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Abstract—Skeletonisation is an important low-level problenin
computer vision with many applications in shape fiding,
motion tracking, character recognition and segmentdon. This
paper examines how skeletonisation can be used tmd and
model the path of plant branches in an image. A preosed
method for quantitatively comparing the accuracy ofskeletons
is described, which compares a skeleton produced bwg
skeletonisation algorithm to a ground truth. This mehod is
used to evaluate several skeletonisation algorithmsithin the
context of branch modelling. The best single skeletisation
method is found to be morphological thinning, due d the
highly connected nature of the skeleton.
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l. INTRODUCTION

Skeletonisation is the process of recovering a ook
image of objects with a network structure, sucinamges of
handwriting or characters [1-4], medical imagese&ihs and
organs [5, 6], or images of branching plants. Skelsation
algorithms convert binary images of the objectg.(Hi) to
‘skeleton images’; networks of lines describing shape and
topology of the object's structure (Fig. 2) [7, &ood
skeletons have the properties that they accuragglyesent
the original image [8-10] and are easy to conveid imore
meaningful continuous models [8, 10]. Issues with
contemporary skeletonisation algorithms includet Ibeing
centred within the shape described, being overhgitege to
small changes in the original image (both exampfesoor
localisation), extraneous branches (called “spursd} being
thin and not being correctly joined up (errorsdpdlogy).

Figure 1. A black and white segmented image ofadiing plant
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Skeletonisation is a common operation in computer
vision [8, 11] because it is often a requirementfitel a
representational model of an image on which progiagit
may operate; such as describing routes across d1ai]
or representing and tracking body pose [15-17]. hEac
application has its own specific requirements of a
skeletonisation algorithm and its own definition of
robustness based on the relative importance of eathe
issues described above. For instance handwrittaracter
recognition emphasises unambiguous junctions wietter
strokes cross and lack of extraneous skeletoraattefcalled
“spurs”) [1, 2].

This paper presents an evaluation of the effectisgrof
skeletonisation algorithms in creating models cinohing
plants. Branch skeletonisation has several sirtidarito
handwriting recognition: the shapes are “ribborlika
description used in character recognition paperdetrribe
pen strokes [1, 4]), and the shapes must eventumly
converted into a semantic model (for writing theretcter
must be recognised, for branches a semantic, tgjpalo
model must be built). These requirements must fected
in the evaluation of the skeletonisation algorithms

Because the applications of skeletonisation haeseth
very specific requirements, quantitative analysi§ o
skeletonisation measures is important. The metrat is
most often evaluated is computation time (suchmdg,i12-

14, 18, 19]), particularly when the application @dems real-
time performance. Some papers have measured skeleto
suitability by counting the number of spurs. Wardd a
Hamarneh measure spur count using entropy by edilcgl

Figure 2. A binary skeleton image of the branclwoet shown in Fig. 1



the information content of skeletons [20], whileiBad
Latecki evaluate spur count visually [7]. Other @aphave
measured connectivity of skeletons and number dfpaints
[21]. Suen, Lam and Wang have proposed methods for
measuring skeleton localisation accuracy by compari
skeletons with reference skeletons [9, 22]. Despite
creation of these evaluation methods and the irapoe of
numeric comparison of skeletonisation algorithmspsin
other authors, for example [1, 5, 7, 10-12, 14], rint
provide quantitative evaluations of skeleton accyrand
instead qualitatively compare computed skeletonyibyal
inspection.

This paper will examine the qualities of a skeletbat
are important for creating a successful plant tramodel,
and present a method to quantitatively evaluate
skeletonisation algorithms that reflects these irequents.
Several skeletonisation algorithms will be briefiyrveyed,
and then evaluated on their suitability for bramebdelling
based on the presented method. While there hava bee
several other surveys of skeletonisation [8, 9, hbhe of
these surveys take a quantitative approach, aneé mo@
specific to branch modelling.

This paper is organised as follows: Section 2 psepa
set of metrics to evaluate skeletonisation algorith and
describes the process for measuring those meSasion 3
surveys the classes of skeletonisation algorithat will be
evaluated. The results of the quantitative analysie
presented in Section 4, followed by conclusionswirich
skeletonisation algorithms are most suitable.

1. METHOD FORQUANTITATIVE ANALYSIS

For a quantitative evaluation to be of use, thelites
measured must reflect desirable features of a tekelfer a
given application. Several skeleton qualities haween
discussed in previous papers, including thinnesslisation
quality (accuracy), connectedness and number akspihe
metrics chosen evaluate skeletons, specifically tloe
purposes of branch modelling, are thinness, copdeess
and localisation quality.

A. Thinness

One requirement of a skeleton is that it shouldhiie[8,
10]. Some applications demand the more explicirtbss
requirement that the skeleton should be exactlixél hick.
One example of this strict requirement is given[19],
which uses pixel adjacency information to build a
topological graph. Skeletons thicker than 1 pixél ereate
graphs with erroneous loops. This is also an ingmbrt
requirement within the context of branch modelliBgcause
the branch model will need to be represented seécadlyt a
method such as the one described in [10] will rtedzk used
to generate a topological graph. This thereforered the
strict 1 pixel thin requirement to skeletons usedntodel
branches.
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Figure 3. Left: A section of a skeleton, rigiite skeleton pixels overlaid
with the distance to the edge and the local maxiighlighted.

A simple method has been developed to calculatenmea
skeleton thickness. Firstly, for each pixel on skeleton, the
distance to the nearest non-skeleton pikels calculated.
These distances are compiled into a distance map 3k
Next, the local distance maxima are selected. Tleamm
thickness of the skeleton is calculated like so:

— 1wy
dp_ﬁ i=0

dei - 11 (1)

where N is the number of local maxima distanceeaslu

The mean thickness for the enlarged example liogsh
in Fig. 3is 3.

B. Connectedness

Skeleton connectedness is another metric that is
important when a semantic model needs to be knaith fa
skeleton [10]. To be connected, a skeleton showalihtain a
topology consistent with original shape [8, 9]. droing
connected skeletons is an extremely important remant
when modelling branches, because a topologicakyrate
model ensures that consistent high-level decisicars be
made using the model. To correctly estimate thendfra
structure, it is important that no topological infation is
lost during skeletonisation. There are methodsestcdbing
branch topology such as L-systems [23], howevesehe
descriptions apply only to semantic graphs. A metiod
topological comparison needs to be chosen thatwank
with discrete models composed only of pixels.

The Betti numbers are a series of quantities that e
calculated for topological graphs and spaces tinabade
information about how those spaces are conne@ea4].

Skeleton connectedness can be measured by caigulati
the @" and ' Betti numbers of the skeleton, such as in [5,
24]. The O number is simply the number of connected
components, and the® Inumber measures the number of
holes in the skeleton [5], and can be computed by:

Bi=m—-n+k 2

Where m and n are the number of edges and nodes
respectively in a topological graph and k is thenhar of
connected components. Fig. 4 shows the procedure fo
calculating the number of connected components.

In [10] Reinders, Jacobson and Post describe hawrio
a 1 pixel thin skeleton into a topological grapheThumber
of edges and nodes can then be found, allowinguledicn
of the £'Betti number.

C. Localisation quality

Skeletons should be accurate, or well localised; itha
measure of how well centred a skeleton is withim rigion

For each unvisited pixel on the skeleton:
1) Initialise a list containing that pixel’s locatio
2) While the list is not empty:
a. Remove a pixel from the list
b. Mark the pixel as visited
c. Add all the surrounding skeleton pixels fo
the list
3) Increment the number of connected compot

Figure 4. Procedure for calculating the number of connectedponent:
in a 1 pixel thin skeleton image.



An example of a ground truth skeleton.

Figure 5.

it describes [8]. Each skeletonisation algorithrheirently
contains and implements its own definition of whahtred
means. Therefore, comparing the output of a skaiedton
algorithm using a mathematical or algorithmic diifim for
“centre” in analogous to calculating the similartigtween
two skeletonisation algorithms. Instead, skeletsimsuld be
compared against a hand-made ground truth skel&tus.
allows the ground truth author to create a basis fo
comparison that encodes the features of a sketbttnare
most useful for a specific application. Fig. 5 isexample of
a ground truth skeleton, representing the branshesn in
Fig. 1.

Suen, Lam and Wang compare generated skeletons

against ground truth skeletons by calculating theam
distance between a skeleton pixel on one image thad
closest skeleton pixel on another image [9, 22¢iTimethod
produces a similarity metric in terms of pixel diste. To
calculate skeleton accuracy for branch modellinginailar
method has been developed, but similarity is imbtea
expressed as a percentage rather than a distance.

This similarity score is calculated as follows:

§ = 50 (et 4 te) €)

N¢ N

M, is the number of skeleton pixels in the calculated
skeleton that are within a certain threshold distaof a
corresponding skeleton pixel in the truth skeletidtewise
Mk is the number of skeleton pixels in the truth siai that
are within the threshold distance of a pixel in tadculated
skeleton.N, andN; are the total number of skeleton pixels in
the calculated and truth skeletons respectively.

I1l.  SKELETONIZATION ALGORITHMS

There are two main categories of skeletonisation
algorithm; discrete and continuous [8, 25].

Discrete skeletonisation algorithms are the mostroon
class. They reduce a region into a minimal skeletefined
by a set of pixels (or voxels if done in 3D [8, 0]
Continuous skeletonisation algorithms create aicoatis
representation of the original image, for examplihva
function or graph [8, 26]. Continuous skeletonimati
algorithms usually require initialisation, e.g. fiomanual
initialisation or from a discrete skeleton [26, 28p this
paper will only evaluate discrete skeletonisatiathods.

Discrete skeletonisation algorithms are subjectvio
main types of errors; firstly extra/combined bragghand
secondly spurs [1]. Extra branches are common casirg
points or sharp angles [11] and form when two ridge
combine into one, and spurs are caused by edge fidis
Many papers present a spur elimination algorithomgiwith
a skeletonisation method, or present a skeletanisatethod
designed to reduce these errors.

Discrete skeletonisation algorithms can produce
skeletons either iteratively, or non-iteratively].[®terative
methods require multiple passes over the image.

A. Ridge Finding

A discrete skeleton can be considered the set pbails
that are locally in the centre of a shape [28].cémpute the
skeleton, each pixel must be tested to see ifatridge pixel,

and either accepted or rejected. Ridge findindghésefore a
non-iterative skeletonisation algorithm.

If we consider ridge points as local maxima, thka t
assumption is made that pixel intensity is coreslatith
being centred in the shape. This assumption mapa&dtue
for every image; consider a binary image of a shapere
the cross section would look rectangular. This mggion
can be enforced by applying a Gaussian blur toirtfzge,
essentially examining the image in a lower scasesp29].

If we consider a 2D cross section of a branch e li
shape that is perpendicular to the direction of lthe, in
terms of position and intensity, then the peaknsity on the
cross section is a point on the ridge. This maxinuam be
found by examining the directional derivative of ihtensity
function [28].

Ridge detection in this way is sensitive to two
parameters: the scale of the image (equivaleritddevel of
Gaussian blur applied) and the scale at which grevative
is taken. If the discrete derivative is found usifigite
differences, then the second parameter is thendistaffset
value. The values of these parameters that areiaeal in
this paper were chosen by comparing every comioimaif
the parameters using the same localisation quaitg
connectedness metrics described in Section 2.

B. Medial Axis Transformation

A medial point is a point in the exact centre ofhape.
Medial axis transformations (MAT) find medial painby
finding the set of points that are local maximatérms of
distance from the edge of the shape [20]. Thisbeadone in
two ways, by fitting circles and selecting the cenoints, or
by creating a distance map and finding local max2@.

As described above, when considering skeletons as
ridges in an image, the assumption is made thahgity is
correlated with a central position in the shape.isTh
correlation can be made explicit by creating aadiseé map
and using this to find the medial axis. Fig. 3 givan
example of a distance map.

Once a distance map has been calculated, the gitetd
with an intensity that is maximal compared to their
neighbours constitute the skeleton.

Medial axis transformations are a non-iterative
skeletonisation method, since the algorithm alwaggiires
two passes: firstly computation of the distance mamd
secondly, selection of local maxima.

Many different implementations and extensions have
been proposed for the medial axis transform algarisuch



as using discrete contour partitioning to prunersgu],
calculating global significance values for eachnioia[20] or
joining branches using an Euclidian distance-baseadeton
strength map [30]. This paper is focused on evilgahe
different classes of skeletonisation algorithm eatlthan
comparing specific implementations. Therefore, omly
simple MAT algorithm that finds local maxima of the
distance map will be evaluated here.

C. Morphological Thinning

Morphological thinning takes a region, and graduall
reduces the boundaries of that region until theycly one
pixel apart [11]. The results are similar to thedmaé axis
transformation, because pixels are effectively sifeesl by
distance from the edge of the shape. However, dadstd
trying to explicitly locate individual medial pot non-
medial pixels are pruned. This means that conngctis
implicitly guaranteed because no pixel that is thay
connecting pixel between two sections is removéed [1

This connectivity guarantee is an important featiare
branch model fitting, but thinning algorithms caa blow
[11, 19] and are not well-suited to parallelizatiblever-the-
less, thinning has been described as easier ttighasathan
medial axis transformations [19].

The thinning algorithm that will be evaluated inisth
paper is described in [11], and uses the concept of
neighbourhood matrix to encode adjacency informafiar
each pixel. Pixels are iteratively pruned accordingheir
neighbourhood value.

D. Ridge Finding Using Seerable Filters
Steerable filters are a class of image filter tabdw

(@)

extrapolation of filter responses at arbitrary tiotas by
taking a combination of the output from a few bdsters
[31-34]. The response from as few as three basisdfican
be interpolated to describe every possible rotd8an34].

Steerable filters can be used for both edge detecti
(using antisymmetric filters created by odd Gaussia
derivatives) and ridge detection (using symmetilter
created by even derivatives) [32]; the latter dzardafore be
used for skeletonisation. The filter does not ougpiinary
skeleton and therefore a secondary non-maximum
suppression step must be executed to select ridgksypthis
method is outlined in [34]. An advantage of usingdge-
detecting steerable filters for branch model fitia that the
orientation of the branches would be given by thgle of
the filter response, and that the scale of therfikernel
detects only branches with the corresponding tlasknThis
can be used to filter out small shoots or thickksi

IV. RESULTS

Each of the skeletonisation algorithms described in
Section 3 were measured using the metrics for ikst&in
quality, connectedness and thinness describedcitio8e?.

A. Localisation quality

Fig. 7 shows the localisation quality of the
skeletonisation algorithms. The most accurate sketeare
produced by the medial axis transform and by tinignwith
ridge finding producing the lowest quality skeletofrig. 6
shows an enlarged view of a section of the branthge,
along with the skeleton calculated by each method.

The ridge finding algorithm has found undesirabléae

Figure 6. An enlarged view showing the resuftthe various skeletonisation methods on (a) thgiral image of branches compared to (b) the perfec
skeleton. The algorithms are produced using: ¢Qeifinding, (d) medial axis transformation, (éhtting and (f) steerable filters.
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Figure 7.  Accuracy of branch image skeletonslpeced by the surveyed
skeletonisation algorithms, for error < 0.05

Figure 8. Chart of the average difference irtiBetmber between the
computed skeleton and the truth skeleton. Lowbetter.



ridges that negatively affect the quality of theslskon and
the skeleton localisation is also warped wherebttamches
cross each other. The skeleton produced by thaablee
filter is localised well, but there are some laggps in the
skeleton that account for its relatively low quaktore.

B. Connectedness

Fig. 8 compares the connectedness of the skeletons
produced by each algorithm. The value shown isatlegage
difference in Betti number between the calculatieeleton
and the truth skeleton, so a lower value is morsradiele,
with a value of 0 indicating complete topological
accordance.

Thinning is by far the best skeletonisation alduomtfor
producing connected skeletons. The reason forishibat
thinning guarantees connectivity.

The ridge finding algorithm produces skeletons tieate
breaks at the branch crossing points. The reasothi® is
that the direction of the ridge is not defined e trossing
points, as crossing points represent peaks, ngesid

The medial axis transformation appears to produce
skeletons that are disconnected along edges. HErisbe
caused by two pixels that are adjacent in the tinec
perpendicular to the axis having an identical distamap
value.

The steerable filter algorithm only produces well-
connected skeletons of branches that closely nthtlsize
of the filter. If the branch is thicker or thinn¢han the
diameter of the filter, then the filter responsdl Wi very
low, and will therefore produce a broken responsernw
discretised to produce a skeleton.

C. Thinness

The average thinness of the skeletons producedatly e
algorithm is shown in Table 1. All the algorithmeoguce
satisfactorily thin skeletons. The medial axis sfarm and
thinning methods both utilise each pixel's distafroen the
shape edge, and therefore always produce skelexactly 1
pixel thin.

V. CONCLUSIONS

A proposed group of metrics have been described tha
measure the quality of skeletonisation algorithmw f
producing models of plant branches. The algorittwese
evaluated based on the localisation quality, coteteess
and thinness of the skeletons they produce. Fosorete
skeletonisation algorithms were evaluated usingsehe
measures: ridge finding, medial axis transformation
morphological thinning and steerable filters. Thalyo
appropriate  discrete  skeletonisation  algorithm  for
applications requiring connectedness is morpho#bgic
thinning. Plant branch modelling has a strong nesmént
for connected skeletons, and therefore thinningmisst
suitable algorithm; both because of its connecteslaed its
high localisation accuracy. Skeletons produced by
morphological thinning localised well, are the most
connected and were found to be satisfactorily tfiihe
results show that the proposed method is a usedtiiarfor
quantitatively comparing the accuracy of thinness,
connectedness and localisation of skeletons pradime
skeletonisation algorithms.

TABLE 1. SKELETON THINNESS
Ridge finding Medial axis Thinning Steerable
transform filters
1.01 1.00 1.00 1.01

VI. FUTUREWORK

In future research we will evaluate combinations of

skeletonisation algorithms. For example, a brancage
may be adaptively filtered using steerable filteefore being
skeletonised by morphological thinning, or a diseamap
may be calculated and then a ridge finding opeamnatiould
be run to find the skeleton rather than findingalamaxima.
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