A specialised collision detector for grape vines

Scott Paulin, Tom Botterill, XiaoQi Chen, Richard Green
University of Canterbury, New Zealand
scott.paulin@pg.canterbury.ac.nz

Abstract

Efficient motion planning is important for robot
arms so that they can work productively. Stan-
dard methods for motion planning are often
slow in complex environments because the colli-
sion detectors they use are inefficient. By cus-
tomising a collision detector for the environ-
ment a large speed-up can be obtained. We
have implemented a specialised collision detec-
tor for grape vines to speed up path planning.
It models vines using capsules and spheres
which provide fast intersection tests. Spa-
tial partitioning is performed using sweep and
prune. Objects are bounded by spheres to
further improve computation times. The spe-
cialised collision detector is used on our vine
pruning robot and we compare its performance
to the Flexible Collision Library.

1 Introduction

We are developing a robot to autonomously prune grape
vines [Botterill et al., 2015] at the University of Canter-
bury, as shown in Fig. 1. Vines are reconstructed using
stereo vision [Botterill et al., 2014] and cuts are found
with an AI algorithm [Corbett-davies et al., 2012]. Cuts
are made using a UR5 [Universal Robots, 2015] six de-
gree of freedom robot arm with a spinning mill end, as
shown in Fig. 2. To make a cut the robot arm must move
the mill end through the cane. We use a path planner to
compute collision free paths for the robot arm to make
cuts. We have previously found that state of the art path
planners are slow for this problem [Paulin et al., 2015].

It is common for more than 90% of path planning
computation time to be spent in collision detection rou-
tines [Sénchez and Latombe, 2003]. These times can
be lowered by reducing the number of collision detec-
tion calls required, or speeding up the collision detector.
Previous work focusses on reducing the number of times
the collision detector is called by specialising the path

“ LEDs

[Ly
[
3ck‘

Robo
gy ‘

Figure 1: Vine pruning robot. Image courtesy of Bot-
terill et al. [Botterill et al., 2015].

Figure 2: Robot arm for pruning vines. Image courtesy
of Botterill et al. [Botterill et al., 2015].

planner to the robot’s configuration space [Bohlin and
Kavraki, 2001; Kuffner and Lavalle, 2000]. This is dif-
ficult to do with high degree of freedom robot arms be-
cause the configuration space cannot easily be visualised,
however, it is possible to visualise the robot’s environ-
ment. This means we can specialise the robot’s collision
detector to the task of vine pruning more easily than we
can specialise a state of the art general path planner.

2 Background

The collision detector must keep a model of the robot
and its environment. Objects are commonly represented
as a polygon soup (e.g. from a mesh), a solid primitive

(e.g. sphere, cylinder) or a combination of primitives.
Ideally an objects representation will geometrically be a
good fit and allow for fast collision checking.

A naive collision detector would perform all pairwise
collision checks between objects in the environment. For
our robot it would check every object in the robot arm
against every object in the environment. This is slow
when there is a large number of objects in the environ-
ment or robot arm. Most of the pairwise checks can
be avoided by using spatial partitioning and bounding
volumes.

One bounding volume can contain one or more objects.
When encapsulating multiple objects the bounding vol-
ume can reduce the number of pairwise checks. We can
also encapsulate objects that are computationally expen-
sive to check, e.g. complex polygon soups, with objects
that are simple to check like spheres. It is favourable to
use bounding volumes that are a tight fit and provide
inexpensive intersection tests, however, there is often a
trade-off between the two. Some common bounding vol-
umes (in increasing order of complexity) are sphere, axis
aligned bounding box [Bergen, 1997], oriented bound-
ing box [Gottschalk et al., 1996], discrete oriented poly-
tope [Klosowski et al., 1998] and convex hull.

Spatial partitioning methods divide the space into re-
gions and test whether objects overlap in the same re-
gion of space [Ericson, 2004]. Three common methods
are grids, trees and sweep and prune [Cohen et al., 1995].

Grid methods overlay space with cells. Pairwise checks
are performed between the robot and objects in the same
cells. The performance of these methods is highly depen-
dant on the grids resolution. If it is too fine then many
objects will be members of multiple cells. If the resolu-
tion is too course then there will be many objects in each
cell. Both cases lower the performance of grids [Ericson,
2004).

Tree methods recursively divide the space into cells.
This is similar to the grid structure, however, each cell
is further split into cells until a certain tree depth or
resolution on the leaf node is reached. Octrees are a
common method. They recursively divide the space into
eight cubes. This continues until a maximum tree depth
is reached or the leaf node volumes are smaller than a
specified value.

Grids and trees work well when environment objects
can be tightly bounded by cubes. Long and thin ob-
jects, such as cylinders, are not tightly bounded because
all dimensions of the cube scale with the largest dimen-
sion of the cylinder, its length. Cylinders will be loosely
bounded by one cube, or occupy multiple partitions.
Both of these cases cause a reduction in performance [Er-
icson, 2004].

Instead of grouping objects by the cubes they occupy,
we can maintain them in a spatially sorted list and use

sweep and prune[David Baraff, 1992; Cohen et al., 1995].
The minimum and maximum distances between each ob-
ject and a reference point, e.g. the base of the robot, are
computed and stored. Sweep and prune finds a set of
object pairs that cannot possibly be in collision based
on these distances, as shown in Fig. 3. Intersection tests
are then performed on the remaining pairs.

Safety margins can be applied to objects in the colli-
sion detector to account for sensor error. This allows a
path planner to find paths with a guaranteed minimum
obstacle clearance without requiring the collision de-
tector to perform expensive distance-to-nearest-obstacle
queries. These margins are often applied uniformly to
all objects in the scene.

3 Specialising a collision detector for
grape vines

A grape vine is made of canes and a head model. We
model the canes with capsules (cylinders with hemi-
spherical end caps) and the head model with a number
of spheres, as shown in Fig. 4. We chose these primitives
because they are quick to perform intersection tests on
and are a good fit for our problem. The capsules are ap-
proximated as the union of a sphere and a ray to reduce
intersection testing time.

Each capsule is bounded by a sphere because sphere-
sphere collision checks are faster than capsule-capsule
checks. The entire head model is bounded by one sphere
to reduce the number of pair-wise collision checks. The
robot frame and generator are modelled with planes.

To further reduce the number of pairwise checks we use
a one dimensional sweep and prune algorithm (Fig. 3)
similar to that in I-Collide [Cohen et al., 1995]. The
minimum and maximum distances to the base of the
robot are computed for each object. Collision detection
is only performed on pairs of objects that have overlap-
ping minimum and maximum distances to the base of
the robot. For example, to check for collisions between a
capsule on the robot arm and a capsule on the vine the
following would be performed:

1. Check whether the minimum and maximum dis-
tances to the robot base of the two capsules overlap.
If they do, then the capsules may intersect and we
should proceed to 2.

2. Check whether the bounding spheres for the two
capsules intersect. If they do then the capsules may
intersect and we should proceed to 3.

3. Perform an intersection test on the two capsules.

To make a cut the robot arm needs to move very close
to the cane to make a cut. This means that any safety
margins applied to the cane need to be small near parts
of the robot arm when it is in a cutting configuration,

1: procedure SWEEPANDPRUNE(a,b) > Determine
whether a pair of objects cannot intersect

2 if (a.min() > b.max()) or (b.max() < a.min())
then return cannot_intersect

3: else return may_intersect

4: end if

5: end procedure

Figure 3: One dimensional sweep and prune. min() and
max() provide the minimum and maximum distances be-
tween an object and a reference point e.g. the base of
the robot. If there is no overlap of min and max values
of the two objects then the pair cannot intersect.

but can be large further away. We add a safety margin
to each object based on the minimum distance between
it and any part of the robot arm when it is in a config-
uration to make any of the cuts on the vine, as shown
in Fig. 4. Larger margins are added to objects further
from the arm.

4 Results

We compare the specialised collision detector to the
Flexible Collision Library (FCL) [Pan et al., 2012]
through Moveit [Chitta et al., 2012]. FCL is configured
by Moveit to use octree spatial partitioning and bound-
ing volumes, as shown in Tab. 1. The robot arm is rep-
resented with a mesh provided by the Universal Robot
package [Edwards et al., |.

The specialised collision detector has significant speed-
up over FCL for full collision checks, as shown in Tab. 2,
and for self collision checks in Tab. 3. To compute mean
times we generated a large number of configurations and
timed both collision detectors on checking all states. The
mean was computed from total collision checking time
divided by the number of states checked. We performed
trials with states that were randomly generated and with
states which we knew to be valid. We tested using valid
states because the collision detection algorithm cannot
terminate early meaning it will often take longer, when
testing an invalid state it can terminate as soon as a
collision is detected.

Tab. 4 shows that the sweep and prune algorithm
saves over 90% of pairwise object checks between the
robot arm and the vine. These checks now only take a
small portion of total collision detection time, as shown
in Fig. 5.

Using the specialised collision detector results in the
speed up in path planning times shown in Tab. 5. The
path planner was tested by calculating all of the paths
required to prune 37 plants twice each, which is approx-
imately 650 paths. Different paths are generated each
time a specific plant is pruned due to randomness in the
cut point positioning and path planning algorithms.

Backwall

Head region

(b) Grape vine with safety margins. Cuts are marked in
orange. Cuts are made using specific robot states. The safety
margin is computed using the minimum distances between
parts of the robot arm in these states and the parts of the
vine.

Figure 4: Adaptive safety margin applied to a vine

Table 1: Configurations of specialised collision detector and FCL

| Collision detector | Arm model | Spatial partitioning | Uses bounding volumes |

Specialised

Capsules

Sweep and prune

yes

FCL

Mesh

Octree

yes

Table 2: Mean times for full collision checking with smart

safety margin

Collision de- | Random state | Valid state [s]
tector [s]

Specialised 3 x107° 5.9 x 107
FCL 1.5 x10~* 2.5 x 1071
Improvement 38X 42x

Table 3: Mean times for self collision checking with smart

safety margin

Collision de- | Random state | Valid state [s]
tector [s]

Specialised 2.8 x10°° 2.9 x10°°
FCL 6.0 x 107° 5.0 x 107°
Improvement 21x 17x

Computation time distribution for full collision checking on
random states

0.33
0.26

Gettransforms
Transform robot model

Table 4: How the specialised collision detector identifies
that pairs of objects are not intersecting when the input
robot state is not in collision. Most objects pairs are
classified as not intersecting by the sweep and prune al-
gorithm. Intersection testing is only required for 0.23%
of pairs on average.

‘ | Mean [%] |
Sweep and prune 91
Head bounding volume 6.2

Capsule bounding volumes | 2.1
Pairwise checks performed | 0.23

Collisions with frame
Collisions with vines
Self collisions

Collisions with head

EEEEODO

I T T
0.0 0z 04

T 1
08 1.0

o
=1

Fraction of total time

Figure 5: Breakdown of computation time for specialised
collision detector. Most of the computation time is spent
getting and applying transforms to the robot model
rather than testing it for collision.

Table 5: Mean path planning and execution times when using the specialised collision detector. Execution time is
how long it takes the URb robot arm to follow the planned path. For path planning with a 30 second time-out there
was a 100% success rate for trials with the specialised collision detector, and a 99.3% success rate when using the

Flexible Collision Library.

With smart safety margin

Without smart safety margin

Collision detector

Planning time [s] | Execution time [s]

Planning time [s] | Execution time [s]

Specialised with sweep and prune | 0.13 6.5 0.12 6.7
Specialised no sweep and prune 0.51 6.5 0.43 6.7
Flexible Collision Library - - 3.4 6.1

5 Discussion

The specialised collision detector is fast because it per-
forms few pairwise collision checks, as shown in Tab. 4.
This is because the sweep and prune algorithm allows
most pairwise object collision checks to be bypassed.
Sweep and prune works well because most of the parts of
the robot arm are closer to the robot’s base than almost
all of the obstacles for most robot states.

Putting a sphere bounding volume around the vines
head region worked well because it was a tight fit and
the head region had a large number of spheres. Without
the bounding volume we would have always had to test
against all spheres that were not removed by sweep and
prune.

We bounded each capsule with a sphere because sphere
intersection tests are cheaper than capsule intersection
tests. This saved less pairwise checks than the bounding
sphere around the head region because it only bounded
one object. We could improve the collision detector by
bounding multiple capsules with one volume e.g. by
bounding an entire cane with one capsule.

Most of the collision detection time is spend getting
the robot link transforms for the input state and ap-
plying these transforms to the robot collision model as
shown in Fig. 5. This is because very few pairwise inter-
section tests are performed because of sweep and prune,
as shown in Tab. 4. Performing intersection tests be-
tween the robot arm and robot frame, which only has six
planes, takes about the same amount of time as testing
the arm against the entire vine. This is because sweep
and prune is not applied to these intersection tests.

Using the specialised collision detector in path plan-
ning provides a 26 times speed-up compared to using
FCL, as shown in Tab. 5. Planning times with the spe-
cialised collision detector are also 12 times faster than
those by Lee et al. [Lee et al., 2014] who report a mean
time of 1.5 seconds for a success rate of 80%.

Using adaptive safety margins allowed us to have a
large safety margin on some parts of the vine as shown
in Fig. 4. This provides a guaranteed minimum clear-
ance between the robot arm and parts of the vine away
from cuts in computed paths. Using the safety margin

caused a small increase in path planning times (Tab. 5)
because the vine became larger. The safety margin re-
lies on having an accurate model of the vines around
cuts. The real robot still collides with vines when the
3D model is inaccurate near cuts because the adaptive
safety margin is small in those places.

6 Conclusion

Efficient motion planning is important for robot arms so
they can work productively. Standard methods for mo-
tion planning are often slow in complex environments
because the collision detectors they use are inefficient.
By customising a collision detector for the environment
a large speed-up can be obtained. We have implemented
a specialised collision detector for grape vines. This spe-
cialised collision detector performs well on grape vines
because it performs very few pairwise intersection tests.
The pairwise tests it does perform are fast because the
grape vines and robot arm are modelled with capsules
are spheres which provide fast intersection tests. Path
planning with our efficient collision detector means that
planning times are small compared to execution times.
The ability to compute large numbers of paths efficiently
will allow us to find the best order of cuts to reduce ex-
ecution times in future work.

References

[Bergen7 1997] Gino Van Den Bergen. Efficient Colli-
sion Detection of Complex Deformable Models using
AABB Trees. Journal of Graphics Tools, 2(4):1-13,
1997.

[Bohlin and Kavraki, 2001] R Bohlin and LE Kavraki.
A Randomized Approach to Robot Path Planning
Based on Lazy Evaluation. Combinatorial Optimiza-
tion, pages 221-249, 2001.

[Botterill et al., 2014] Tom Botterill, Richard Green,
and Steven Mills. A decision-theoretic formulation for
sparse stereo correspondence problems. In 3DV, 2014.

[Botterill et al., 2015] Tom Botterill, Scott Paulin,
Richard Green, Samuel Williams, Jessica Lin, Valarie

Saxton, Steven Mills, XiaoQi Chen, and Sam Corbett-
Davies. A robot system for pruning grape vines. Sub-
mitted to Journal of Field Robotics, 2015.

[Chitta et al., 2012] S Chitta, I Sucan, and S Cousins.
Moveit! IEEE Robotics Automation ..., (March):18-
19, 2012.

[Cohen et al., 1995] Jonathan D Cohen, Ming C Lin, Di-
nesh Manocha, and Madhav Ponamgi. I-COLLIDE:
An interactive and exact collision detection system for
large-scale environments. In I3D ’95 Proceedings of
the 1995 symposium on Interactive 3D graphics, pages
189-197, 1995.

[Corbett-davies et al., 2012] Sam Corbett-davies, Tom
Botterill, Richard Green, and Valerie Saxton. An
expert system for automatically pruning vines. In
IVCNZ, 2012.

[David Baraff, 1992] David Baraff. Dynamic Simulation
of non-penetrating rigid bodies. Phd, Cornell, 1992.

[Edwards et al.,] Shaun Edwards, Stuart Glaser,
Kelsey Hawkins, Wim Meeussen, and Felix Messmer.
universal_robot ROS package.

[Ericson, 2004] Christer Ericson. Real time collision de-
tection. Elsevier, 2004.

[Gottschalk et al., 1996] S Gottschalk, M C Lin,
D Manocha, and Chapel Hill. OBB Tree: A Hier-
archical Structure for Rapid Interference Detection.
(8920219):171-180, 1996.

[Klosowski et al., 1998] J Klosowski, M Held, Joseph
S B Mitchell, K Zika\ N, and H Sowizral. Efficient
Collision Detection Using Bounding Volume Hierar-
chies of k-DOPS. IEEE Trans. Visualizat. Comput.
Graph., 4(1):21-36, 1998.

[Kuffner and Lavalle, 2000] James J Kuffner and
Steven M Lavalle. RRT-Connect : An Efficient
Approach to Single-Query Path Planning. In Inter-
national Conference on Robotics and Automation,
number April, pages 995-1001, 2000.

[Lee et al., 2014] James Ju Heon Lee, Kris Frey, Robert
Fitch, and Salah Sukkareith. Fast Path Planning for
Precision Weeding. In Australasian Conference on
Robotics and Automation, 2014.

[Pan et al., 2012] Jia Pan, Sachin Chitta, and Dinesh
Manocha. FCL: A general purpose library for collision
and proximity queries. Proceedings - IEFEE Interna-

tional Conference on Robotics and Automation, pages
3859-3866, 2012.

[Paulin et al., 2015] S Paulin, T Botterill, J Lin,
X Chen, and R Green. A comparison of sampling-
based path planners for a grape vine pruning robot
arm. In International Conference on Automation,
Robotics and Applications, pages 98-103, 2015.

[Sanchez and Latombe, 2003] G Sénchez and
JC Latombe. A single-query bi-directional probabilis-
tic roadmap planner with lazy collision checking. In
International Symposium Robotics Research, pages

403-414. 2003.

[Universal Robots, 2015] Universal Robots.
Robots URS robot arm, 2015.

Universal

