also test a
set of random descriptors chosen with a minimum
separation constraint. However this does not make
any significant difference.

We have found that all clustering methods give
significantly better recognition performance than
random centres (at the 1% significance level using
Welch’s t-test; although this assumes the results
are approximately Normal, which is not necessar-
ily valid for heuristic algorithms–we don’t know
how often we come across particularly bad clus-
terings). K-means gave the best performance; this
is significantly better than any other method (5%
significance level). CLARA k-means and CLARA
k-medoids give clusterings of similar quality.

When it is important that clustering is completed
within seconds so that a robot can learn to recog-
nise an unknown environment, CLARA k-means or
CLARA k-medoids should be used. Few iterations
are necessary. For stand-alone image search appli-
cations where most or all images are available in
advance, it is worthwhile to apply k-means cluster-
ing to the entire training set. This takes just over
30 minutes for the 5 million descriptors extracted
from the standard dataset.

The dispersion of a clustering is the mean dis-
tance from a descriptor to its nearest centre. It is
commonly used as a measure of clustering quality,
however it appears to have little effect, as random
clusterings have similar dispersion to k-medoids.

Processing requirements limit the PAM algorithm
to around 1000 descriptors when used alone, how-
ever for CLARA k-medoids (or CLARA k-means)
computation times are linear in the number of de-
scriptors, and memory requirements are constant
in the number of descriptors. For CLARA k-means
we use subsets of size 1000; for k-medoids we use
subsets of 120. These are chosen so that cluster-
ing takes around 0.5 seconds in each case. Dou-
bling the sizes appears to give no significant bene-
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Figure 4: Benefits of re-training when new environ-

ments are encountered.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
65

70

75

80

85

90

95

100

Top x % of results

%
 o

f c
or

re
ct

 m
at

ch
es

 re
tu

rn
ed

Figure 5: 95% of correct matches are returned within

the top 5% of results.

fit. It is unclear whether a significant improvement
is gained by increasing the number of CLARA it-
erations. For sets of over 250 000 descriptors most
time is spent assigning all of the descriptors to
centres, not for clustering subsets.

Note that this test is for one experimental setup,
and there are many model parameters that may
affect these figures (such as the decision to use
64D SURF descriptors). It is worthwhile trying
different clustering methods to find the best for a
particular application.

2.6 Retraining

To test if re-building the dictionary is worthwhile
(rather than clustering once and re-using words)
we have compared recognition performance on the
remaining images when training is done on only
the bottom few percent of the images. Figure 4
shows that training on the entire set gives a clear
performance improvement, hence re-training when
new environments are encountered is worthwhile.

2.7 Implementation Details

36D SURF descriptors are stored internally as 36
one byte signed integers. Histograms have 16 hue
bins and 12 saturation bins, stored as 28 one-byte
unsigned integers. This gives a compact represen-
tation allowing us to store 35 million descriptors
in 2GB of memory, however there is a small per-
formance hit compared with using 4 byte integers
(due to byte-alignment), and rounding errors mean

we cannot use a fast dot-product to compute Eu-
clidean distances between unit vectors.

Clustering done in-place with one-byte integers is
faster and does not perform significantly worse than
clustering using floating point. Almost all arith-
metic uses integers, so is suitable for embedded
processors in handheld devices.

2.8 Parametrisation

We tuned 14 model parameters (classifier, relative
significance of shape vs. colour, histogram thresh-
olds, number of words, minimum and maximum
numbers of descriptors allowed per word) with a
simple genetic algorithm. Our best parametrisa-
tion rejected words with fewer than 4 or more than
20 descriptors, leaving about 100 000 words, and
gave histograms about twice the importance of SURF
descriptors.

3 Results and Conclusions

A system capable of accurately detecting images
of the same object has been developed. Tests on a
video stream from a mobile robot show we can re-
train as new environments are encountered without
affecting real-time performance, and this is shown
to be feasible and worthwhile. Tests on the stan-
dard dataset show it to have comparable speed and
accuracy with other scene recognition schemes.

3.1 Exact Object Recognition

Our implementation retrieves 3.00 correct matches
on average, in a time of 0.036s. Training using
CLARA k-medoids takes 200s and gives consider-
ably better performance than treating histograms
as vectors and applying k-means clustering (taking
1800s). Our memory requirements for descriptors
are much less than other implementations (64 vs.
128 bytes per descriptor), and we search the en-
tire database on each query, avoiding the need for
the large inverse file needed by other implementa-
tions. On average 95% of the four correct results
are returned in the top 5% of query results (Fig-
ure 5). Nı́ster and Stewénius [4] retrieve 3.29 cor-
rect matches on average in a time of about 0.0027s
per query, however this requires long 128D SIFT
descriptors, k-means on all descriptors, and a large
inverse file.

Using histograms alone is surprisingly effective: we
can identify 2.91 images on average. Without using
histograms our method performs relatively poorly
(1.62/4 on average). It is unclear why this is;
the main difference in our method is the use of
SURF rather than SIFT. However these composite
descriptors are still faster to compute than SIFT
descriptors.



Table 2: Results from clustering 100k 64D SURF descriptors into 21 clusters:

Clustering method CLARA Iterations Dispersion Time (s) Score (top 4)

K-means, 20 iterations - 39.5± 0.0 3.6 2.00± 0.05
CLARA K-medoids 6 44.2± 0.5 1.8 1.93± 0.02
CLARA K-means 1 40.2± 0.0 0.4 1.92± 0.02
CLARA K-means 6 39.9± 0.1 3.7 1.90± 0.02
CLARA K-medoids 1 44.8± 0.1 0.4 1.84± 0.07
Random set of centres - 44.0± 3.1 0.3 1.71± 0.08
Random seperated centres - 46.0± 4.1 0.9 1.71± 0.09

3.2 Mobile Robot Localisation

We have a 400 frame video showing three laps
around and through a building. Correct scene matches
are detected regularly once a lap had been com-
pleted, and many matches with the last few frames
are detected, but matches are also detected be-
fore the robot had returned to a previous location.
Real-time performance is maintained even when
retraining in the background, and this takes only a
few seconds with this many images. Our work will
now focus on using our method for robot localisa-
tion and on measuring the reliability of matches.
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